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Analogy: knot theory

Theorem (Reidemeister 1927)

Two knots are equivalent ⇔ they differ by Reidemeister moves.

Unknotting Unknots

Allison Henrich and Louis H. Kauffman

Abstract. A knot is an embedding of a circle into three-dimensional space. We say that a
knot is unknotted if there is an ambient isotopy of the embedding to a standard circle. In
essence, an unknot is a knot that may be deformed to a standard circle without passing through
itself. By representing knots via planar diagrams, we discuss the problem of unknotting a knot
diagram when we know that it is unknotted. This problem is surprisingly difficult, since it
has been shown that knot diagrams may need to be made more complicated before they may
be simplified. We do not yet know, however, how much more complicated they must get. We
give an introduction to the work of Dynnikov, who discovered the key use of arc-presentations
to solve the problem of finding a way to detect the unknot directly from a diagram of the
knot. Using Dynnikov’s work, we show how to obtain a quadratic upper bound for the number
of crossings that must be introduced into a sequence of unknotting moves. We also apply
Dynnikov’s results to find an upper bound for the number of moves required in an unknotting
sequence.

1. INTRODUCTION. When first delving into the theory of knots, we learn that
knots are typically studied using their diagrams. The first question that arises when
considering these knot diagrams is: How can we tell if two knot diagrams represent the
same knot? Fortunately, we have a partial answer to this question. Two knot diagrams
represent the same knot in R3 if and only if they can be related by the Reidemeister
moves; see Figure 1. Reidemeister proved this theorem in the 1920s [14], and it is the
underpinning of much of knot theory. For example, J. W. Alexander based the original
definition of his celebrated polynomial on the Reidemeister moves [1].

Figure 1. The three Reidemeister moves

Now, imagine that you are presented with a complicated diagram of an unknot,
and you would like to use Reidemeister moves to reduce it to the trivial diagram that
has no crossings. In considering a problem of this sort, you stumble upon a curious
fact. Given a diagram of an unknot to be unknotted, it might be necessary to make the
diagram more complicated before it can be simplified. We call such a diagram a hard
unknot diagram [12]. A nice example of this is the Culprit, shown in Figure 2. If you
look closely, you’ll find that no simplifying type I or type II Reidemeister moves and
no type III moves are available. Yet this is indeed the unknot. In order to unknot it, we
need to introduce new crossings with Reidemeister I and II moves. In Figure 3, we see
that we can unknot the Culprit by making the diagram larger by two crossings (via a
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I Knots are built from small pieces (crossings).

I Equivalence is governed by local moves.
I Useful when defining knot invariants.

I Alexander, Conway, Jones, Kauffman...

I f (knot K ) := f (diagram representing K ).

I f is well-defined ⇔ invariant under local moves.
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Presentations

I Let A be an algebraic structure: e.g., a group, ring, category...
I Informally, A has presentation 〈X : R〉 if:

I X is a generating set for A,

I R is a set of equations (relations) over X : e.g., xy = yx ,

I R is complete: every equation over X follows from R.

I Formally, A has presentation 〈X : R〉 if A ∼= X ∗/R]:
I X is a set and X ∗ is the free algebra (of same type as A),

I R ⊆ X ∗ × X ∗ and R] is the congruence on X ∗ generated by R.

I i.e., there is a surmorphism X ∗ → A with kernel R].

I We can use presentations to define
I Define φ(x) for all x ∈ X .

I For a = x1 · · · xk , define φ(a) = φ(x1) · · ·φ(xk).

I Well-defined ⇔ φ(u) = φ(v) for every relation u = v .
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3. Generators of the Braid Group

From conditions (i), (ii), and (iii), we see that given a braid β, we can partition its
projection by level lines such that between each level line a single double point occurs. We
may further transform β by a finite number of elementary moves so that every intersection
of an arc with such a level line occurs directly below p(Pi) for some i ∈ {1, . . . , n}, and
that between each level line, any arc has no vertices. This process has been carried out in
Figure 8.

→ →

Figure 8. Partitioning the projection of a braid.

Thus we can see that any n-braid β is equivalent to a product of a finite number of
braids which we denote by ςi and ς−1

i for i ∈ {1, . . . , n − 1}. The braid ςi (ς−1
i ) is one in

which the ith string passes in front of (behind) the (i+1)th string and all the other strings
are straight. We call ςi and ς−1

i elementary braids. These braids are shown in Figures 9
and 10. The braid pictured in Figure 8 is equivalent to ς−1

1 ς−1
2 ς−1

2 ς3ς
−1
2 ς−1

1 .

P1 Pi−1 Pi Pi+1 Pi+2 Pn

P ′
1 P ′

i−1 P ′
i P ′

i+1 P ′
i+2 P ′

n

· · · · · ·

Figure 9. The elementary braid ςi.

Let σi denote the equivalence class of the braid ςi. So σ±1
i = [ς±1

i ]. We have shown
that if β is an n-braid, then [β] = σε1

i1
· · · σεk

ik
for some k ≥ 0, i1, . . . , ik ∈ {1, . . . , n − 1},

ε1, . . . , εk ∈ {±1}. In other words, we have proved the following.

Proposition 1.14. The braid group Bn is generated by the elements σ1, . . . , σn−1. !
We conclude this section by mentioning a number of relations satisfied between the

generators σ1, . . . , σn−1 of Bn .
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A Reidemeister move!
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I Those examples were groups.

I Presentations for many semigroups are known.

I For an integer n ≥ 0, let n = {1, . . . , n}.
I The full transformation semigroup:

Tn = {functions n→ n}.
I The partial transformation semigroup:

PTn = {partial functions n→ n}.
I The symmetric inverse semigroup:

In = {partial bijections n→ n}.
I Each contains the symmetric group:

Sn = {bijections n→ n}.
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Theorem (Ăızenštat, 1958)

The full transformation semigroup Tn ∼= 〈s1, . . . , sn−1, e : R〉.

s2
i = ι for all i (R1)

si sj = sjsi if |i − j | > 1 (R2)
si sjsi = sjsi sj if |i − j | = 1 (R3)
sie = esi if i ≥ 3 (R4)

e2 = e = s1e (R5)
es2es2 = s2es2e = es2e (R6)

es1s2s1 = es1s2e (R7)
eueu = ueue where u = s2s1s3s2. (R8)

si ≡ e ≡
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Theorem (Popova, 1961)

The symmetric inverse semigroup In ∼= 〈s1, . . . , sn−1, e : R〉.

s2
i = ι for all i (R1)

si sj = sjsi if |i − j | > 1 (R2)
si sjsi = sjsi sj if |i − j | = 1 (R3)
sie = esi if i ≥ 2 (R4)

e2 = e (R5)
es1es1 = s1es1e = es1e. (R6)

si ≡ e ≡



Categories

I For us: each category C has object set N = {0, 1, 2, . . .}.
I Think of C as a partial monoid...... A set with:

I a partial product xy = x ◦ y (x , y ∈ C),
I domain/range functions d, r : C → N,
I many identity elements ιn (n ∈ N) with d(ιn) = r(ιn) = n.

I Properties/axioms:
I xy defined ⇔ r(x) = d(y),

I d(xy) = d(x) and r(xy) = r(y),

I (xy)z = x(yz) when defined,

I ιm ◦ x = x = x ◦ ιn when defined.

I Morphism sets: Cm,n = {x ∈ C : d(x) = m, r(x) = n}.
I Endomorphism monoids: Cn = Cn,n.
I Familiar example: M = {all (finite) matrices over R}.
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Transformation categories

I Recall: n = {1, . . . , n} for n ∈ N.

I The full transformation category:

T = {functions m→ n : m, n ∈ N}.
I Morphism sets: Tm,n = {functions m→ n}.
I Endomorphism monoids: Tn = Tn,n = {functions n→ n}.

I The partial transformation category:

PT = {partial functions m→ n : m, n ∈ N}.
I Endomorphism monoids: PTn.

I The symmetric inverse category:

I = {partial bijections m→ n : m, n ∈ N}.
I Endomorphism monoids: In.
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Diagram categories — P

I My original motivation.

I For n ∈ N, let n = {1, . . . , n} and n′ = {1′, . . . , n′}.
I For m, n ∈ N, let Pm,n = {set partitions of m ∪ n′}

For m, n ∈ N, let ≡ {graphs on m ∪ n′}.

I Eg: α =
{
, , ,
}
∈ P6,5
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I The partition category is P =
⋃

m,n∈N
Pm,n.
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Diagram categories — composition in P

Let α ∈ Pm,n and β ∈ Pn,q. To calculate αβ = α ◦ β ∈ Pm,q:
(1) connect bottom of α to top of β,

(2) remove middle vertices and floating components,

(3) smooth out resulting graph to obtain αβ.

α

{

β

{ 1 2
}
αβ

3

I Endomorphism monoids are partition monoids Pn = Pn,n.

I Identities: ι6 = .

I There are linear/twisted versions as well...
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Diagram categories — B and TL

I The Brauer category B = {partitions with blocks of size 2}:

I The Temperley-Lieb category TL = {planar Brauer partitions}:

I These are subcategories of P.
I Brauer and Temperley-Lieb monoids: Bn and TLn.
I Bm,n = TLm,n = ∅ if m and n have opposite parities!
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Diagram categories — presentations

Theorem (folklore?)

The Temperley-Lieb category TL ∼= 〈U, U

: R〉.

U◦ U = ι0, (R1)
U ◦ U

= U ⊕ U

=

U⊕ U, (R2)
(I ⊕ U

) ◦ (U ⊕ I ) = I = (

U⊕ I ) ◦ (I ⊕ U). (R3)

U ≡ ,

U≡ , I = ι1 ≡ .

What?!
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Diagram categories — tensor operation

I The categories P, B and TL have another operation, ⊕:

α =

β =

= α⊕ β

α

β

γ

δ

I P, B and TL are all (strict) tensor categories.

I d(α⊕ β) = d(α) + d(β) and r(α⊕ β) = r(α) + r(β).

I α⊕ (β ⊕ γ) = (α⊕ β)⊕ γ,
I α⊕ ι0 = α = ι0 ⊕ α,
I ιm ⊕ ιn = ιm+n,

I (α ◦ β)⊕ (γ ◦ δ) = (α⊕ γ) ◦ (β ⊕ δ).

I The categories T , PT and I are also tensor categories.
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The Brauer category B ∼= 〈X ,U, U
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X ◦ X = II ,
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U◦ X =

U

, (R1)
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I

U◦ UI = I =

U

I ◦ IU, (R3)
IX ◦ UI = XI ◦ IU, (R4)

U

I ◦ IX = I

U◦ XI . (R5)

X ≡ , U ≡ ,

U≡ , I ≡ .

=



Diagram categories — presentations

Theorem (cf. Lehrer and Zhang, 2015)

The Brauer category B ∼= 〈X ,U, U

: R〉.

X ◦ X = II ,

U◦ U = ι0, X ◦ U = U,

U◦ X =

U

, (R1)
XI ◦ IX ◦ XI = IX ◦ XI ◦ IX , (R2)

I

U◦ UI = I =

U

I ◦ IU, (R3)
IX ◦ UI = XI ◦ IU, (R4)

U

I ◦ IX = I

U◦ XI . (R5)

X ≡ , U ≡ ,

U≡ , I ≡ .

=
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Theorem

The partition category P ∼= 〈X ,D,U, U

: R〉.

X ◦ X = I ⊕ I ,

U◦ U = ι0, (R1)
D ◦ D = D = D ◦ X = X ◦ D, (R2)

(D ⊕ I ) ◦ (I ⊕ D) = (I ⊕ D) ◦ (D ⊕ I ), (R3)
(X ⊕ I ) ◦ (I ⊕ X ) ◦ (X ⊕ I ) = (I ⊕ X ) ◦ (X ⊕ I ) ◦ (I ⊕ X ), (R4)
(X ⊕ I ) ◦ (I ⊕ D) ◦ (X ⊕ I ) = (I ⊕ X ) ◦ (D ⊕ I ) ◦ (I ⊕ X ), (R5)

X ◦ (I ⊕ U) = U ⊕ I , (I ⊕ U

) ◦ X =

U⊕ I , (R6)
(I ⊕ U

) ◦ D ◦ (I ⊕ U) = I , D ◦ (I ⊕ U ⊕ U

) ◦ D = D. (R7)

X ≡ , D ≡ , U ≡ ,

U≡ , I = ι1 ≡ .
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Theorem (Comes, 2017)

The partition category P ∼= 〈X ,U, U

,V ,

V

: R〉.

X ◦ X = I ⊕ I ,

V◦ V = I ,

U◦ U = ι0, (R1)
X ◦ V = V ,

V◦ X =

V

, (R2)
X ◦ (I ⊕ U) = U ⊕ I , (I ⊕ U

) ◦ X =

U⊕ I , (R3)
(X ⊕ I ) ◦ (I ⊕ X ) ◦ (X ⊕ I ) = (I ⊕ X ) ◦ (X ⊕ I ) ◦ (I ⊕ X ), (R4)

(I ⊕ V ) ◦ X = (X ⊕ I ) ◦ (I ⊕ X ) ◦ (V ⊕ I ), (R5)
X ◦ (I ⊕ V

) = (

V⊕ I ) ◦ (I ⊕ X ) ◦ (X ⊕ I ), (R6)

V◦ (I ⊕ U) = I = (I ⊕ U

) ◦ V , (R7)
(

V⊕ I ) ◦ (I ⊕ V ) = V ◦ V

= (I ⊕ V

) ◦ (V ⊕ I ). (R8)

X ≡ , U ≡ ,

U≡ , V ≡ ,

V≡ , I ≡ .
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I Algebras and representation theory, to appear.

I The proof relies on some heavy machinery:

I Frobenius algebras and cobordism categories (Abrams, Kock).
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Theorem A — Key assumptions

Assumption 1

I C is a category over N.

I There is an integer d ≥ 1 such that

Cm,n 6= ∅⇔ m ≡ n (mod d).
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?

n nn = 0n

? ? ? ? ? ?

n = 0

I d = 1 for C = P.

I d = 2 for C = B.
I d = 1 for C = T ?

I Tm,n = ∅⇔ m > 0 = n.

I Things are a little more complicated for T ...
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Theorem A — Key assumptions

Assumption 2

For each n ∈ N there exist λn ∈ Cn,n+d and ρn ∈ Cn+d ,n such that

λn ◦ ρn = ιn.
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ρn = ∈ Pn+1,nρn = ∈ Bn+2,nρn = ∈ TLn+2,nρn = ∈ PTn+1,nρn = ∈ In+1,nρn = ∈ Tn+1,nρn = ∈ Tn+1,n



Theorem A — Key assumptions

Assumption 2

For each n ∈ N there exist λn ∈ Cn,n+d and ρn ∈ Cn+d ,n such that

λn ◦ ρn = ιn.

λn = ∈ Pn,n+1

λn = ∈ Bn,n+2λn = ∈ TLn,n+2λn = ∈ PTn,n+1λn = ∈ In,n+1λn = ∈ Tn,n+1

ρn = ∈ Pn+1,n

ρn = ∈ Bn+2,nρn = ∈ TLn+2,nρn = ∈ PTn+1,nρn = ∈ In+1,nρn = ∈ Tn+1,nρn = ∈ Tn+1,n



Theorem A — Key assumptions

Assumption 2

For each n ∈ N there exist λn ∈ Cn,n+d and ρn ∈ Cn+d ,n such that

λn ◦ ρn = ιn.

λn = ∈ Pn,n+1

λn = ∈ Bn,n+2

λn = ∈ TLn,n+2λn = ∈ PTn,n+1λn = ∈ In,n+1λn = ∈ Tn,n+1

ρn = ∈ Pn+1,n

ρn = ∈ Bn+2,n

ρn = ∈ TLn+2,nρn = ∈ PTn+1,nρn = ∈ In+1,nρn = ∈ Tn+1,nρn = ∈ Tn+1,n



Theorem A — Key assumptions

Assumption 2

For each n ∈ N there exist λn ∈ Cn,n+d and ρn ∈ Cn+d ,n such that

λn ◦ ρn = ιn.

λn = ∈ Pn,n+1λn = ∈ Bn,n+2

λn = ∈ TLn,n+2

λn = ∈ PTn,n+1λn = ∈ In,n+1λn = ∈ Tn,n+1

ρn = ∈ Pn+1,nρn = ∈ Bn+2,n

ρn = ∈ TLn+2,n

ρn = ∈ PTn+1,nρn = ∈ In+1,nρn = ∈ Tn+1,nρn = ∈ Tn+1,n



Theorem A — Key assumptions

Assumption 2

For each n ∈ N there exist λn ∈ Cn,n+d and ρn ∈ Cn+d ,n such that

λn ◦ ρn = ιn.

λn = ∈ Pn,n+1λn = ∈ Bn,n+2λn = ∈ TLn,n+2

λn = ∈ PTn,n+1

λn = ∈ In,n+1λn = ∈ Tn,n+1

ρn = ∈ Pn+1,nρn = ∈ Bn+2,nρn = ∈ TLn+2,n

ρn = ∈ PTn+1,n

ρn = ∈ In+1,nρn = ∈ Tn+1,nρn = ∈ Tn+1,n



Theorem A — Key assumptions

Assumption 2

For each n ∈ N there exist λn ∈ Cn,n+d and ρn ∈ Cn+d ,n such that

λn ◦ ρn = ιn.

λn = ∈ Pn,n+1λn = ∈ Bn,n+2λn = ∈ TLn,n+2λn = ∈ PTn,n+1

λn = ∈ In,n+1

λn = ∈ Tn,n+1

ρn = ∈ Pn+1,nρn = ∈ Bn+2,nρn = ∈ TLn+2,nρn = ∈ PTn+1,n

ρn = ∈ In+1,n

ρn = ∈ Tn+1,nρn = ∈ Tn+1,n



Theorem A — Key assumptions

Assumption 2

For each n ∈ N there exist λn ∈ Cn,n+d and ρn ∈ Cn+d ,n such that

λn ◦ ρn = ιn.

λn = ∈ Pn,n+1λn = ∈ Bn,n+2λn = ∈ TLn,n+2λn = ∈ PTn,n+1λn = ∈ In,n+1

λn = ∈ Tn,n+1

ρn = ∈ Pn+1,nρn = ∈ Bn+2,nρn = ∈ TLn+2,nρn = ∈ PTn+1,nρn = ∈ In+1,n

ρn = ∈ Tn+1,n

ρn = ∈ Tn+1,n



Theorem A — Key assumptions

Assumption 2

For each n ∈ N there exist λn ∈ Cn,n+d and ρn ∈ Cn+d ,n such that

λn ◦ ρn = ιn.

λn = ∈ Pn,n+1λn = ∈ Bn,n+2λn = ∈ TLn,n+2λn = ∈ PTn,n+1λn = ∈ In,n+1

λn = ∈ Tn,n+1

ρn = ∈ Pn+1,nρn = ∈ Bn+2,nρn = ∈ TLn+2,nρn = ∈ PTn+1,nρn = ∈ In+1,nρn = ∈ Tn+1,n

ρn = ∈ Tn+1,n



Theorem A — Key assumptions

Assumption 3

We have presentations Cn ∼= 〈Xn : Rn〉 for each n.

I Tn (Ăızenštat), PTn and In (Popova),

I Pn (Halverson and Ram; E),

I Bn (Kudryatseva and Mazorchuk),

I TLn (Jones; Kauffman; Borisavljević, Došen and Petrić),

I Vn (Lavers), IBn (Easdown and Lavers), PVn (E).

Lemma

We have C = 〈Γ〉, where Γ = {λn, ρn : n ∈ N} ∪
⋃
n∈N

Xn.
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Assumption 4

We assume that Ω is a set of relations over Γ such that:

I Each relation holds in C.
I Ω contains:

I each Rn,

I λnρn = ιn,

I ρnλn = wn for some wn ∈ X ∗n+d .

I For all w ∈ X ∗n+d , λnwρn ∼ w ′ for some w ′ ∈ X ∗n .
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Theorem A

Theorem A

If Assumptions 1–4 hold, then C has presentation 〈Γ : Ω〉.

I Theorem A applies to many categories.

I P, B, TL, PT , T +, I, PO, O+, OI, PV, V+, IB......

I Most parts of the assumptions are easy to check.

I Exceptions:

I Presentations for endomorphism monoids Cn.
I For all w ∈ X ∗n+d , λnwρn ∼ w ′ for some w ′ ∈ X ∗n .
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Theorem A — applications

Theorem

The partition category P ∼= 〈Γ : Ω〉:
σ2
i ;n = ιn, ε2i ;n = εi ;n, τ2

i ;n = τi ;n = τi ;nσi ;n = σi ;nτi ;n,

σi ;nεi ;n = εi+1;nσi ;n, εi ;nεi+1;nσi ;n = εi ;nεi+1;n,

εi ;nεj ;n = εj ;nεi ;n, τi ;nτj ;n = τj ;nτi ;n,

σi ;nσj ;n = σj ;nσi ;n, σi ;nτj ;n = τj ;nσi ;n, if |i − j | > 1,

σi ;nσj ;nσi ;n = σj ;nσi ;nσj ;n, σi ;nτj ;nσi ;n = σj ;nτi ;nσj ;n, if |i − j | = 1,

σi ;nεj ;n = εj ;nσi ;n, τi ;nεj ;n = εj ;nτi ;n, if j 6= i , i + 1,

τi ;nεj ;nτi ;n = τi ;n, εj ;nτi ;nεj ;n = εj ;n, if j = i , i + 1,

λnρn = ιn, ρnλn = εn+1;n+1,

θi ;nλn = λnθi ;n+1, ρnθi ;n = θi ;n+1ρn, for θ ∈ {σ, ε, τ}.

σ2;6 = τ2;6 = ε2;6 =
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Theorem

The Brauer category B ∼= 〈Γ : Ω〉:

σ2
i ;n = ιn, τ2

i ;n = τi ;n = τi ;nσi ;n = σi ;nτi ;n,

σi ;nσj ;n = σj ;nσi ;n, τi ;nτj ;n = τj ;nτi ;n, σi ;nτj ;n = τj ;nσi ;n, if |i − j | > 1,

σi ;nσj ;nσi ;n = σj ;nσi ;nσj ;n, σi ;nτj ;nσi ;n = σj ;nτi ;nσj ;n, τi ;nσj ;nτi ;n = τi ;n, if |i − j | = 1,

λnρn = ιn, ρnλn = τn+1;n+2,

θi ;nλn = λnθi ;n+2, ρnθi ;n = θi ;n+2ρn, for θ ∈ {σ, τ}.

σ2;6 = τ2;6 =
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Theorem

The Brauer category B ∼= 〈Γ : Ω〉:

σ2
i ;n = ιn, τ2

i ;n = τi ;n = τi ;nσi ;n = σi ;nτi ;n,

σi ;nσj ;n = σj ;nσi ;n, τi ;nτj ;n = τj ;nτi ;n, σi ;nτj ;n = τj ;nσi ;n, if |i − j | > 1,

σi ;nσj ;nσi ;n = σj ;nσi ;nσj ;n, σi ;nτj ;nσi ;n = σj ;nτi ;nσj ;n, τi ;nσj ;nτi ;n = τi ;n, if |i − j | = 1,

λnρn = ιn, ρnλn = τn+1;n+2,

θi ;nλn = λnθi ;n+2, ρnθi ;n = θi ;n+2ρn, for θ ∈ {σ, τ}.

Theorem

The Temperley-Lieb category TL ∼= 〈Γ : Ω〉:

τ2
i ;n = τi ;n, τi ;nτj ;n = τj ;nτi ;n if |i − j | > 1, τi ;nτj ;nτi ;n = τi ;n if |i − j | = 1,

λnρn = ιn, ρnλn = τn+1;n+2, τi ;nλn = λnτi ;n+2, ρnτi ;n = τi ;n+2ρn.
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I We make two further assumptions...



Theorem B — Key assumptions

Assumption 5

We assume that C is a (strict) tensor category over N.

Assumption 6

We assume that ∆ ⊆ C, and Ξ is a set of relations:

I Each relation holds in C.
I There is a morphism Γ∗ → ∆~ : w 7→ ŵ :

I For all x ∈ Γ, we have x̂Φ = xφ.

I For all x ∈ ∆ and m, n ∈ N, we have ιm ⊕ x ⊕ ιn ≈ ŵ
for some w ∈ Γ∗.

I For all (u, v) ∈ Ω, we have û ≈ v̂ .



Theorem B — Key assumptions

Assumption 5

We assume that C is a (strict) tensor category over N.

Assumption 6

We assume that ∆ ⊆ C, and Ξ is a set of relations:

I Each relation holds in C.
I There is a morphism Γ∗ → ∆~ : w 7→ ŵ :
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I For all x ∈ Γ, we have x̂Φ = xφ.

I For all x ∈ ∆ and m, n ∈ N, we have ιm ⊕ x ⊕ ιn ≈ ŵ
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We assume that C is a (strict) tensor category over N.

Assumption 6

We assume that ∆ ⊆ C, and Ξ is a set of relations:

I Each relation holds in C.
I There is a morphism Γ∗ → ∆~ : w 7→ ŵ :

I For all x ∈ Γ, we have x̂Φ = xφ.

I For all x ∈ ∆ and m, n ∈ N, we have ιm ⊕ x ⊕ ιn ≈ ŵ
for some w ∈ Γ∗.

I For all (u, v) ∈ Ω, we have û ≈ v̂ .
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Theorem B

If Assumptions 1–6 hold, then C has tensor presentation 〈∆ : Ξ〉.

I The main work is establishing the properties of the terms ŵ .

I Finding the definition is easy enough.

I e.g., in the Brauer category B:

I σ̂5;8 = ι4 ⊕ X ⊕ ι2,
I τ̂5;8 = ι4 ⊕ U ⊕ U⊕ ι2,

I λ̂8 = ι8 ⊕ U,

I ρ̂8 = ι8 ⊕

U

.

I There is a Theorem C for categories like T :
I Cm,n = ∅⇔ m > 0 = n.

σ5;8 ≡σ5;8 ≡σ5;8 ≡σ5;8 ≡σ5;8 ≡σ5;8 ≡τ5;8 ≡λ8 ≡ρ8 ≡
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Theorem B — applications

Theorem

The Temperley-Lieb category TL ∼= 〈U, U

: Ξ〉.

U◦ U = ι0,

(I ⊕ U

) ◦ (U ⊕ I ) = I = (

U⊕ I ) ◦ (I ⊕ U).

U ≡ ,
U≡ , I ≡ .



Theorem B — applications

Theorem

The Brauer category B ∼= 〈X ,U, U

: Ξ〉.

X ◦ X = I ⊕ I ,

U◦ U = ι0, X ◦ U = U,

U◦ X =

U

,

(X ⊕ I ) ◦ (I ⊕ X ) ◦ (X ⊕ I ) = (I ⊕ X ) ◦ (X ⊕ I ) ◦ (I ⊕ X ),

(I ⊕ U

) ◦ (U ⊕ I ) = I = (

U⊕ I ) ◦ (I ⊕ U),

(I ⊕ X ) ◦ (U ⊕ I ) = (X ⊕ I ) ◦ (I ⊕ U),

(

U⊕ I ) ◦ (I ⊕ X ) = (I ⊕ U

) ◦ (X ⊕ I ).

X ≡ , U ≡ ,

U≡ , I ≡ .



Theorem B — applications

Theorem

The partition category P ∼= 〈X ,D,U, U

: Ξ〉.

X ◦ X = I ⊕ I ,

U◦ U = ι0,

D ◦ D = D = D ◦ X = X ◦ D,
(D ⊕ I ) ◦ (I ⊕ D) = (I ⊕ D) ◦ (D ⊕ I ),

(X ⊕ I ) ◦ (I ⊕ X ) ◦ (X ⊕ I ) = (I ⊕ X ) ◦ (X ⊕ I ) ◦ (I ⊕ X ),

(X ⊕ I ) ◦ (I ⊕ D) ◦ (X ⊕ I ) = (I ⊕ X ) ◦ (D ⊕ I ) ◦ (I ⊕ X ),

X ◦ (I ⊕ U) = U ⊕ I , (I ⊕ U

) ◦ X =

U⊕ I ,

(I ⊕ U

) ◦ D ◦ (I ⊕ U) = I , D ◦ (I ⊕ U ⊕ U

) ◦ D = D.

X ≡ , D ≡ , U ≡ ,

U≡ , I ≡ .



Theorem B — applications

Theorem

The transformation category T ∼= 〈X ,V , U

: Ξ〉.

X ◦ X = ι2, X ◦ V = V ,

(V ⊕ I ) ◦ V = (I ⊕ V ) ◦ V , (I ⊕ U

) ◦ V = I ,

(X ⊕ I ) ◦ (I ⊕ X ) ◦ (X ⊕ I ) = (I ⊕ X ) ◦ (X ⊕ I ) ◦ (I ⊕ X ),

(
U⊕ I ) ◦ X = I ⊕ U

, (I ⊕ V ) ◦ X = (X ⊕ I ) ◦ (I ⊕ X ) ◦ (V ⊕ I ).

X ≡ , V ≡ ,

U≡ , I ≡ .



Theorem B — applications

Theorem

The partial transformation category PT ∼= 〈X ,V ,U, U

: Ξ〉.

X ◦ X = ι2,

U◦ U = ι0,

X ◦ V = V , V ◦ U = U ⊕ U,

(V ⊕ I ) ◦ V = (I ⊕ V ) ◦ V , (I ⊕ U

) ◦ V = I ,

(X ⊕ I ) ◦ (I ⊕ X ) ◦ (X ⊕ I ) = (I ⊕ X ) ◦ (X ⊕ I ) ◦ (I ⊕ X ),

X ◦ (U ⊕ I ) = I ⊕ U, (

U⊕ I ) ◦ X = I ⊕ U

,

(I ⊕ V ) ◦ X = (X ⊕ I ) ◦ (I ⊕ X ) ◦ (V ⊕ I ).

X ≡ , V ≡ , U ≡ ,

U≡ , I ≡ .



Theorem B — applications

Theorem

The symmetric inverse category I ∼= 〈X ,U, U

: Ξ〉.

X ◦ X = ι2,

U◦ U = ι0,

(X ⊕ I ) ◦ (I ⊕ X ) ◦ (X ⊕ I ) = (I ⊕ X ) ◦ (X ⊕ I ) ◦ (I ⊕ X ),

X ◦ (U ⊕ I ) = I ⊕ U, (

U⊕ I ) ◦ X = I ⊕ U

.

X ≡ , U ≡ ,

U≡ , I ≡ .



Theorem B — applications

Theorem

Order-preserving transformations: O ∼= 〈V , U

: Ξ〉.

(V ⊕ I ) ◦ V = (I ⊕ V ) ◦ V , (I ⊕ U

) ◦ V = I = (

U⊕ I ) ◦ V .

V ≡ ,

U≡ , I ≡ .



Theorem B — applications

Theorem

Order-preserving partial transformations: PO ∼= 〈V ,U, U

: Ξ〉.

U◦ U = ι0, V ◦ U = U ⊕ U,

(V ⊕ I ) ◦ V = (I ⊕ V ) ◦ V , (I ⊕ U

) ◦ V = I = (

U⊕ I ) ◦ V .

V ≡ , U ≡ ,
U≡ , I ≡ .



Theorem B — applications

Theorem

Order-preserving partial bijections: OI ∼= 〈U, U

: Ξ〉.

U◦ U = ι0.

U ≡ ,

U≡ , I ≡ .



Theorem B — applications

I More applications come from (partial) braids/vines.

α =

β =

= α ◦ β

α =

β =

= α⊕ β

I PV = the partial vine category.

I V = the (full) vine category.

I IB = the partial braid category.
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Theorem B — applications

Theorem

The partial vine category PV ∼= 〈X ,X−1,V ,U,

U

: Ξ〉.

X ◦ X−1 = X−1 ◦ X = ι2,

U◦ U = ι0,

X ◦ V = V , V ◦ U = U ⊕ U,

(V ⊕ I ) ◦ V = (I ⊕ V ) ◦ V , (I ⊕ U

) ◦ V = I ,

(X ⊕ I ) ◦ (I ⊕ X ) ◦ (X ⊕ I ) = (I ⊕ X ) ◦ (X ⊕ I ) ◦ (I ⊕ X ),

X ◦ (U ⊕ I ) = I ⊕ U, X ◦ (I ⊕ U) = U ⊕ I ,

(

U⊕ I ) ◦ X = I ⊕ U

, (I ⊕ U

) ◦ X =

U⊕ I ,

(I ⊕ V ) ◦ X = (X ⊕ I ) ◦ (I ⊕ X ) ◦ (V ⊕ I ),

(V ⊕ I ) ◦ X = (I ⊕ X ) ◦ (X ⊕ I ) ◦ (I ⊕ V ).

X ≡ , X−1 ≡ , V ≡ , U ≡ ,

U≡ , I ≡ .



Theorem B — applications

Theorem

The (full) vine category V ∼= 〈X ,X−1,V ,

U

: Ξ〉.

X ◦ X−1 = X−1 ◦ X = ι2, X ◦ V = V ,

(V ⊕ I ) ◦ V = (I ⊕ V ) ◦ V , (I ⊕ U

) ◦ V = I ,

(X ⊕ I ) ◦ (I ⊕ X ) ◦ (X ⊕ I ) = (I ⊕ X ) ◦ (X ⊕ I ) ◦ (I ⊕ X ),

(
U⊕ I ) ◦ X = I ⊕ U

, (I ⊕ U
) ◦ X =

U⊕ I ,
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X ≡ , X−1 ≡ , V ≡ ,

U≡ , I ≡ .



Theorem B — applications

Theorem

The partial braid category IB ∼= 〈X ,X−1,U,

U

: Ξ〉.

X ◦ X−1 = X−1 ◦ X = ι2,

U◦ U = ι0,

(X ⊕ I ) ◦ (I ⊕ X ) ◦ (X ⊕ I ) = (I ⊕ X ) ◦ (X ⊕ I ) ◦ (I ⊕ X ),

X ◦ (U ⊕ I ) = I ⊕ U, X ◦ (I ⊕ U) = U ⊕ I ,

(
U⊕ I ) ◦ X = I ⊕ U

, (I ⊕ U
) ◦ X =

U⊕ I .

X ≡ , X−1 ≡ , U ≡ ,

U≡ , I ≡ .

I PV, V and IB are braided tensor categories (Joyal+Street).

I Can put the braids into the free data of the presentation.

I e.g., IB ∼= 〈U, U

:

U◦ U = ι0〉......
......the bicyclic braided tensor category?!
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I could go on... and on...

CATEGORIEZ!!!!!1!!!



Thank you :-)

I Presentations for tensor categories

I Coming soon to arXiv...


