Presentations for tensor categories

James East

Centre for Research in Mathematics

York/Sydney — 29 April 2020

Can this knot be un-knotted?

Theorem (Reidemeister 1927)

Theorem (Reidemeister 1927)

Two knots are equivalent \Leftrightarrow they differ by Reidemeister moves.

• Knots are built from small pieces (crossings).

Theorem (Reidemeister 1927)

- Knots are built from small pieces (crossings).
- Equivalence is governed by local moves.

Theorem (Reidemeister 1927)

- Knots are built from small pieces (crossings).
- Equivalence is governed by local moves.
- Useful when defining knot invariants.
 - Alexander, Conway, Jones, Kauffman...

Theorem (Reidemeister 1927)

- Knots are built from small pieces (crossings).
- Equivalence is governed by local moves.
- Useful when defining knot invariants.
 - Alexander, Conway, Jones, Kauffman...
 - f(knot K)

Theorem (Reidemeister 1927)

- ► Knots are built from small pieces (crossings).
- Equivalence is governed by local moves.
- Useful when defining knot invariants.
 - Alexander, Conway, Jones, Kauffman...
 - *f*(knot *K*) := *f*(diagram representing *K*).

Theorem (Reidemeister 1927)

- Knots are built from small pieces (crossings).
- Equivalence is governed by local moves.
- Useful when defining knot invariants.
 - Alexander, Conway, Jones, Kauffman...
 - f(knot K) := f(diagram representing K).
 - f is well-defined \Leftrightarrow invariant under local moves.

► Let A be an algebraic structure: e.g., a group, ring, category...

- ▶ Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X : R \rangle$ if:

- ► Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X : R \rangle$ if:
 - X is a generating set for A,

- ▶ Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X : R \rangle$ if:
 - ► X is a generating set for A,
 - *R* is a set of equations (relations) over *X*: e.g., xy = yx,

- ▶ Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X : R \rangle$ if:
 - X is a generating set for A,
 - *R* is a set of equations (relations) over *X*: e.g., xy = yx,
 - R is complete: every equation over X follows from R.

- ▶ Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X : R \rangle$ if:
 - X is a generating set for A,
 - R is a set of equations (relations) over X: e.g., xy = yx,
 - ▶ *R* is complete: every equation over *X* follows from *R*.
- Formally, A has presentation $\langle X : R \rangle$ if $A \cong X^*/R^{\sharp}$:
 - X is a set and X^* is the free algebra (of same type as A),
 - $R \subseteq X^* \times X^*$ and R^{\sharp} is the congruence on X^* generated by R.
 - i.e., there is a surmorphism $X^* \to A$ with kernel R^{\sharp} .

- ▶ Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X : R \rangle$ if:
 - X is a generating set for A,
 - *R* is a set of equations (relations) over *X*: e.g., xy = yx,
 - ▶ *R* is complete: every equation over *X* follows from *R*.
- Formally, A has presentation $\langle X : R \rangle$ if $A \cong X^*/R^{\sharp}$:
 - X is a set and X^* is the free algebra (of same type as A),
 - $R \subseteq X^* \times X^*$ and R^{\sharp} is the congruence on X^* generated by R.
 - i.e., there is a surmorphism $X^* \to A$ with kernel R^{\sharp} .
- We can use presentations to define invariants.

- ▶ Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X : R \rangle$ if:
 - X is a generating set for A,
 - R is a set of equations (relations) over X: e.g., xy = yx,
 - ▶ *R* is complete: every equation over *X* follows from *R*.
- Formally, A has presentation $\langle X : R \rangle$ if $A \cong X^*/R^{\sharp}$:
 - X is a set and X^* is the free algebra (of same type as A),
 - $R \subseteq X^* \times X^*$ and R^{\sharp} is the congruence on X^* generated by R.
 - i.e., there is a surmorphism $X^* \to A$ with kernel R^{\sharp} .
- We can use presentations to define homomorphisms $\phi: A \rightarrow B$.

- ▶ Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X : R \rangle$ if:
 - X is a generating set for A,
 - *R* is a set of equations (relations) over *X*: e.g., xy = yx,
 - ▶ *R* is complete: every equation over *X* follows from *R*.
- Formally, A has presentation $\langle X : R \rangle$ if $A \cong X^*/R^{\sharp}$:
 - X is a set and X^* is the free algebra (of same type as A),
 - $R \subseteq X^* \times X^*$ and R^{\sharp} is the congruence on X^* generated by R.
 - ▶ i.e., there is a surmorphism $X^* \to A$ with kernel R^{\sharp} .
- We can use presentations to define homomorphisms $\phi : A \rightarrow B$.
 - Define $\phi(x)$ for all $x \in X$.

- ▶ Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X : R \rangle$ if:
 - X is a generating set for A,
 - *R* is a set of equations (relations) over *X*: e.g., xy = yx,
 - ▶ *R* is complete: every equation over *X* follows from *R*.
- Formally, A has presentation $\langle X : R \rangle$ if $A \cong X^*/R^{\sharp}$:
 - X is a set and X^* is the free algebra (of same type as A),
 - $R \subseteq X^* \times X^*$ and R^{\sharp} is the congruence on X^* generated by R.
 - ▶ i.e., there is a surmorphism $X^* \to A$ with kernel R^{\sharp} .

• We can use presentations to define homomorphisms $\phi : A \rightarrow B$.

- Define $\phi(x)$ for all $x \in X$.
- For $a = x_1 \cdots x_k$, define $\phi(a) = \phi(x_1) \cdots \phi(x_k)$.

- ▶ Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X : R \rangle$ if:
 - X is a generating set for A,
 - *R* is a set of equations (relations) over *X*: e.g., xy = yx,
 - ▶ *R* is complete: every equation over *X* follows from *R*.
- Formally, A has presentation $\langle X : R \rangle$ if $A \cong X^*/R^{\sharp}$:
 - X is a set and X^* is the free algebra (of same type as A),
 - $R \subseteq X^* \times X^*$ and R^{\sharp} is the congruence on X^* generated by R.
 - i.e., there is a surmorphism $X^* \to A$ with kernel R^{\sharp} .

• We can use presentations to define homomorphisms $\phi : A \rightarrow B$.

- Define $\phi(x)$ for all $x \in X$.
- For $a = x_1 \cdots x_k$, define $\phi(a) = \phi(x_1) \cdots \phi(x_k)$.
- Well-defined $\Leftrightarrow \phi(u) = \phi(v)$ for every relation u = v.

Theorem (Moore, 1897)

The symmetric group $S_n \cong \langle s_1, \ldots, s_{n-1} : R \rangle$.

$$s_i \equiv \left[\begin{array}{c} \cdots \\ \cdots \\ \cdots \\ \end{array} \right] \left[\begin{array}{c} \cdots \\ \cdots \\ \end{array} \right] = (i, i+1)$$

Theorem (Moore, 1897)

The symmetric group $S_n \cong \langle s_1, \ldots, s_{n-1} : R \rangle$.

$$s_i \equiv \left[\begin{array}{c} \cdots \\ \cdots \\ \cdots \\ \end{array} \right] \left[\begin{array}{c} \cdots \\ \cdots \\ \end{array} \right] = (i, i+1)$$

Theorem (Moore, 1897)

The symmetric group $S_n \cong \langle s_1, \ldots, s_{n-1} : R \rangle$.

$$s_i \equiv \left[\begin{array}{c} \cdots \\ \cdots \\ \cdots \\ \end{array} \right] \left[\begin{array}{c} \cdots \\ \cdots \\ \end{array} \right] = (i, i+1)$$

Theorem (Moore, 1897)

The symmetric group $S_n \cong \langle s_1, \ldots, s_{n-1} : R \rangle$.

$$s_i \equiv \left[\begin{array}{c} \cdots \\ \cdots \\ \cdots \\ \end{array} \right] \left[\begin{array}{c} \cdots \\ \cdots \\ \end{array} \right] = (i, i+1)$$

Theorem (Artin, 1925)

$$\sigma_i \sigma_j = \sigma_j \sigma_i \qquad \text{if } |i - j| > 1 \qquad (\text{R1})$$

$$\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \qquad \text{if } |i - j| = 1. \qquad (\text{R2})$$

Theorem (Artin, 1925)

$$\sigma_i \sigma_j = \sigma_j \sigma_i \qquad \text{if } |i - j| > 1 \qquad (\text{R1})$$

$$\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \qquad \text{if } |i - j| = 1. \qquad (\text{R2})$$

$$\sigma_i \equiv \left[\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right] \times \left[\begin{array}{c} & & \\ & & \\ \end{array} \right]$$

Theorem (Artin, 1925)

$$\sigma_i \sigma_j = \sigma_j \sigma_i \qquad \text{if } |i - j| > 1 \qquad (R1)$$

$$\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \qquad \text{if } |i - j| = 1. \qquad (R2)$$

Theorem (Artin, 1925)

$$\sigma_i \sigma_j = \sigma_j \sigma_i \qquad \text{if } |i - j| > 1 \qquad (\text{R1})$$

$$\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \qquad \text{if } |i - j| = 1. \qquad (\text{R2})$$

Theorem (Artin, 1925)

$$\sigma_i \sigma_j = \sigma_j \sigma_i \qquad \text{if } |i - j| > 1 \qquad (\text{R1})$$

$$\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \qquad \text{if } |i - j| = 1. \qquad (\text{R2})$$

► Those examples were groups.

- ► Those examples were groups.
- Presentations for many semigroups are known.

- Those examples were groups.
- Presentations for many semigroups are known.
- For an integer $n \ge 0$, let $\mathbf{n} = \{1, \ldots, n\}$.

- Those examples were groups.
- Presentations for many semigroups are known.
- For an integer $n \ge 0$, let $\mathbf{n} = \{1, \dots, n\}$.
- The full transformation semigroup:

 $\mathcal{T}_{n} = \{ \text{functions } n \to n \}.$

- Those examples were groups.
- Presentations for many semigroups are known.
- For an integer $n \ge 0$, let $\mathbf{n} = \{1, \dots, n\}$.
- The full transformation semigroup:

 $\mathcal{T}_{\textit{n}} = \{ \text{functions } \textit{n} \rightarrow \textit{n} \}.$

• The partial transformation semigroup:

$$\mathcal{PT}_n = \{ \text{partial functions } \mathbf{n} \to \mathbf{n} \}.$$
- Those examples were groups.
- Presentations for many semigroups are known.
- For an integer $n \ge 0$, let $\mathbf{n} = \{1, \dots, n\}$.
- The full transformation semigroup:

 $\mathcal{T}_{\textit{n}} = \{ \text{functions } \textit{n} \rightarrow \textit{n} \}.$

• The partial transformation semigroup:

 $\mathcal{PT}_n = \{ \text{partial functions } n \to n \}.$

The symmetric inverse semigroup:

 $\mathcal{I}_n = \{ \text{partial bijections } n \to n \}.$

- Those examples were groups.
- Presentations for many semigroups are known.
- For an integer $n \ge 0$, let $\mathbf{n} = \{1, \dots, n\}$.
- The full transformation semigroup:

 $\mathcal{T}_{\textit{n}} = \{ \text{functions } \textit{n} \rightarrow \textit{n} \}.$

• The partial transformation semigroup:

 $\mathcal{PT}_n = \{ \text{partial functions } n \to n \}.$

The symmetric inverse semigroup:

 $\mathcal{I}_n = \{ \text{partial bijections } n \to n \}.$

Each contains the symmetric group:

 $S_n = \{ \text{bijections } n \to n \}.$

Theorem (Moore, 1897)

The symmetric group $S_n \cong \langle s_1, \ldots, s_{n-1} : R \rangle$.

 $\begin{aligned} s_i^2 &= \iota & \text{for all } i & (\text{R1}) \\ s_i s_j &= s_j s_i & \text{if } |i - j| > 1 & (\text{R2}) \\ s_i s_j s_i &= s_j s_i s_j & \text{if } |i - j| = 1. & (\text{R3}) \end{aligned}$

 $s_i \equiv$

Theorem (Aĭzenštat, 1958)

The full transformation semigroup $\mathcal{T}_n \cong \langle s_1, \ldots, s_{n-1}, e : R \rangle$.

$s_i^2 = \iota$	for all <i>i</i>	(R1)
$s_i s_j = s_j s_i$	if $ i-j > 1$	(R2)
$s_i s_j s_i = s_j s_i s_j$	$if\; i-j =1$	(R3)
$s_i e = e s_i$	if $i \geq 3$	(R4)
$e^2 = e = s_1 e$		(R5)
$es_2es_2 = s_2es_2e = es_2e$		(R6)
$es_1s_2s_1 = es_1s_2e$		(R7)
eueu = ueue	where $u = s_2 s_1 s_3 s_2$.	(R8)
	e = /	

Theorem (Popova, 1961)

The symmetric inverse semigroup $\mathcal{I}_n \cong \langle s_1, \ldots, s_{n-1}, \mathbf{e} : R \rangle$.

$s_i^2 = \iota$	for all <i>i</i>	(R1)
$s_i s_j = s_j s_i$	if $ i-j > 1$	(R2)
$s_i s_j s_i = s_j s_i s_j$	if $ i-j =1$	(R3)
$s_i e = e s_i$	if $i \geq 2$	(R4)
$e^2 = e$		(R5)
$es_1es_1 = s_1es_1e = es_1e$.		(R6)
$s_i \equiv $		

• For us: each category C has object set $\mathbb{N} = \{0, 1, 2, \ldots\}$.

- For us: each category C has object set $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- Think of C as a partial monoid.

- For us: each category C has object set $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- ► Think of *C* as a partial monoid..... A set with:
 - ▶ a partial product $xy = x \circ y$ ($x, y \in C$),

- For us: each category C has object set $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- ► Think of *C* as a partial monoid..... A set with:
 - ▶ a partial product $xy = x \circ y$ ($x, y \in C$),
 - domain/range functions $\mathbf{d}, \mathbf{r} : \mathcal{C} \to \mathbb{N}$,

- For us: each category C has object set $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- ► Think of C as a partial monoid..... A set with:
 - a partial product $xy = x \circ y$ $(x, y \in C)$,
 - domain/range functions $\mathbf{d}, \mathbf{r} : \mathcal{C} \to \mathbb{N}$,
 - ▶ many identity elements ι_n ($n \in \mathbb{N}$) with $\mathbf{d}(\iota_n) = \mathbf{r}(\iota_n) = n$.

- For us: each category C has object set $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- ► Think of C as a partial monoid..... A set with:
 - ▶ a partial product $xy = x \circ y$ ($x, y \in C$),
 - domain/range functions $\mathbf{d}, \mathbf{r} : \mathcal{C} \to \mathbb{N}$,
 - many identity elements ι_n $(n \in \mathbb{N})$ with $\mathbf{d}(\iota_n) = \mathbf{r}(\iota_n) = n$.
- Properties/axioms:
 - xy defined $\Leftrightarrow \mathbf{r}(x) = \mathbf{d}(y)$,

- For us: each category C has object set $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- ► Think of C as a partial monoid..... A set with:
 - ▶ a partial product $xy = x \circ y$ ($x, y \in C$),
 - domain/range functions $\mathbf{d}, \mathbf{r} : \mathcal{C} \to \mathbb{N}$,
 - many identity elements ι_n $(n \in \mathbb{N})$ with $\mathbf{d}(\iota_n) = \mathbf{r}(\iota_n) = n$.
- Properties/axioms:
 - *xy* defined \Leftrightarrow **r**(*x*) = **d**(*y*),
 - $\mathbf{d}(xy) = \mathbf{d}(x)$ and $\mathbf{r}(xy) = \mathbf{r}(y)$,

- For us: each category C has object set $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- ► Think of C as a partial monoid..... A set with:
 - ▶ a partial product $xy = x \circ y$ ($x, y \in C$),
 - domain/range functions $\mathbf{d}, \mathbf{r} : \mathcal{C} \to \mathbb{N}$,
 - many identity elements ι_n $(n \in \mathbb{N})$ with $\mathbf{d}(\iota_n) = \mathbf{r}(\iota_n) = n$.
- Properties/axioms:
 - *xy* defined \Leftrightarrow **r**(*x*) = **d**(*y*),

•
$$\mathbf{d}(xy) = \mathbf{d}(x)$$
 and $\mathbf{r}(xy) = \mathbf{r}(y)$,

• (xy)z = x(yz) when defined,

- For us: each category C has object set $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- ► Think of C as a partial monoid..... A set with:
 - ▶ a partial product $xy = x \circ y$ ($x, y \in C$),
 - domain/range functions $\mathbf{d}, \mathbf{r} : \mathcal{C} \to \mathbb{N}$,
 - many identity elements ι_n $(n \in \mathbb{N})$ with $\mathbf{d}(\iota_n) = \mathbf{r}(\iota_n) = n$.
- Properties/axioms:
 - *xy* defined \Leftrightarrow **r**(*x*) = **d**(*y*),

•
$$\mathbf{d}(xy) = \mathbf{d}(x)$$
 and $\mathbf{r}(xy) = \mathbf{r}(y)$,

- (xy)z = x(yz) when defined,
- $\iota_m \circ x = x = x \circ \iota_n$ when defined.

- For us: each category C has object set $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- ► Think of C as a partial monoid..... A set with:
 - ▶ a partial product $xy = x \circ y$ ($x, y \in C$),
 - domain/range functions $\mathbf{d}, \mathbf{r} : \mathcal{C} \to \mathbb{N}$,
 - ▶ many identity elements ι_n ($n \in \mathbb{N}$) with $\mathbf{d}(\iota_n) = \mathbf{r}(\iota_n) = n$.
- Properties/axioms:
 - *xy* defined \Leftrightarrow **r**(*x*) = **d**(*y*),

•
$$\mathbf{d}(xy) = \mathbf{d}(x)$$
 and $\mathbf{r}(xy) = \mathbf{r}(y)$,

- (xy)z = x(yz) when defined,
- $\iota_m \circ x = x = x \circ \iota_n$ when defined.
- Morphism sets: $C_{m,n} = \{x \in C : \mathbf{d}(x) = m, \mathbf{r}(x) = n\}.$

- For us: each category C has object set $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- ► Think of C as a partial monoid..... A set with:
 - ▶ a partial product $xy = x \circ y$ ($x, y \in C$),
 - domain/range functions $\mathbf{d}, \mathbf{r} : \mathcal{C} \to \mathbb{N}$,
 - many identity elements ι_n $(n \in \mathbb{N})$ with $\mathbf{d}(\iota_n) = \mathbf{r}(\iota_n) = n$.
- Properties/axioms:
 - *xy* defined \Leftrightarrow **r**(*x*) = **d**(*y*),

•
$$\mathbf{d}(xy) = \mathbf{d}(x)$$
 and $\mathbf{r}(xy) = \mathbf{r}(y)$,

- (xy)z = x(yz) when defined,
- $\iota_m \circ x = x = x \circ \iota_n$ when defined.
- Morphism sets: $C_{m,n} = \{x \in C : \mathbf{d}(x) = m, \mathbf{r}(x) = n\}.$
- Endomorphism monoids: $C_n = C_{n,n}$.

- For us: each category C has object set $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- ► Think of C as a partial monoid..... A set with:
 - ▶ a partial product $xy = x \circ y$ ($x, y \in C$),
 - domain/range functions $\mathbf{d}, \mathbf{r} : \mathcal{C} \to \mathbb{N}$,
 - ▶ many identity elements ι_n ($n \in \mathbb{N}$) with $\mathbf{d}(\iota_n) = \mathbf{r}(\iota_n) = n$.
- Properties/axioms:
 - *xy* defined \Leftrightarrow **r**(*x*) = **d**(*y*),

•
$$\mathbf{d}(xy) = \mathbf{d}(x)$$
 and $\mathbf{r}(xy) = \mathbf{r}(y)$,

- (xy)z = x(yz) when defined,
- $\iota_m \circ x = x = x \circ \iota_n$ when defined.
- Morphism sets: $C_{m,n} = \{x \in C : \mathbf{d}(x) = m, \mathbf{r}(x) = n\}.$
- Endomorphism monoids: $C_n = C_{n,n}$.
- Familiar example: $\mathcal{M} = \{ all \text{ (finite) matrices over } \mathbb{R} \}.$

• Recall:
$$\mathbf{n} = \{1, \dots, n\}$$
 for $n \in \mathbb{N}$.

• Recall:
$$\mathbf{n} = \{1, \dots, n\}$$
 for $n \in \mathbb{N}$.

• The full transformation category:

 $\mathcal{T} = \{ \text{functions } \mathbf{m} \to \mathbf{n} : m, n \in \mathbb{N} \}.$

• Recall:
$$\mathbf{n} = \{1, \dots, n\}$$
 for $n \in \mathbb{N}$.

The full transformation category:

 $\mathcal{T} = \{ \text{functions } \mathbf{m} \to \mathbf{n} : m, n \in \mathbb{N} \}.$

• Morphism sets: $\mathcal{T}_{m,n} = \{ \text{functions } \mathbf{m} \to \mathbf{n} \}.$

• Recall:
$$\mathbf{n} = \{1, \dots, n\}$$
 for $n \in \mathbb{N}$.

The full transformation category:

 $\mathcal{T} = \{ \text{functions } \mathbf{m} \to \mathbf{n} : m, n \in \mathbb{N} \}.$

- Morphism sets: $\mathcal{T}_{m,n} = \{ \text{functions } \mathbf{m} \to \mathbf{n} \}.$
- Endomorphism monoids: $T_n = T_{n,n} = \{$ functions $\mathbf{n} \to \mathbf{n} \}$.

• Recall:
$$\mathbf{n} = \{1, \dots, n\}$$
 for $n \in \mathbb{N}$.

The full transformation category:

 $\mathcal{T} = \{ \text{functions } \mathbf{m} \to \mathbf{n} : m, n \in \mathbb{N} \}.$

• Morphism sets: $\mathcal{T}_{m,n} = \{ \text{functions } \mathbf{m} \to \mathbf{n} \}.$

- Endomorphism monoids: $T_n = T_{n,n} = \{$ functions $\mathbf{n} \to \mathbf{n} \}$.
- The partial transformation category:

 $\mathcal{PT} = \{ \text{partial functions } \mathbf{m} \to \mathbf{n} : m, n \in \mathbb{N} \}.$

• Endomorphism monoids: \mathcal{PT}_n .

• Recall:
$$\mathbf{n} = \{1, \dots, n\}$$
 for $n \in \mathbb{N}$.

The full transformation category:

 $\mathcal{T} = \{ \text{functions } \mathbf{m} \to \mathbf{n} : m, n \in \mathbb{N} \}.$

• Morphism sets: $\mathcal{T}_{m,n} = \{ \text{functions } \mathbf{m} \to \mathbf{n} \}.$

- Endomorphism monoids: $T_n = T_{n,n} = \{$ functions $\mathbf{n} \to \mathbf{n} \}$.
- The partial transformation category:

 $\mathcal{PT} = \{ \text{partial functions } \mathbf{m} \to \mathbf{n} : m, n \in \mathbb{N} \}.$

- Endomorphism monoids: \mathcal{PT}_n .
- The symmetric inverse category:

 $\mathcal{I} = \{ \text{partial bijections } \mathbf{m} \to \mathbf{n} : m, n \in \mathbb{N} \}.$

• Endomorphism monoids: \mathcal{I}_n .

My original motivation.

My original motivation.

▶ For
$$n \in \mathbb{N}$$
, let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$.

- My original motivation.
- ▶ For $n \in \mathbb{N}$, let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$.
- ▶ For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m,n} = \{\text{set partitions of } \mathbf{m} \cup \mathbf{n}'\}$

• My original motivation.

▶ For
$$n \in \mathbb{N}$$
, let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$.

▶ For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m,n} = \{$ set partitions of $\mathbf{m} \cup \mathbf{n}'\}$

• Eg:
$$\alpha = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 5'\}, \{2'\}, \{3'\} \right\} \in \mathcal{P}_{6,5}$$

• My original motivation.

▶ For
$$n \in \mathbb{N}$$
, let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$.

▶ For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m,n} = \{$ set partitions of $\mathbf{m} \cup \mathbf{n}'\}$

 $\equiv \{ {\rm graphs} \text{ on } m \cup n' \}.$

• Eg:
$$\alpha = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 5'\}, \{2'\}, \{3'\} \right\} \in \mathcal{P}_{6,5}$$

My original motivation.

▶ For
$$n \in \mathbb{N}$$
, let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$.

▶ For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m,n} = \{$ set partitions of $\mathbf{m} \cup \mathbf{n}'\}$

 $\equiv \{ \text{graphs on } \mathbf{m} \cup \mathbf{n}' \}.$

• Eg: $\alpha = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 5'\}, \{2'\}, \{3'\} \right\} \in \mathcal{P}_{6,5}$ $\mathbf{6} \left\{ \begin{array}{ccc} 1 & 2 & 3 & 4 & 5 & 6 \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ 5' \left\{ \begin{array}{ccc} \bullet & \bullet & \bullet & \bullet \\ 1' & 2' & 3' & 4' & 5' \end{array} \right.$

My original motivation.

▶ For
$$n \in \mathbb{N}$$
, let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$.

▶ For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m,n} = \{$ set partitions of $\mathbf{m} \cup \mathbf{n}'\}$

 $\equiv \{ \mathsf{graphs} \text{ on } \mathbf{m} \cup \mathbf{n}' \}.$

My original motivation.

▶ For
$$n \in \mathbb{N}$$
, let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$.

▶ For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m,n} = \{$ set partitions of $\mathbf{m} \cup \mathbf{n}'\}$

 $\equiv \{ {\rm graphs} \text{ on } m \cup n' \}.$

My original motivation.

▶ For
$$n \in \mathbb{N}$$
, let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$.

▶ For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m,n} = \{$ set partitions of $\mathbf{m} \cup \mathbf{n}'\}$

 $\equiv \{ \mathsf{graphs} \text{ on } \mathbf{m} \cup \mathbf{n}' \}.$

My original motivation.

▶ For
$$n \in \mathbb{N}$$
, let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$.

▶ For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m,n} = \{$ set partitions of $\mathbf{m} \cup \mathbf{n}'\}$

 $\equiv \{ \mathsf{graphs} \text{ on } \mathbf{m} \cup \mathbf{n}' \}.$

- My original motivation.
- ▶ For $n \in \mathbb{N}$, let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$.
- ▶ For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m,n} = \{$ set partitions of $\mathbf{m} \cup \mathbf{n}'\}$

 $\equiv \{ \mathsf{equiv-classes} \text{ of graphs on } \mathbf{m} \cup \mathbf{n'} \}.$

• Eg: $\alpha = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 5'\}, \{2'\}, \{3'\} \right\} \in \mathcal{P}_{6,5}$

- My original motivation.
- ▶ For $n \in \mathbb{N}$, let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$.
- ▶ For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m,n} = \{$ set partitions of $\mathbf{m} \cup \mathbf{n}'\}$

 $\equiv \{ \mathsf{equiv-classes} \text{ of graphs on } \mathbf{m} \cup \mathbf{n'} \}.$

• Eg: $\alpha = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 5'\}, \{2'\}, \{3'\} \right\} \in \mathcal{P}_{6,5}$

- My original motivation.
- ▶ For $n \in \mathbb{N}$, let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$.
- ▶ For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m,n} = \{$ set partitions of $\mathbf{m} \cup \mathbf{n}'\}$

 $\equiv \{ \mathsf{equiv-classes} \text{ of graphs on } \mathbf{m} \cup \mathbf{n'} \}.$

• Eg: $\alpha = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 5'\}, \{2'\}, \{3'\} \right\} \in \mathcal{P}_{6,5}$

- My original motivation.
- ▶ For $n \in \mathbb{N}$, let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$.
- ▶ For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m,n} = \{$ set partitions of $\mathbf{m} \cup \mathbf{n}'\}$

 $\equiv \{ \mathsf{equiv-classes} \text{ of graphs on } \mathbf{m} \cup \mathbf{n'} \}.$

• Eg: $\alpha = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 5'\}, \{2'\}, \{3'\} \right\} \in \mathcal{P}_{6,5}$

• The partition category is $\mathcal{P} = \bigcup_{m,n \in \mathbb{N}} \mathcal{P}_{m,n}$.

Let $\alpha \in \mathcal{P}_{m,n}$ and $\beta \in \mathcal{P}_{n,q}$.

Let $\alpha \in \mathcal{P}_{m,n}$ and $\beta \in \mathcal{P}_{n,q}$. To calculate $\alpha\beta = \alpha \circ \beta \in \mathcal{P}_{m,q}$: (1) connect bottom of α to top of β ,

Let $\alpha \in \mathcal{P}_{m,n}$ and $\beta \in \mathcal{P}_{n,q}$. To calculate $\alpha\beta = \alpha \circ \beta \in \mathcal{P}_{m,q}$:

- (1) connect bottom of α to top of β ,
- (2) remove middle vertices and floating components,

Let $\alpha \in \mathcal{P}_{m,n}$ and $\beta \in \mathcal{P}_{n,q}$. To calculate $\alpha\beta = \alpha \circ \beta \in \mathcal{P}_{m,q}$:

- (1) connect bottom of α to top of β ,
- (2) remove middle vertices and floating components,
- (3) smooth out resulting graph to obtain $\alpha\beta$.

Let $\alpha \in \mathcal{P}_{m,n}$ and $\beta \in \mathcal{P}_{n,q}$. To calculate $\alpha\beta = \alpha \circ \beta \in \mathcal{P}_{m,q}$:

- (1) connect bottom of α to top of β ,
- (2) remove middle vertices and floating components,
- (3) smooth out resulting graph to obtain $\alpha\beta$.

• Endomorphism monoids are partition monoids $\mathcal{P}_n = \mathcal{P}_{n,n}$.

Let $\alpha \in \mathcal{P}_{m,n}$ and $\beta \in \mathcal{P}_{n,q}$. To calculate $\alpha\beta = \alpha \circ \beta \in \mathcal{P}_{m,q}$:

- (1) connect bottom of α to top of β ,
- (2) remove middle vertices and floating components,
- (3) smooth out resulting graph to obtain $\alpha\beta$.

• Endomorphism monoids are partition monoids $\mathcal{P}_n = \mathcal{P}_{n,n}$.

• Identities:
$$\iota_6 =$$

Let $\alpha \in \mathcal{P}_{m,n}$ and $\beta \in \mathcal{P}_{n,q}$. To calculate $\alpha\beta = \alpha \circ \beta \in \mathcal{P}_{m,q}$:

- (1) connect bottom of α to top of β ,
- (2) remove middle vertices and floating components,
- (3) smooth out resulting graph to obtain $\alpha\beta$.

- Endomorphism monoids are partition monoids $\mathcal{P}_n = \mathcal{P}_{n,n}$.
- Identities: $\iota_6 = \left[\begin{array}{c} \\ \end{array} \right] \left[\begin{array}{c} \\ \end{array} \right] \left[\begin{array}{c} \\ \end{array} \right]$.
- ► There are linear/twisted versions as well...

• The Brauer category $\mathcal{B} = \{$ partitions with blocks of size 2 $\}$:

• The Brauer category $\mathcal{B} = \{$ partitions with blocks of size 2 $\}$:

• The Temperley-Lieb category $T\mathcal{L} = \{ planar Brauer partitions \}$:

• The Brauer category $\mathcal{B} = \{$ partitions with blocks of size 2 $\}$:

► The Temperley-Lieb category $TL = \{ planar Brauer partitions \}$:

▶ These are subcategories of *P*.

• The Brauer category $\mathcal{B} = \{$ partitions with blocks of size 2 $\}$:

• The Temperley-Lieb category $TL = \{ planar Brauer partitions \}$:

- ▶ These are subcategories of *P*.
- Brauer and Temperley-Lieb monoids: \mathcal{B}_n and \mathcal{TL}_n .

• The Brauer category $\mathcal{B} = \{$ partitions with blocks of size 2 $\}$:

• The Temperley-Lieb category $TL = \{ planar Brauer partitions \}$:

- ▶ These are subcategories of *P*.
- Brauer and Temperley-Lieb monoids: \mathcal{B}_n and \mathcal{TL}_n .

•
$$\mathcal{B}_{m,n} = \mathcal{TL}_{m,n} = \emptyset$$
 if *m* and *n* have opposite parities!

- knot theory, representation theory, category theory, combinatorics...
- computer science, theoretical physics, biology...

- knot theory, representation theory, category theory, combinatorics...
- computer science, theoretical physics, biology...
- semigroup theory...

- knot theory, representation theory, category theory, combinatorics...
- computer science, theoretical physics, biology...
- semigroup theory...
- fun!

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{TL} \cong \langle U, \Omega : R \rangle$.

$$\boldsymbol{\Pi} \circ \boldsymbol{U} = \iota_0, \tag{R1}$$

$$U \circ \Omega = U \oplus \Omega = \Omega \oplus U, \tag{R2}$$

$$(I \oplus \Omega) \circ (U \oplus I) = I = (\Omega \oplus I) \circ (I \oplus U).$$
 (R3)

$$U \equiv {}^{\bullet \bullet}$$
, $\Omega \equiv {}_{\bullet \bullet}$, $I = \iota_1 \equiv {}_{\bullet}$.

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{TL} \cong \langle U, \Omega : R \rangle$.

$$\boldsymbol{\Pi} \circ \boldsymbol{U} = \iota_0, \tag{R1}$$

$$U \circ \Omega = U \oplus \Omega = \Omega \oplus U, \tag{R2}$$

$$(I \oplus \Omega) \circ (U \oplus I) = I = (\Omega \oplus I) \circ (I \oplus U).$$
 (R3)

$$U \equiv {}^{\bullet \bullet}$$
, $\Omega \equiv {}_{\bullet \bullet}$, $I = \iota_1 \equiv {}_{\bullet}$.

What?!

• The categories \mathcal{P} , \mathcal{B} and \mathcal{TL} have another operation, \oplus :

• The categories \mathcal{P} , \mathcal{B} and \mathcal{TL} have another operation, \oplus :

• The categories \mathcal{P} , \mathcal{B} and \mathcal{TL} have another operation, \oplus :

• \mathcal{P} , \mathcal{B} and \mathcal{TL} are all (strict) tensor categories.

• The categories \mathcal{P} , \mathcal{B} and \mathcal{TL} have another operation, \oplus :

• \mathcal{P} , \mathcal{B} and \mathcal{TL} are all (strict) tensor categories.

• $\mathbf{d}(\alpha \oplus \beta) = \mathbf{d}(\alpha) + \mathbf{d}(\beta)$ and $\mathbf{r}(\alpha \oplus \beta) = \mathbf{r}(\alpha) + \mathbf{r}(\beta)$.

•
$$\alpha \oplus (\beta \oplus \gamma) = (\alpha \oplus \beta) \oplus \gamma$$
,

 $\blacktriangleright \ \alpha \oplus \iota_{\mathbf{0}} = \alpha = \iota_{\mathbf{0}} \oplus \alpha,$

$$\iota_m \oplus \iota_n = \iota_{m+n},$$

 $\blacktriangleright (\alpha \circ \beta) \oplus (\gamma \circ \delta) = (\alpha \oplus \gamma) \circ (\beta \oplus \delta).$

• The categories \mathcal{P} , \mathcal{B} and \mathcal{TL} have another operation, \oplus :

• \mathcal{P} , \mathcal{B} and \mathcal{TL} are all (strict) tensor categories.

• $\mathbf{d}(\alpha \oplus \beta) = \mathbf{d}(\alpha) + \mathbf{d}(\beta)$ and $\mathbf{r}(\alpha \oplus \beta) = \mathbf{r}(\alpha) + \mathbf{r}(\beta)$.

•
$$\alpha \oplus (\beta \oplus \gamma) = (\alpha \oplus \beta) \oplus \gamma$$
,

 $\bullet \ \alpha \oplus \iota_{\mathbf{0}} = \alpha = \iota_{\mathbf{0}} \oplus \alpha,$

$$\iota_m \oplus \iota_n = \iota_{m+n},$$

 $\blacktriangleright \ (\alpha \circ \beta) \oplus (\gamma \circ \delta) = (\alpha \oplus \gamma) \circ (\beta \oplus \delta).$

• The categories \mathcal{P} , \mathcal{B} and \mathcal{TL} have another operation, \oplus :

• \mathcal{P} , \mathcal{B} and \mathcal{TL} are all (strict) tensor categories.

• $\mathbf{d}(\alpha \oplus \beta) = \mathbf{d}(\alpha) + \mathbf{d}(\beta)$ and $\mathbf{r}(\alpha \oplus \beta) = \mathbf{r}(\alpha) + \mathbf{r}(\beta)$.

•
$$\alpha \oplus (\beta \oplus \gamma) = (\alpha \oplus \beta) \oplus \gamma$$
,

 $\bullet \ \alpha \oplus \iota_{\mathbf{0}} = \alpha = \iota_{\mathbf{0}} \oplus \alpha,$

$$\iota_m \oplus \iota_n = \iota_{m+n}$$

 $\blacktriangleright (\alpha \circ \beta) \oplus (\gamma \circ \delta) = (\alpha \oplus \gamma) \circ (\beta \oplus \delta).$

• The categories \mathcal{P} , \mathcal{B} and \mathcal{TL} have another operation, \oplus :

• \mathcal{P} , \mathcal{B} and \mathcal{TL} are all (strict) tensor categories.

• $\mathbf{d}(\alpha \oplus \beta) = \mathbf{d}(\alpha) + \mathbf{d}(\beta)$ and $\mathbf{r}(\alpha \oplus \beta) = \mathbf{r}(\alpha) + \mathbf{r}(\beta)$.

•
$$\alpha \oplus (\beta \oplus \gamma) = (\alpha \oplus \beta) \oplus \gamma$$
,

 $\blacktriangleright \ \alpha \oplus \iota_{\mathbf{0}} = \alpha = \iota_{\mathbf{0}} \oplus \alpha,$

$$\iota_m \oplus \iota_n = \iota_{m+n}$$

 $\bullet \ (\alpha \circ \beta) \oplus (\gamma \circ \delta) = (\alpha \oplus \gamma) \circ (\beta \oplus \delta).$

• The categories \mathcal{P} , \mathcal{B} and \mathcal{TL} have another operation, \oplus :

• \mathcal{P} , \mathcal{B} and \mathcal{TL} are all (strict) tensor categories.

• $\mathbf{d}(\alpha \oplus \beta) = \mathbf{d}(\alpha) + \mathbf{d}(\beta)$ and $\mathbf{r}(\alpha \oplus \beta) = \mathbf{r}(\alpha) + \mathbf{r}(\beta)$.

•
$$\alpha \oplus (\beta \oplus \gamma) = (\alpha \oplus \beta) \oplus \gamma$$
,

 $\bullet \ \alpha \oplus \iota_{\mathbf{0}} = \alpha = \iota_{\mathbf{0}} \oplus \alpha,$

$$\iota_m \oplus \iota_n = \iota_{m+n},$$

- $(\alpha \circ \beta) \oplus (\gamma \circ \delta) = (\alpha \oplus \gamma) \circ (\beta \oplus \delta).$
- $\begin{array}{c|c} \alpha & \gamma \\ \beta & \delta \end{array}$
- The categories \mathcal{T} , \mathcal{PT} and \mathcal{I} are also tensor categories.

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{TL} \cong \langle U, \Omega : R \rangle$.

$$U \circ \Pi = U \oplus \Pi = \Pi \oplus U, \tag{R2}$$

$$(I \oplus \Omega) \circ (U \oplus I) = I = (\Omega \oplus I) \circ (I \oplus U).$$
 (R3)

$$U \equiv {}^{\bullet \bullet}$$
, $\Omega \equiv {}_{\bullet \bullet}$, $I = \iota_1 \equiv {}^{\bullet}$.
Theorem (folklore?)

$$U \equiv {}^{\bullet \bullet}$$
, $\Omega \equiv {}_{\bullet \bullet}$, $I = \iota_1 \equiv {}_{\bullet}$.

Theorem (folklore?)

$$\boldsymbol{U} \circ \boldsymbol{\Pi} = \boldsymbol{U} \oplus \boldsymbol{\Pi} = \boldsymbol{\Pi} \oplus \boldsymbol{U}, \tag{R2}$$

$$(I \oplus \Omega) \circ (U \oplus I) = I = (\Omega \oplus I) \circ (I \oplus U).$$
 (R3)

$$U \equiv {}^{\bullet \bullet}$$
, $\Omega \equiv {}_{\bullet \bullet}$, $I = \iota_1 \equiv {}^{\bullet}$.

Theorem (folklore?)

$$\Pi \circ U = \iota_0, \tag{R1}$$

$$U \circ \Pi = U \oplus \Pi = \Pi \oplus U, \tag{R2}$$

$$(I \oplus \Omega) \circ (U \oplus I) = I = (\Omega \oplus I) \circ (I \oplus U).$$
(R3)

$$U \equiv {}^{\bullet \bullet}$$
, $\Omega \equiv {}_{\bullet \bullet}$, $I = \iota_1 \equiv {}_{\bullet}$.

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{TL} \cong \langle U, \Omega : R \rangle$.

$$U \circ \mathbf{\Omega} = U \oplus \mathbf{\Omega} = \mathbf{\Omega} \oplus U, \tag{R2}$$

$$(I \oplus \Omega) \circ (U \oplus I) = I = (\Omega \oplus I) \circ (I \oplus U).$$
 (R3)

$$U \equiv {}^{\bullet \bullet}$$
, $\Omega \equiv {}_{\bullet \bullet}$, $I = \iota_1 \equiv {}^{\bullet}$.

• (R2) is my favourite relation.

Theorem (folklore?)

$$U \circ \mathbf{\Omega} = U \oplus \mathbf{\Omega} = \mathbf{\Omega} \oplus U, \tag{R2}$$

$$(I \oplus \Omega) \circ (U \oplus I) = I = (\Omega \oplus I) \circ (I \oplus U).$$
 (R3)

$$U \equiv {}^{\bullet \bullet}$$
, $\Omega \equiv {}_{\bullet \bullet}$, $I = \iota_1 \equiv {}^{\bullet}$.

- (R2) is my favourite relation.
- But it's actually unnecessary :-(

Theorem (folklore?)

$$U \circ \mathbf{\Omega} = U \oplus \mathbf{\Omega} = \mathbf{\Omega} \oplus U, \tag{R2}$$

$$(I \oplus \Omega) \circ (U \oplus I) = I = (\Omega \oplus I) \circ (I \oplus U).$$
 (R3)

$$U \equiv {}^{\bullet \bullet}$$
, $\Omega \equiv {}_{\bullet \bullet}$, $I = \iota_1 \equiv {}^{\bullet}$.

- (R2) is my favourite relation.
- But it's actually unnecessary :-(
- ▶ e.g., *U*⊕∩

Theorem (folklore?)

$$\boldsymbol{\Pi} \circ \boldsymbol{U} = \iota_0, \tag{R1}$$

$$\boldsymbol{U} \circ \boldsymbol{\Pi} = \boldsymbol{U} \oplus \boldsymbol{\Pi} = \boldsymbol{\Pi} \oplus \boldsymbol{U}, \tag{R2}$$

$$(I \oplus \Omega) \circ (U \oplus I) = I = (\Omega \oplus I) \circ (I \oplus U).$$
 (R3)

$$U \equiv {}^{\bullet \bullet}$$
, $\Omega \equiv {}_{\bullet \bullet}$, $I = \iota_1 \equiv {}^{\bullet}$.

- (R2) is my favourite relation.
- But it's actually unnecessary :-(

► e.g.,
$$U \oplus \cap = (U \circ \iota_0) \oplus (\iota_0 \circ \cap)$$

Theorem (folklore?)

$$U \circ \mathbf{\Omega} = U \oplus \mathbf{\Omega} = \mathbf{\Omega} \oplus U, \tag{R2}$$

$$(I \oplus \Omega) \circ (U \oplus I) = I = (\Omega \oplus I) \circ (I \oplus U).$$
 (R3)

$$U \equiv {}^{\bullet \bullet}$$
, $\Omega \equiv {}_{\bullet \bullet}$, $I = \iota_1 \equiv {}^{\bullet}$.

- (R2) is my favourite relation.
- But it's actually unnecessary :-(
- ► e.g., $U \oplus \Pi = (U \circ \iota_0) \oplus (\iota_0 \circ \Pi) = (U \oplus \iota_0) \circ (\iota_0 \oplus \Pi)$

Theorem (folklore?)

$$U \circ \mathbf{\Omega} = U \oplus \mathbf{\Omega} = \mathbf{\Omega} \oplus U, \tag{R2}$$

$$(I \oplus \Omega) \circ (U \oplus I) = I = (\Omega \oplus I) \circ (I \oplus U).$$
 (R3)

$$U \equiv {}^{\bullet \bullet}$$
, $\Omega \equiv {}_{\bullet \bullet}$, $I = \iota_1 \equiv {}_{\bullet}$.

- (R2) is my favourite relation.
- But it's actually unnecessary :-(
- ► e.g., $U \oplus \Pi = (U \circ \iota_0) \oplus (\iota_0 \circ \Pi) = (U \oplus \iota_0) \circ (\iota_0 \oplus \Pi) = U \circ \Pi$.

Theorem (folklore?)

$$U \equiv {}^{\bullet \bullet}$$
, $\Omega \equiv {}_{\bullet \bullet}$, $I = \iota_1 \equiv {}^{\bullet}$.

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{TL} \cong \langle U, \Omega : R \rangle$.

$$(I \oplus I) \circ (U \oplus I) = I = (I \oplus I) \circ (I \oplus U).$$
 (R1)
(R2)

$$U \equiv {}^{\bullet \bullet}$$
, $\Omega \equiv {}_{\bullet \bullet}$, $I = \iota_1 \equiv {}^{\bullet}$.

• Can you show that U and Ω (and I) generate $T\mathcal{L}$?

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{TL} \cong \langle U, \Omega : R \rangle$.

$$U \equiv {}^{\bullet \bullet}$$
, $\Omega \equiv {}_{\bullet \bullet}$, $I = \iota_1 \equiv {}^{\bullet}$.

• Can you show that U and Ω (and I) generate $T\mathcal{L}$?

$$= \cap \oplus I \oplus U \oplus \cap \oplus ((I \oplus U \oplus I) \circ U) \oplus I!$$

Theorem (cf. Lehrer and Zhang, 2015)

$$X \circ X = I \oplus I, \quad \Pi \circ U = \iota_0, \quad X \circ U = U, \quad \Pi \circ X = \Pi, \quad (R1)$$
$$(X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X), \quad (R2)$$
$$(I \oplus \Pi) \circ (U \oplus I) = I = (\Pi \oplus I) \circ (I \oplus U), \quad (R3)$$
$$(I \oplus X) \circ (U \oplus I) = (X \oplus I) \circ (I \oplus U), \quad (R4)$$
$$(\Pi \oplus I) \circ (I \oplus X) = (I \oplus \Pi) \circ (X \oplus I). \quad (R5)$$

$$X \equiv X$$
, $U \equiv {}^{\bullet}$, $\Omega \equiv {}_{\bullet}$, $I = \iota_1 \equiv I$

Theorem (cf. Lehrer and Zhang, 2015)

$$\begin{aligned} X \circ X &= I \oplus I, \quad \Pi \circ U = \iota_0, \quad X \circ U = U, \quad \Pi \circ X = \Pi, \quad (\text{R1}) \\ (X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X), \quad (\text{R2}) \\ (I \oplus \Pi) \circ (U \oplus I) = I = (\Pi \oplus I) \circ (I \oplus U), \quad (\text{R3}) \\ (I \oplus X) \circ (U \oplus I) = (X \oplus I) \circ (I \oplus U), \quad (\text{R4}) \\ (\Pi \oplus I) \circ (I \oplus X) = (I \oplus \Pi) \circ (X \oplus I). \quad (\text{R5}) \end{aligned}$$

$$X \equiv X$$
, $U \equiv {}^{\bullet}$, $\Pi \equiv {}_{\bullet}$, $I = \iota_1 \equiv 1$

Theorem (cf. Lehrer and Zhang, 2015)

$$X \circ X = I \oplus I, \quad \bigcap \circ U = \iota_0, \quad X \circ U = U, \quad \bigcap \circ X = \bigcap, \quad (R1)$$
$$(X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X), \quad (R2)$$
$$(I \oplus \Omega) \circ (U \oplus I) = I = (\bigcap \oplus I) \circ (I \oplus U), \quad (R3)$$
$$(I \oplus X) \circ (U \oplus I) = (X \oplus I) \circ (I \oplus U), \quad (R4)$$
$$(\bigcap \oplus I) \circ (I \oplus X) = (I \oplus \Omega) \circ (X \oplus I). \quad (R5)$$

$$X \equiv X$$
, $U \equiv {}^{\bullet}$, $\Pi \equiv {}_{\bullet}$, $I = \iota_1 \equiv I$

Theorem (cf. Lehrer and Zhang, 2015)

$$X \circ X = I \oplus I, \quad \Pi \circ U = \iota_0, \quad X \circ U = U, \quad \Pi \circ X = \Pi, \quad (R1)$$
$$(X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X), \quad (R2)$$
$$(I \oplus \Pi) \circ (U \oplus I) = I = (\Pi \oplus I) \circ (I \oplus U), \quad (R3)$$
$$(I \oplus X) \circ (U \oplus I) = (X \oplus I) \circ (I \oplus U), \quad (R4)$$
$$(\Pi \oplus I) \circ (I \oplus X) = (I \oplus \Pi) \circ (X \oplus I). \quad (R5)$$

$$X \equiv X$$
, $U \equiv {}^{\bullet}$, $\Pi \equiv {}_{\bullet}$, $I = \iota_1 \equiv I$

Theorem (cf. Lehrer and Zhang, 2015)

$$X \circ X = I \oplus I, \quad \Pi \circ U = \iota_0, \quad X \circ U = U, \quad \Pi \circ X = \Pi, \quad (R1)$$
$$(X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X), \quad (R2)$$
$$(I \oplus \Pi) \circ (U \oplus I) = I = (\Pi \oplus I) \circ (I \oplus U), \quad (R3)$$
$$(I \oplus X) \circ (U \oplus I) = (X \oplus I) \circ (I \oplus U), \quad (R4)$$
$$(\Pi \oplus I) \circ (I \oplus X) = (I \oplus \Pi) \circ (X \oplus I). \quad (R5)$$

$$X \equiv X$$
, $U \equiv {}^{\bullet}$, $\Pi \equiv {}_{\bullet}$, $I = \iota_1 \equiv I$

Theorem (cf. Lehrer and Zhang, 2015)

$$X \circ X = I \oplus I, \quad \Pi \circ U = \iota_0, \quad X \circ U = U, \quad \Pi \circ X = \Pi, \quad (R1)$$
$$(X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X), \quad (R2)$$
$$(I \oplus \Pi) \circ (U \oplus I) = I = (\Pi \oplus I) \circ (I \oplus U), \quad (R3)$$
$$(I \oplus X) \circ (U \oplus I) = (X \oplus I) \circ (I \oplus U), \quad (R4)$$
$$(\Pi \oplus I) \circ (I \oplus X) = (I \oplus \Pi) \circ (X \oplus I). \quad (R5)$$

$$X \equiv X$$
, $U \equiv {}^{\bullet}$, $\Omega \equiv {}_{\bullet}$, $I = \iota_1 \equiv I$

Theorem (cf. Lehrer and Zhang, 2015)

$$X \circ X = I \oplus I, \quad \Pi \circ U = \iota_0, \quad X \circ U = U, \quad \Pi \circ X = \Pi, \quad (R1)$$
$$(X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X), \quad (R2)$$
$$(I \oplus \Pi) \circ (U \oplus I) = I = (\Pi \oplus I) \circ (I \oplus U), \quad (R3)$$
$$(I \oplus X) \circ (U \oplus I) = (X \oplus I) \circ (I \oplus U), \quad (R4)$$
$$(\Pi \oplus I) \circ (I \oplus X) = (I \oplus \Pi) \circ (X \oplus I). \quad (R5)$$

$$X \equiv X$$
, $U \equiv {}^{\bullet}$, $\Omega \equiv {}_{\bullet}$, $I = \iota_1 \equiv I$

Theorem (cf. Lehrer and Zhang, 2015)

$$X \circ X = I \oplus I, \quad \Pi \circ U = \iota_0, \quad X \circ U = U, \quad \Pi \circ X = \Pi, \quad (R1)$$
$$(X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X), \quad (R2)$$
$$(I \oplus \Pi) \circ (U \oplus I) = I = (\Pi \oplus I) \circ (I \oplus U), \quad (R3)$$
$$(I \oplus X) \circ (U \oplus I) = (X \oplus I) \circ (I \oplus U), \quad (R4)$$
$$(\Pi \oplus I) \circ (I \oplus X) = (I \oplus \Pi) \circ (X \oplus I). \quad (R5)$$

$$X \equiv X$$
, $U \equiv {}^{\bullet}$, $\Omega \equiv {}_{\bullet}$, $I = \iota_1 \equiv 1$

Theorem (cf. Lehrer and Zhang, 2015)

$$X \circ X = I \oplus I, \quad \Pi \circ U = \iota_0, \quad X \circ U = U, \quad \Pi \circ X = \Pi, \quad (R1)$$
$$(X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X), \quad (R2)$$
$$(I \oplus \Pi) \circ (U \oplus I) = I = (\Pi \oplus I) \circ (I \oplus U), \quad (R3)$$
$$(I \oplus X) \circ (U \oplus I) = (X \oplus I) \circ (I \oplus U), \quad (R4)$$
$$(\Pi \oplus I) \circ (I \oplus X) = (I \oplus \Pi) \circ (X \oplus I). \quad (R5)$$

Theorem (cf. Lehrer and Zhang, 2015)

$$X \circ X = II, \quad \Pi \circ U = \iota_0, \quad X \circ U = U, \quad \Pi \circ X = \Pi, \quad (R1)$$
$$XI \circ IX \circ XI = IX \circ XI \circ IX, \quad (R2)$$
$$I\Pi \circ UI = I = \Pi I \circ IU, \quad (R3)$$
$$IX \circ UI = XI \circ IU, \quad (R4)$$
$$\Pi I \circ IX = I\Pi \circ XI. \quad (R5)$$

$$X \equiv X, \quad U \equiv {}^{\bullet}, \quad \Omega \equiv {}_{\bullet}, \quad I \equiv I$$

Theorem (cf. Lehrer and Zhang, 2015)

$$X \circ X = II, \quad \Pi \circ U = \iota_0, \quad X \circ U = U, \quad \Pi \circ X = \Pi, \quad (R1)$$

$$XI \circ IX \circ XI = IX \circ XI \circ IX, \quad (R2)$$

$$I\Pi \circ UI = I = \Pi I \circ IU, \quad (R3)$$

$$IX \circ UI = XI \circ IU, \quad (R4)$$

$$\Pi \circ IX = I\Pi \circ XI. \quad (R5)$$

$$X \equiv X, \quad U \equiv {}^{\bullet}, \quad \Omega \equiv {}_{\bullet}, \quad I \equiv I$$

Theorem

The partition category $\mathcal{P} \cong \langle X, D, U, \Omega : R \rangle$.

$$X \circ X = I \oplus I, \quad \Pi \circ U = \iota_0, \tag{R1}$$

$$D \circ D = D = D \circ X = X \circ D,$$
 (R2)

$$(D \oplus I) \circ (I \oplus D) = (I \oplus D) \circ (D \oplus I), \tag{R3}$$

 $(X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X), \quad (R4)$ $(X \oplus I) \circ (I \oplus D) \circ (X \oplus I) = (I \oplus X) \circ (D \oplus I) \circ (I \oplus X), \quad (R5)$

$$X \circ (I \oplus U) = U \oplus I, \quad (I \oplus \Omega) \circ X = \Omega \oplus I,$$
 (R6)

 $(I \oplus \Omega) \circ D \circ (I \oplus U) = I, \quad D \circ (I \oplus U \oplus \Omega) \circ D = D.$ (R7)

$$X \equiv X$$
, $D \equiv \square$, $U \equiv$, $\Omega \equiv$, $I = \iota_1 \equiv$.

Theorem (Comes, 2017)

The partition category $\mathcal{P} \cong \langle X, U, \Omega, V, \Lambda : R \rangle$.

$$X \circ X = I \oplus I, \quad \Lambda \circ V = I, \quad \Omega \circ U = \iota_{0}, \quad (R1)$$

$$X \circ V = V, \quad \Lambda \circ X = \Lambda, \quad (R2)$$

$$X \circ (I \oplus U) = U \oplus I, \quad (I \oplus \Omega) \circ X = \Omega \oplus I, \quad (R3)$$

$$(X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X), \quad (R4)$$

$$(I \oplus V) \circ X = (X \oplus I) \circ (I \oplus X) \circ (V \oplus I), \quad (R5)$$

$$X \circ (I \oplus \Lambda) = (\Lambda \oplus I) \circ (I \oplus X) \circ (X \oplus I), \quad (R6)$$

$$\Lambda \circ (I \oplus U) = I = (I \oplus \Omega) \circ V, \quad (R7)$$

$$(\Lambda \oplus I) \circ (I \oplus V) = V \circ \Lambda = (I \oplus \Lambda) \circ (V \oplus I). \quad (R8)$$

$$X \equiv X, \quad U \equiv \bullet, \quad \Omega \equiv \bullet, \quad V \equiv V, \quad \Lambda \equiv V, \quad I \equiv V.$$

Theorem (Comes, 2017)

The partition category $\mathcal{P} \cong \langle X, U, \Omega, V, \Lambda : R \rangle$.

$$X \equiv$$
, $U \equiv$, $\Omega \equiv$, $V \equiv$, $\Lambda \equiv$

- Jellyfish partition categories
 - Jonathan Comes
 - Algebras and representation theory, to appear.

Theorem (Comes, 2017)

The partition category $\mathcal{P} \cong \langle X, U, \Omega, V, \Lambda : R \rangle$.

$$X \equiv$$
, $U \equiv$, $\Omega \equiv$, $V \equiv$, $\Lambda \equiv$

- Jellyfish partition categories
 - Jonathan Comes
 - Algebras and representation theory, to appear.
- The proof relies on some heavy machinery:
 - Frobenius algebras and cobordism categories (Abrams, Kock).

Theorem (cf. Lehrer and Zhang, 2015)

$$X \equiv X$$
, $U \equiv {}^{\bullet}$, $\Pi \equiv {}_{\bullet}$.

- The Brauer category and invariant theory
 - Gus Lehrer and Ruibin Zhang
 - ► J. European Mathematical Society, 2015.

Theorem (cf. Lehrer and Zhang, 2015)

$$X \equiv X$$
, $U \equiv {}^{\bullet}$, $\Omega \equiv {}_{\bullet}$.

- The Brauer category and invariant theory
 - Gus Lehrer and Ruibin Zhang
 - J. European Mathematical Society, 2015.
- Quite detailed proof from scratch.

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{TL} \cong \langle U, \Omega : R \rangle$.

$$U \equiv {}^{\bullet \bullet}$$
, $\Omega \equiv {}_{\bullet \bullet}$

Many proofs have been given.

Theorem (folklore?)

$$U \equiv {}^{\bullet \bullet}$$
, $\Omega \equiv {}_{\bullet \bullet}$

- Many proofs have been given.
- ► The level of rigour varies...

Original goal

Find a general framework for presentations of diagram categories.

Original goal

Find a general framework for presentations of diagram categories.

Completely rigorous.

Original goal

Find a general framework for presentations of diagram categories.

- Completely rigorous.
- Use known presentations for diagram monoids.

Original goal

Find a general framework for presentations of diagram categories.

- Completely rigorous.
- Use known presentations for diagram monoids.

Eventually

A method that works.

Original goal

Find a general framework for presentations of diagram categories.

- Completely rigorous.
- Use known presentations for diagram monoids.

Eventually

- A method that works.
- Key properties axiomatised.
Original goal

Find a general framework for presentations of diagram categories.

- Completely rigorous.
- Use known presentations for diagram monoids.

- A method that works.
- Key properties axiomatised.
- General results, applicable to many categories.

Original goal

Find a general framework for presentations of diagram categories.

- Completely rigorous.
- Use known presentations for diagram monoids.

Eventually

- A method that works.
- Key properties axiomatised.
- General results, applicable to many categories.

▶ *P*, *B*, *TL*

Original goal

Find a general framework for presentations of diagram categories.

- Completely rigorous.
- Use known presentations for diagram monoids.

- A method that works.
- Key properties axiomatised.
- General results, applicable to many categories.
 - ▶ *P*, *B*, *TL*, *PT*, *T*, *I*

Original goal

Find a general framework for presentations of diagram categories.

- Completely rigorous.
- Use known presentations for diagram monoids.

- A method that works.
- Key properties axiomatised.
- General results, applicable to many categories.
 - $\blacktriangleright \mathcal{P}, \mathcal{B}, \mathcal{TL}, \mathcal{PT}, \mathcal{T}, \mathcal{I}, \mathcal{PO}, \mathcal{O}, \mathcal{OI}$

Original goal

Find a general framework for presentations of diagram categories.

- Completely rigorous.
- Use known presentations for diagram monoids.

- A method that works.
- Key properties axiomatised.
- General results, applicable to many categories.
 - $\blacktriangleright \mathcal{P}, \mathcal{B}, \mathcal{TL}, \mathcal{PT}, \mathcal{T}, \mathcal{I}, \mathcal{PO}, \mathcal{O}, \mathcal{OI}, \mathcal{PV}, \mathcal{V}, \mathcal{IB}.....$

${\sf Categories} - {\sf presentations}$

Basic pattern

• Given a tensor category C (over \mathbb{N}).

- Given a tensor category C (over \mathbb{N}).
- Check it satisfies some basic structural properties.

- Given a tensor category C (over \mathbb{N}).
- Check it satisfies some basic structural properties.
- Find presentations for endomorphism monoids C_n .

- Given a tensor category C (over \mathbb{N}).
- Check it satisfies some basic structural properties.
- Find presentations for endomorphism monoids C_n .
- Theorem A: a (big) category presentation $\langle \Gamma : \Omega \rangle$ for C.

- Given a tensor category C (over \mathbb{N}).
- Check it satisfies some basic structural properties.
- Find presentations for endomorphism monoids C_n .
- Theorem A: a (big) category presentation $\langle \Gamma : \Omega \rangle$ for C.
- Theorem B: a (small?) tensor category presentation $\langle \Delta : \Xi \rangle$.

- Given a tensor category C (over \mathbb{N}).
- Check it satisfies some basic structural properties.
- Find presentations for endomorphism monoids C_n .
- Theorem A: a (big) category presentation $\langle \Gamma : \Omega \rangle$ for C.
- Theorem B: a (small?) tensor category presentation $\langle \Delta : \Xi \rangle$.
- $\langle \Delta : \Xi \rangle$ is what we really want.

- Given a tensor category C (over \mathbb{N}).
- Check it satisfies some basic structural properties.
- Find presentations for endomorphism monoids C_n .
- Theorem A: a (big) category presentation $\langle \Gamma : \Omega \rangle$ for C.
- Theorem B: a (small?) tensor category presentation $\langle \Delta : \Xi \rangle$.
- $\langle \Delta : \Xi \rangle$ is what we really want.
- $\langle \Gamma : \Omega \rangle$ is a means to an end.

- Given a tensor category C (over \mathbb{N}).
- Check it satisfies some basic structural properties.
- Find presentations for endomorphism monoids C_n .
- Theorem A: a (big) category presentation $\langle \Gamma : \Omega \rangle$ for C.
- Theorem B: a (small?) tensor category presentation $\langle \Delta : \Xi \rangle$.
- $\langle \Delta : \Xi \rangle$ is what we really want.
- $\langle \Gamma : \Omega \rangle$ is a means to an end.
- The Micky-Ricky-Vicky Trick!

Assumption 1

• C is a category over \mathbb{N} .

Assumption 1

- C is a category over \mathbb{N} .
- There is an integer $d \ge 1$ such that

$$\mathcal{C}_{m,n} \neq \varnothing \Leftrightarrow m \equiv n \pmod{d}.$$

Assumption 1

- C is a category over \mathbb{N} .
- There is an integer $d \ge 1$ such that

$$\mathcal{C}_{m,n} \neq \varnothing \Leftrightarrow m \equiv n \pmod{d}.$$

•
$$d = 1$$
 for $\mathcal{C} = \mathcal{P}$.

Assumption 1

- C is a category over \mathbb{N} .
- There is an integer $d \ge 1$ such that

$$\mathcal{C}_{m,n} \neq \varnothing \Leftrightarrow m \equiv n \pmod{d}.$$

• d = 1 for $\mathcal{C} = \mathcal{P}$.

Assumption 1

- C is a category over \mathbb{N} .
- There is an integer $d \ge 1$ such that

$$\mathcal{C}_{m,n} \neq \varnothing \Leftrightarrow m \equiv n \pmod{d}.$$

Assumption 1

- C is a category over \mathbb{N} .
- There is an integer $d \ge 1$ such that

$$\mathcal{C}_{m,n} \neq \varnothing \Leftrightarrow m \equiv n \pmod{d}.$$

0

Assumption 1

- C is a category over \mathbb{N} .
- There is an integer $d \ge 1$ such that

$$\mathcal{C}_{m,n} \neq \varnothing \Leftrightarrow m \equiv n \pmod{d}.$$

• d = 2 for C = B.

Assumption 1

- C is a category over \mathbb{N} .
- There is an integer $d \ge 1$ such that

$$\mathcal{C}_{m,n} \neq \varnothing \Leftrightarrow m \equiv n \pmod{d}.$$

Assumption 1

- C is a category over \mathbb{N} .
- There is an integer $d \ge 1$ such that

$$\mathcal{C}_{m,n} \neq \varnothing \Leftrightarrow m \equiv n \pmod{d}.$$

• d = 2 for C = B.

Assumption 1

- C is a category over \mathbb{N} .
- There is an integer $d \ge 1$ such that

$$\mathcal{C}_{m,n} \neq \varnothing \Leftrightarrow m \equiv n \pmod{d}.$$

•
$$d = 1$$
 for $\mathcal{C} = \mathcal{P}$.

- d = 2 for C = B.
- d = 1 for C = T?

Assumption 1

- C is a category over \mathbb{N} .
- There is an integer $d \ge 1$ such that

$$\mathcal{C}_{m,n} \neq \varnothing \Leftrightarrow m \equiv n \pmod{d}.$$

- d = 1 for $\mathcal{C} = \mathcal{P}$.
- d = 2 for C = B.
- d = 1 for C = T?

Assumption 1

- C is a category over \mathbb{N} .
- There is an integer $d \ge 1$ such that

$$\mathcal{C}_{m,n} \neq \varnothing \Leftrightarrow m \equiv n \pmod{d}.$$

n = 0

• d = 2 for C = B.

• d = 1 for $\mathcal{C} = \mathcal{P}$.

• d = 1 for C = T?

•
$$\mathcal{T}_{m,n} = \varnothing \Leftrightarrow m > 0 = n.$$

Assumption 1

- C is a category over \mathbb{N} .
- There is an integer $d \ge 1$ such that

$$\mathcal{C}_{m,n} \neq \varnothing \Leftrightarrow m \equiv n \pmod{d}.$$

- d = 2 for C = B.
- d = 1 for C = T?

•
$$\mathcal{T}_{m,n} = \varnothing \Leftrightarrow m > 0 = n.$$

• Things are a little more complicated for \mathcal{T} ...

Assumption 2

For each $n \in \mathbb{N}$ there exist $\lambda_n \in \mathcal{C}_{n,n+d}$ and $\rho_n \in \mathcal{C}_{n+d,n}$ such that

$$\lambda_n \circ \rho_n = \iota_n.$$

Assumption 2

For each $n \in \mathbb{N}$ there exist $\lambda_n \in \mathcal{C}_{n,n+d}$ and $\rho_n \in \mathcal{C}_{n+d,n}$ such that

Assumption 2

For each $n \in \mathbb{N}$ there exist $\lambda_n \in \mathcal{C}_{n,n+d}$ and $\rho_n \in \mathcal{C}_{n+d,n}$ such that

Assumption 2

For each $n \in \mathbb{N}$ there exist $\lambda_n \in \mathcal{C}_{n,n+d}$ and $\rho_n \in \mathcal{C}_{n+d,n}$ such that

Assumption 2

For each $n \in \mathbb{N}$ there exist $\lambda_n \in \mathcal{C}_{n,n+d}$ and $\rho_n \in \mathcal{C}_{n+d,n}$ such that

Assumption 2

For each $n \in \mathbb{N}$ there exist $\lambda_n \in \mathcal{C}_{n,n+d}$ and $\rho_n \in \mathcal{C}_{n+d,n}$ such that

Assumption 2

For each $n \in \mathbb{N}$ there exist $\lambda_n \in \mathcal{C}_{n,n+d}$ and $\rho_n \in \mathcal{C}_{n+d,n}$ such that

Assumption 2

For each $n \in \mathbb{N}$ there exist $\lambda_n \in \mathcal{C}_{n,n+d}$ and $\rho_n \in \mathcal{C}_{n+d,n}$ such that

Assumption 3

We have presentations $C_n \cong \langle X_n : R_n \rangle$ for each *n*.

Assumption 3

We have presentations $C_n \cong \langle X_n : R_n \rangle$ for each *n*.

- \mathcal{T}_n (Aĭzenštat), \mathcal{PT}_n and \mathcal{I}_n (Popova),
- \mathcal{P}_n (Halverson and Ram; E),
- *B_n* (Kudryatseva and Mazorchuk),
- *TL_n* (Jones; Kauffman; Borisavljević, Došen and Petrić),
- ▶ \mathcal{V}_n (Lavers), \mathcal{IB}_n (Easdown and Lavers), \mathcal{PV}_n (E).

Assumption 3

We have presentations $C_n \cong \langle X_n : R_n \rangle$ for each *n*.

- \mathcal{T}_n (Aĭzenštat), \mathcal{PT}_n and \mathcal{I}_n (Popova),
- \mathcal{P}_n (Halverson and Ram; E),
- *B_n* (Kudryatseva and Mazorchuk),
- ► *TL_n* (Jones; Kauffman; Borisavljević, Došen and Petrić),
- ▶ V_n (Lavers), IB_n (Easdown and Lavers), PV_n (E).

Lemma

We have
$$C = \langle \Gamma \rangle$$
, where $\Gamma = \{\lambda_n, \rho_n : n \in \mathbb{N}\} \cup \bigcup_{n \in \mathbb{N}} X_n$

Assumption 4

Assumption 4

We assume that Ω is a set of relations over Γ such that:

• Each relation holds in C.

Assumption 4

- Each relation holds in C.
- Ω contains:
 - each R_n ,

Assumption 4

- Each relation holds in C.
- Ω contains:
 - each R_n ,

$$\blacktriangleright \ \lambda_n \rho_n = \iota_n$$

Assumption 4

- Each relation holds in C.
- Ω contains:
 - each R_n ,

•
$$\lambda_n \rho_n = \iota_n$$
,

•
$$\rho_n \lambda_n = w_n$$
 for some $w_n \in X_{n+d}^*$.

Assumption 4

We assume that Ω is a set of relations over Γ such that:

- Each relation holds in C.
- Ω contains:
 - each R_n ,

$$\blacktriangleright \ \lambda_n \rho_n = \iota_n,$$

•
$$\rho_n \lambda_n = w_n$$
 for some $w_n \in X_{n+d}^*$.

► For all $w \in X_{n+d}^*$, $\lambda_n w \rho_n \sim w'$ for some $w' \in X_n^*$.

Theorem A

Theorem A

If Assumptions 1–4 hold, then ${\mathcal C}$ has presentation $\langle \Gamma:\Omega\rangle.$

▶ Theorem A applies to *many* categories.

Theorem A

- ▶ Theorem A applies to *many* categories.
 - $\blacktriangleright \mathcal{P}, \mathcal{B}, \mathcal{TL}, \mathcal{PT}, \mathcal{T}^+, \mathcal{I}, \mathcal{PO}, \mathcal{O}^+, \mathcal{OI}, \mathcal{PV}, \mathcal{V}^+, \mathcal{IB}.....$

Theorem A

- Theorem A applies to *many* categories.
 - $\blacktriangleright \mathcal{P}, \mathcal{B}, \mathcal{TL}, \mathcal{PT}, \mathcal{T}^+, \mathcal{I}, \mathcal{PO}, \mathcal{O}^+, \mathcal{OI}, \mathcal{PV}, \mathcal{V}^+, \mathcal{IB}.....$
- Most parts of the assumptions are easy to check.

Theorem A

- Theorem A applies to *many* categories.
 - $\blacktriangleright \mathcal{P}, \mathcal{B}, \mathcal{TL}, \mathcal{PT}, \mathcal{T}^+, \mathcal{I}, \mathcal{PO}, \mathcal{O}^+, \mathcal{OI}, \mathcal{PV}, \mathcal{V}^+, \mathcal{IB}.....$
- Most parts of the assumptions are easy to check.
- Exceptions:
 - Presentations for endomorphism monoids C_n .

Theorem A

- Theorem A applies to *many* categories.
 - $\blacktriangleright \mathcal{P}, \mathcal{B}, \mathcal{TL}, \mathcal{PT}, \mathcal{T}^+, \mathcal{I}, \mathcal{PO}, \mathcal{O}^+, \mathcal{OI}, \mathcal{PV}, \mathcal{V}^+, \mathcal{IB}.....$
- Most parts of the assumptions are easy to check.
- Exceptions:
 - Presentations for endomorphism monoids C_n .
 - ▶ For all $w \in X_{n+d}^*$, $\lambda_n w \rho_n \sim w'$ for some $w' \in X_n^*$.

Theorem A — applications

Theorem

The partition category $\mathcal{P} \cong \langle \Gamma : \Omega \rangle$: $\sigma_{i:n}^2 = \iota_n, \qquad \varepsilon_{i:n}^2 = \varepsilon_{i;n}, \quad \tau_{i:n}^2 = \tau_{i:n} = \tau_{i:n} \sigma_{i:n} = \sigma_{i:n} \tau_{i;n},$ $\sigma_{i:n}\varepsilon_{i:n} = \varepsilon_{i+1:n}\sigma_{i:n}, \quad \varepsilon_{i:n}\varepsilon_{i+1:n}\sigma_{i:n} = \varepsilon_{i:n}\varepsilon_{i+1:n},$ $\varepsilon_{i:n}\varepsilon_{i:n} = \varepsilon_{i:n}\varepsilon_{i:n}, \quad \tau_{i:n}\tau_{i:n} = \tau_{i:n}\tau_{i:n},$ if |i - j| > 1, $\sigma_{i:n}\sigma_{i:n} = \sigma_{i:n}\sigma_{i:n}, \quad \sigma_{i:n}\tau_{i:n} = \tau_{i:n}\sigma_{i:n},$ if |i - i| = 1, $\sigma_{i:n}\sigma_{i:n}\sigma_{i:n} = \sigma_{i:n}\sigma_{i:n}\sigma_{i:n}, \quad \sigma_{i:n}\tau_{i:n}\sigma_{i:n} = \sigma_{i:n}\tau_{i:n}\sigma_{i:n},$ if $i \neq i, i+1$, $\sigma_{i;n}\varepsilon_{j;n} = \varepsilon_{j;n}\sigma_{i;n}, \quad \tau_{i;n}\varepsilon_{j;n} = \varepsilon_{j;n}\tau_{i;n},$ if i = i, i + 1. $\tau_{i;n}\varepsilon_{j;n}\tau_{i;n} = \tau_{i;n}, \quad \varepsilon_{j;n}\tau_{i;n}\varepsilon_{j;n} = \varepsilon_{j;n},$ $\lambda_n \rho_n = \iota_n, \quad \rho_n \lambda_n = \varepsilon_{n+1:n+1},$ $\theta_{i:n}\lambda_n = \lambda_n \theta_{i:n+1}, \quad \rho_n \theta_{i:n} = \theta_{i:n+1}\rho_n,$ for $\theta \in \{\sigma, \varepsilon, \tau\}$.

Theorem A — applications

Theorem

The Brauer category $\mathcal{B} \cong \langle \Gamma : \Omega \rangle$:

$$\begin{split} \sigma_{i;n}^2 &= \iota_n, \quad \tau_{i;n}^2 = \tau_{i;n} = \tau_{i;n}\sigma_{i;n} = \sigma_{i;n}\tau_{i;n}, \\ \sigma_{i;n}\sigma_{j;n} &= \sigma_{j;n}\sigma_{i;n}, \quad \tau_{i;n}\tau_{j;n} = \tau_{j;n}\tau_{i;n}, \quad \sigma_{i;n}\tau_{j;n} = \tau_{j;n}\sigma_{i;n}, \quad \text{if } |i-j| > 1, \\ \sigma_{i;n}\sigma_{j;n}\sigma_{i;n} &= \sigma_{j;n}\sigma_{i;n}\sigma_{j;n}, \quad \sigma_{i;n}\tau_{j;n}\sigma_{i;n} = \sigma_{j;n}\tau_{i;n}\sigma_{j;n}, \quad \tau_{i;n}\sigma_{j;n}\tau_{i;n} = \tau_{i;n}, \quad \text{if } |i-j| = 1, \\ \lambda_n\rho_n &= \iota_n, \quad \rho_n\lambda_n = \tau_{n+1;n+2}, \\ \theta_{i;n}\lambda_n &= \lambda_n\theta_{i;n+2}, \quad \rho_n\theta_{i;n} = \theta_{i;n+2}\rho_n, \quad \text{for } \theta \in \{\sigma,\tau\}. \end{split}$$

Theorem A — applications

Theorem

The Brauer category $\mathcal{B} \cong \langle \Gamma : \Omega \rangle$:

$$\begin{split} \sigma_{i;n}^2 &= \iota_n, \quad \tau_{i;n}^2 = \tau_{i;n} = \tau_{i;n}\sigma_{i;n} = \sigma_{i;n}\tau_{i;n}, \\ \sigma_{i;n}\sigma_{j;n} &= \sigma_{j;n}\sigma_{i;n}, \quad \tau_{i;n}\tau_{j;n} = \tau_{j;n}\tau_{i;n}, \quad \sigma_{i;n}\tau_{j;n} = \tau_{j;n}\sigma_{i;n}, \quad \text{if } |i-j| > 1, \\ \sigma_{j;n}\sigma_{i;n} &= \sigma_{j;n}\sigma_{i;n}\sigma_{j;n}, \quad \sigma_{i;n}\tau_{j;n}\sigma_{i;n} = \sigma_{j;n}\tau_{i;n}\sigma_{j;n}, \quad \tau_{i;n}\sigma_{j;n}\tau_{i;n} = \tau_{i;n}, \quad \text{if } |i-j| = 1, \\ \lambda_n\rho_n &= \iota_n, \quad \rho_n\lambda_n = \tau_{n+1;n+2}, \\ \theta_{i;n}\lambda_n &= \lambda_n\theta_{i;n+2}, \quad \rho_n\theta_{i;n} = \theta_{i;n+2}\rho_n, \quad \text{for } \theta \in \{\sigma,\tau\}. \end{split}$$

Theorem

 $\sigma_{i;n}$

The Temperley-Lieb category $\mathcal{TL}\cong \langle \Gamma:\Omega\rangle$:

$$\begin{aligned} \tau_{i;n}^2 &= \tau_{i;n}, \quad \tau_{i;n}\tau_{j;n} = \tau_{j;n}\tau_{i;n} \text{ if } |i-j| > 1, \quad \tau_{i;n}\tau_{j;n}\tau_{i;n} = \tau_{i;n} \text{ if } |i-j| = 1, \\ \lambda_n \rho_n &= \iota_n, \quad \rho_n \lambda_n = \tau_{n+1;n+2}, \quad \tau_{i;n} \lambda_n = \lambda_n \tau_{i;n+2}, \quad \rho_n \tau_{i;n} = \tau_{i;n+2} \rho_n. \end{aligned}$$

Theorem A

Theorem A

If Assumptions 1–4 hold, then ${\mathcal C}$ has presentation $\langle \Gamma:\Omega\rangle.$

But we really want a tensor presentation.

Theorem A

- But we really want a tensor presentation.
- ▶ We make two further assumptions...

Theorem $\mathsf{B}-\!\!\!\!\!\!-\mathsf{Key}$ assumptions

Assumption 5

We assume that C is a (strict) tensor category over \mathbb{N} .

Assumption 5

We assume that C is a (strict) tensor category over \mathbb{N} .

Assumption 6

We assume that $\Delta \subseteq C$, and Ξ is a set of relations:

Assumption 5

We assume that C is a (strict) tensor category over \mathbb{N} .

Assumption 6

We assume that $\Delta \subseteq C$, and Ξ is a set of relations:

► Each relation holds in C.

Assumption 5

We assume that C is a (strict) tensor category over \mathbb{N} .

Assumption 6

We assume that $\Delta \subseteq C$, and Ξ is a set of relations:

- ► Each relation holds in C.
- There is a morphism $\Gamma^* \to \Delta^{\circledast} : w \mapsto \widehat{w}$:
 - For all $x \in \Gamma$, we have $\widehat{x}\Phi = x\phi$.
 - For all $x \in \Delta$ and $m, n \in \mathbb{N}$, we have $\iota_m \oplus x \oplus \iota_n \approx \widehat{w}$

for some $w \in \Gamma^*$.

• For all $(u, v) \in \Omega$, we have $\widehat{u} \approx \widehat{v}$.

Theorem B

Theorem B

If Assumptions 1–6 hold, then ${\mathcal C}$ has tensor presentation $\langle \Delta:\Xi\rangle.$

• The main work is establishing the properties of the terms \widehat{w} .

Theorem B

- The main work is establishing the properties of the terms \widehat{w} .
- Finding the definition is easy enough.

Theorem B

- The main work is establishing the properties of the terms \widehat{w} .
- Finding the definition is easy enough.
- e.g., in the Brauer category \mathcal{B} :

Theorem B

- The main work is establishing the properties of the terms \widehat{w} .
- Finding the definition is easy enough.
- e.g., in the Brauer category \mathcal{B} :

•
$$\widehat{\sigma}_{5;8} = IIIIXII$$

Theorem B

If Assumptions 1–6 hold, then ${\mathcal C}$ has tensor presentation $\langle \Delta:\Xi\rangle.$

- The main work is establishing the properties of the terms \widehat{w} .
- Finding the definition is easy enough.
- e.g., in the Brauer category \mathcal{B} :

 $\bullet \ \widehat{\sigma}_{5;8} = IIIIXII = \iota_4$

Theorem B

If Assumptions 1–6 hold, then ${\mathcal C}$ has tensor presentation $\langle \Delta:\Xi\rangle.$

- The main work is establishing the properties of the terms \widehat{w} .
- Finding the definition is easy enough.
- e.g., in the Brauer category \mathcal{B} :

 $\bullet \ \widehat{\sigma}_{5;8} = IIIIXII = \iota_4 \oplus X$

Theorem B

- The main work is establishing the properties of the terms \widehat{w} .
- Finding the definition is easy enough.
- e.g., in the Brauer category \mathcal{B} :
 - $\bullet \ \widehat{\sigma}_{5;8} = IIIIXII = \iota_4 \oplus X \oplus \iota_2,$

Theorem B

If Assumptions 1–6 hold, then ${\mathcal C}$ has tensor presentation $\langle \Delta:\Xi\rangle.$

- The main work is establishing the properties of the terms \widehat{w} .
- Finding the definition is easy enough.
- e.g., in the Brauer category \mathcal{B} :

$$\bullet \ \widehat{\sigma}_{5;8} = \iota_4 \oplus X \oplus \iota_2,$$

 $\blacktriangleright \ \widehat{\tau}_{5;8} = {\boldsymbol{\iota}}_{4} \oplus {\boldsymbol{U}} \oplus {\boldsymbol{\varOmega}} \oplus {\boldsymbol{\iota}}_{2},$

Theorem B

- The main work is establishing the properties of the terms \widehat{w} .
- Finding the definition is easy enough.
- e.g., in the Brauer category \mathcal{B} :

$$\bullet \ \widehat{\sigma}_{5;8} = \iota_4 \oplus X \oplus \iota_2, \qquad \bullet \ \widehat{\lambda}_8 = \iota_8 \oplus U,$$

$$\bullet \ \widehat{\tau}_{5;8} = \iota_4 \oplus U \oplus \Pi \oplus \iota_2,$$
Theorem B

Theorem B

If Assumptions 1–6 hold, then ${\mathcal C}$ has tensor presentation $\langle \Delta:\Xi\rangle.$

- The main work is establishing the properties of the terms \widehat{w} .
- Finding the definition is easy enough.
- e.g., in the Brauer category \mathcal{B} :
 - $\bullet \ \widehat{\sigma}_{5;8} = \iota_4 \oplus X \oplus \iota_2, \qquad \bullet \ \widehat{\lambda}_8 = \iota_8 \oplus U,$

•
$$\hat{\tau}_{5;8} = \iota_4 \oplus U \oplus \Pi \oplus \iota_2$$
, • $\hat{\rho}_8 = \iota_8 \oplus \Pi$.

$$\rho_8 \equiv \boxed{\begin{array}{c} \\ \end{array}}$$

Theorem B

Theorem B

If Assumptions 1–6 hold, then ${\mathcal C}$ has tensor presentation $\langle \Delta:\Xi\rangle.$

- The main work is establishing the properties of the terms \widehat{w} .
- Finding the definition is easy enough.
- e.g., in the Brauer category \mathcal{B} :
 - $\bullet \ \widehat{\sigma}_{5;8} = \iota_4 \oplus X \oplus \iota_2, \qquad \bullet \ \widehat{\lambda}_8 = \iota_8 \oplus U,$
 - $\bullet \ \widehat{\tau}_{5;8} = \iota_4 \oplus U \oplus \Pi \oplus \iota_2, \qquad \bullet \ \widehat{\rho}_8 = \iota_8 \oplus \Pi.$
- ► There is a Theorem C for categories like *T*:

•
$$C_{m,n} = \emptyset \Leftrightarrow m > 0 = n.$$

Theorem

The Temperley-Lieb category $\mathcal{TL} \cong \langle U, \Omega : \Xi \rangle$.

$$\begin{array}{c} \cap \circ U = \iota_{0}, \\ (I \oplus \Omega) \circ (U \oplus I) = I = (\Omega \oplus I) \circ (I \oplus U). \end{array} \\ U \equiv \overset{\bullet \bullet}{\longrightarrow}, \quad \Omega \equiv \begin{array}{c} \bullet \\ \bullet \end{array}, \quad I \equiv \begin{array}{c} \bullet \\ \bullet \end{array}. \end{array}$$

Theorem

The Brauer category $\mathcal{B} \cong \langle X, U, \Omega : \Xi \rangle$.

$$\begin{aligned} X \circ X &= I \oplus I, \quad \Pi \circ U = \iota_0, \quad X \circ U = U, \quad \Pi \circ X = \Pi, \\ (X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X), \\ (I \oplus \Pi) \circ (U \oplus I) = I = (\Pi \oplus I) \circ (I \oplus U), \\ (I \oplus X) \circ (U \oplus I) = (X \oplus I) \circ (I \oplus U), \\ (\Pi \oplus I) \circ (I \oplus X) = (I \oplus \Pi) \circ (X \oplus I). \end{aligned}$$

$$X \equiv X$$
, $U \equiv {}^{\bullet}$, $\Pi \equiv {}_{\bullet}$, $I \equiv {}_{\bullet}$.

Theorem

The partition category $\mathcal{P} \cong \langle X, D, U, \Omega : \Xi \rangle$.

$$X \circ X = I \oplus I, \quad \Pi \circ U = \iota_{0},$$

$$D \circ D = D = D \circ X = X \circ D,$$

$$(D \oplus I) \circ (I \oplus D) = (I \oplus D) \circ (D \oplus I),$$

$$(X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X),$$

$$(X \oplus I) \circ (I \oplus D) \circ (X \oplus I) = (I \oplus X) \circ (D \oplus I) \circ (I \oplus X),$$

$$X \circ (I \oplus U) = U \oplus I, \quad (I \oplus \Pi) \circ X = \Pi \oplus I,$$

$$(I \oplus \Pi) \circ D \circ (I \oplus U) = I, \quad D \circ (I \oplus U \oplus \Pi) \circ D = D.$$

$$X \equiv X, \quad D \equiv U, \quad U \equiv I, \quad I \equiv I.$$

Theorem

The transformation category $\mathcal{T} \cong \langle X, V, \Omega : \Xi \rangle$.

$$X \circ X = \iota_2, \quad X \circ V = V,$$
$$(V \oplus I) \circ V = (I \oplus V) \circ V, \quad (I \oplus I) \circ V = I,$$
$$(X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X),$$
$$(I \oplus I) \circ X = I \oplus I, \quad (I \oplus V) \circ X = (X \oplus I) \circ (I \oplus X) \circ (V \oplus I).$$
$$X = \bigvee, \quad V = \bigvee, \quad I = \bigcup, \quad I = \bigcup.$$

Theorem

The partial transformation category $\mathcal{PT} \cong \langle X, V, U, \Omega : \Xi \rangle$.

$$X \circ X = \iota_2, \quad \Pi \circ U = \iota_0,$$

$$X \circ V = V, \quad V \circ U = U \oplus U,$$

$$(V \oplus I) \circ V = (I \oplus V) \circ V, \quad (I \oplus \Pi) \circ V = I,$$

$$(X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X),$$

$$X \circ (U \oplus I) = I \oplus U, \quad (\Pi \oplus I) \circ X = I \oplus \Pi,$$

$$(I \oplus V) \circ X = (X \oplus I) \circ (I \oplus X) \circ (V \oplus I).$$

$$X \equiv X$$
, $V \equiv I$, $U \equiv$, $\Omega \equiv$, $I \equiv I$

Theorem

The symmetric inverse category $\mathcal{I} \cong \langle X, U, \Omega : \Xi \rangle$.

$$X \circ X = \iota_2, \quad \Pi \circ U = \iota_0,$$

$$(X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X),$$

$$X \circ (U \oplus I) = I \oplus U, \quad (\Pi \oplus I) \circ X = I \oplus \Pi.$$

$$X \equiv X$$
, $U \equiv$, $\Pi \equiv$, $I \equiv$

Theorem

Order-preserving transformations: $\mathcal{O} \cong \langle V, \mathcal{O} : \Xi \rangle$.

 $(V \oplus I) \circ V = (I \oplus V) \circ V, \quad (I \oplus I) \circ V = I = (I \oplus I) \circ V.$

$$V \equiv \int , \quad \Omega \equiv , \quad I \equiv \int$$

Theorem

Order-preserving partial transformations: $\mathcal{PO} \cong \langle V, U, \Omega : \Xi \rangle$.

$$(V \oplus I) \circ V = (I \oplus V) \circ V, \quad (I \oplus I) \circ V = I = (I \oplus I) \circ V.$$

$$V \equiv \bigvee$$
, $U \equiv$, $\Omega \equiv$, $I \equiv \bigvee$.

Theorem

Order-preserving partial bijections: $\mathcal{OI} \cong \langle U, \Omega : \Xi \rangle$.

 $\Pi \circ U = \iota_0.$

$$U \equiv \bullet$$
, $\Omega \equiv \bullet$, $I \equiv \bullet$.

► More applications come from (partial) braids/vines.

More applications come from (partial) braids/vines.

More applications come from (partial) braids/vines.

More applications come from (partial) braids/vines.

• \mathcal{PV} = the partial vine category.

More applications come from (partial) braids/vines.

- \mathcal{PV} = the partial vine category.
- $\mathcal{V} =$ the (full) vine category.

More applications come from (partial) braids/vines.

- \mathcal{PV} = the partial vine category.
- \mathcal{V} = the (full) vine category.
- \mathcal{IB} = the partial braid category.

Theorem

The partial vine category $\mathcal{PV} \cong \langle X, X^{-1}, V, U, \Omega : \Xi \rangle$.

$$\begin{aligned} X \circ X^{-1} &= X^{-1} \circ X = \iota_2, \quad \Pi \circ U = \iota_0, \\ X \circ V &= V, \quad V \circ U = U \oplus U, \\ (V \oplus I) \circ V &= (I \oplus V) \circ V, \quad (I \oplus \Pi) \circ V = I, \\ (X \oplus I) \circ (I \oplus X) \circ (X \oplus I) &= (I \oplus X) \circ (X \oplus I) \circ (I \oplus X), \\ X \circ (U \oplus I) &= I \oplus U, \quad X \circ (I \oplus U) = U \oplus I, \\ (\Pi \oplus I) \circ X &= I \oplus \Pi, \quad (I \oplus \Pi) \circ X = \Pi \oplus I, \\ (I \oplus V) \circ X &= (X \oplus I) \circ (I \oplus X) \circ (V \oplus I), \\ (V \oplus I) \circ X &= (I \oplus X) \circ (X \oplus I) \circ (I \oplus V). \end{aligned}$$

$$X \equiv X$$
, $X^{-1} \equiv X$, $V \equiv V$, $U \equiv$, $\Pi \equiv$, $I \equiv$.

Theorem

The (full) vine category $\mathcal{V} \cong \langle X, X^{-1}, V, \Omega : \Xi \rangle$.

$$\begin{aligned} X \circ X^{-1} &= X^{-1} \circ X = \iota_2, \quad X \circ V = V, \\ (V \oplus I) \circ V &= (I \oplus V) \circ V, \quad (I \oplus I) \circ V = I, \\ (X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X), \\ (I \oplus I) \circ X &= I \oplus I, \quad (I \oplus I) \circ X = I \oplus I, \\ (I \oplus V) \circ X &= (X \oplus I) \circ (I \oplus X) \circ (V \oplus I), \\ (V \oplus I) \circ X &= (I \oplus X) \circ (X \oplus I) \circ (I \oplus V). \end{aligned}$$

$$X \equiv X$$
, $X^{-1} \equiv X$, $V \equiv V$, $\Omega \equiv$, $I \equiv$.

Theorem

The partial braid category $\mathcal{IB} \cong \langle X, X^{-1}, U, \Omega : \Xi \rangle$.

$$X \circ X^{-1} = X^{-1} \circ X = \iota_2, \quad \Pi \circ U = \iota_0,$$

$$(X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X),$$

$$X \circ (U \oplus I) = I \oplus U, \quad X \circ (I \oplus U) = U \oplus I,$$

$$(\Pi \oplus I) \circ X = I \oplus \Pi, \quad (I \oplus \Pi) \circ X = \Pi \oplus I.$$

$$X \equiv \bigwedge, \quad X^{-1} \equiv \bigwedge, \quad U \equiv \bullet, \quad \Pi \equiv \bullet, \quad I \equiv \bullet.$$

Theorem

The partial braid category $\mathcal{IB} \cong \langle X, X^{-1}, U, \Omega : \Xi \rangle$.

$$X \circ X^{-1} = X^{-1} \circ X = \iota_2, \quad \Pi \circ U = \iota_0,$$

$$(X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X),$$

$$X \circ (U \oplus I) = I \oplus U, \quad X \circ (I \oplus U) = U \oplus I,$$

$$(\Pi \oplus I) \circ X = I \oplus \Pi, \quad (I \oplus \Pi) \circ X = \Pi \oplus I.$$

$$X \equiv \bigwedge^{\bullet}, \quad X^{-1} \equiv \bigwedge^{\bullet}, \quad U \equiv \stackrel{\bullet}{}, \quad \Pi \equiv \downarrow, \quad I \equiv \downarrow.$$

▶ \mathcal{PV} , \mathcal{V} and \mathcal{IB} are braided tensor categories (Joyal+Street).

Theorem

The partial braid category $\mathcal{IB} \cong \langle X, X^{-1}, U, \Omega : \Xi \rangle$.

$$X \circ X^{-1} = X^{-1} \circ X = \iota_2, \quad \Pi \circ U = \iota_0,$$

$$(X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X),$$

$$X \circ (U \oplus I) = I \oplus U, \quad X \circ (I \oplus U) = U \oplus I,$$

$$(\Pi \oplus I) \circ X = I \oplus \Pi, \quad (I \oplus \Pi) \circ X = \Pi \oplus I.$$

$$X \equiv \bigwedge, \quad X^{-1} \equiv \bigwedge, \quad U \equiv \bullet, \quad \Pi \equiv \bullet, \quad I \equiv \bullet.$$

 $\blacktriangleright \mathcal{PV}, \mathcal{V} \text{ and } \mathcal{IB} \text{ are braided tensor categories (Joyal+Street)}.$

Can put the braids into the free data of the presentation.

Theorem

The partial braid category $\mathcal{IB} \cong \langle X, X^{-1}, U, \Omega : \Xi \rangle$.

$$X \circ X^{-1} = X^{-1} \circ X = \iota_2, \quad \Pi \circ U = \iota_0,$$

$$(X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X),$$

$$X \circ (U \oplus I) = I \oplus U, \quad X \circ (I \oplus U) = U \oplus I,$$

$$(\Pi \oplus I) \circ X = I \oplus \Pi, \quad (I \oplus \Pi) \circ X = \Pi \oplus I.$$

$$X \equiv \bigwedge, \quad X^{-1} \equiv \bigwedge, \quad U \equiv \bullet, \quad \Pi \equiv \bullet, \quad I \equiv \bullet.$$

 $\blacktriangleright \mathcal{PV}, \mathcal{V} \text{ and } \mathcal{IB} \text{ are braided tensor categories (Joyal+Street).}$

Can put the braids into the free data of the presentation.

• e.g.,
$$\mathcal{IB} \cong \langle U, \Omega : \Omega \circ U = \iota_0 \rangle$$
.

Theorem

The partial braid category $\mathcal{IB} \cong \langle X, X^{-1}, U, \Omega : \Xi \rangle$.

$$\begin{aligned} X \circ X^{-1} &= X^{-1} \circ X = \iota_2, \quad \Pi \circ U = \iota_0, \\ (X \oplus I) \circ (I \oplus X) \circ (X \oplus I) = (I \oplus X) \circ (X \oplus I) \circ (I \oplus X), \\ X \circ (U \oplus I) = I \oplus U, \quad X \circ (I \oplus U) = U \oplus I, \\ (\Pi \oplus I) \circ X = I \oplus \Pi, \quad (I \oplus \Pi) \circ X = \Pi \oplus I. \end{aligned}$$
$$\begin{aligned} X &\equiv \bigwedge, \quad X^{-1} \equiv \bigwedge, \quad U \equiv \char, \quad \Pi \equiv \char, \quad I \equiv \oiint. \end{aligned}$$

 $\blacktriangleright \mathcal{PV}, \mathcal{V} \text{ and } \mathcal{IB} \text{ are braided tensor categories (Joyal+Street)}.$

Can put the braids into the free data of the presentation.

► e.g.,
$$\mathcal{IB} \cong \langle U, \Omega : \Omega \circ U = \iota_0 \rangle$$
.....
.....the bicyclic braided tensor category?

I could go on... and on...

CATEGORIEZ!!!!!1!!!

Thank you :-)

- Presentations for tensor categories
 - Coming soon to arXiv...