Presentations for tensor categories

Centre for Research in Mathematics

Analogy: knot theory

Analogy: knot theory

Can this knot be un-knotted?

Analogy: knot theory

Theorem (Reidemeister 1927)

Two knots are equivalent \Leftrightarrow they differ by Reidemeister moves.

Analogy: knot theory

Theorem (Reidemeister 1927)

Two knots are equivalent \Leftrightarrow they differ by Reidemeister moves.

(III)

- Knots are built from small pieces (crossings).

Analogy: knot theory

Theorem (Reidemeister 1927)

Two knots are equivalent \Leftrightarrow they differ by Reidemeister moves.

(III)

- Knots are built from small pieces (crossings).
- Equivalence is governed by local moves.

Analogy: knot theory

Theorem (Reidemeister 1927)

Two knots are equivalent \Leftrightarrow they differ by Reidemeister moves.

- Knots are built from small pieces (crossings).
- Equivalence is governed by local moves.
- Useful when defining knot invariants.
- Alexander, Conway, Jones, Kauffman...

Analogy: knot theory

Theorem (Reidemeister 1927)

Two knots are equivalent \Leftrightarrow they differ by Reidemeister moves.

- Knots are built from small pieces (crossings).
- Equivalence is governed by local moves.
- Useful when defining knot invariants.
- Alexander, Conway, Jones, Kauffman...
- $f($ knot $K)$

Analogy: knot theory

Theorem (Reidemeister 1927)

Two knots are equivalent \Leftrightarrow they differ by Reidemeister moves.

- Knots are built from small pieces (crossings).
- Equivalence is governed by local moves.
- Useful when defining knot invariants.
- Alexander, Conway, Jones, Kauffman...
- $f($ (knot $K):=f($ diagram representing $K)$.

Analogy: knot theory

Theorem (Reidemeister 1927)

Two knots are equivalent \Leftrightarrow they differ by Reidemeister moves.

- Knots are built from small pieces (crossings).
- Equivalence is governed by local moves.
- Useful when defining knot invariants.
- Alexander, Conway, Jones, Kauffman...
- $f($ knot $K):=f($ diagram representing $K)$.

- f is well-defined \Leftrightarrow invariant under local moves.

Presentations

Presentations

- Let A be an algebraic structure: e.g., a group, ring, category...

Presentations

- Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X: R\rangle$ if:

Presentations

- Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X: R\rangle$ if:
- X is a generating set for A,

Presentations

- Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X: R\rangle$ if:
- X is a generating set for A,
- R is a set of equations (relations) over X : e.g., $x y=y x$,

Presentations

- Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X: R\rangle$ if:
- X is a generating set for A,
- R is a set of equations (relations) over X : e.g., $x y=y x$,
- R is complete: every equation over X follows from R.

Presentations

- Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X: R\rangle$ if:
- X is a generating set for A,
- R is a set of equations (relations) over X : e.g., $x y=y x$,
- R is complete: every equation over X follows from R.
- Formally, A has presentation $\langle X: R\rangle$ if $A \cong X^{*} / R^{\sharp}$:
- X is a set and X^{*} is the free algebra (of same type as A),
- $R \subseteq X^{*} \times X^{*}$ and R^{\sharp} is the congruence on X^{*} generated by R.
- i.e., there is a surmorphism $X^{*} \rightarrow A$ with kernel R^{\sharp}.

Presentations

- Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X: R\rangle$ if:
- X is a generating set for A,
- R is a set of equations (relations) over X : e.g., $x y=y x$,
- R is complete: every equation over X follows from R.
- Formally, A has presentation $\langle X: R\rangle$ if $A \cong X^{*} / R^{\sharp}$:
- X is a set and X^{*} is the free algebra (of same type as A),
- $R \subseteq X^{*} \times X^{*}$ and R^{\sharp} is the congruence on X^{*} generated by R.
- i.e., there is a surmorphism $X^{*} \rightarrow A$ with kernel R^{\sharp}.
- We can use presentations to define invariants.

Presentations

- Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X: R\rangle$ if:
- X is a generating set for A,
- R is a set of equations (relations) over X : e.g., $x y=y x$,
- R is complete: every equation over X follows from R.
- Formally, A has presentation $\langle X: R\rangle$ if $A \cong X^{*} / R^{\sharp}$:
- X is a set and X^{*} is the free algebra (of same type as A),
- $R \subseteq X^{*} \times X^{*}$ and R^{\sharp} is the congruence on X^{*} generated by R.
- i.e., there is a surmorphism $X^{*} \rightarrow A$ with kernel R^{\sharp}.
- We can use presentations to define homomorphisms $\phi: A \rightarrow B$.

Presentations

- Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X: R\rangle$ if:
- X is a generating set for A,
- R is a set of equations (relations) over X : e.g., $x y=y x$,
- R is complete: every equation over X follows from R.
- Formally, A has presentation $\langle X: R\rangle$ if $A \cong X^{*} / R^{\sharp}$:
- X is a set and X^{*} is the free algebra (of same type as A),
- $R \subseteq X^{*} \times X^{*}$ and R^{\sharp} is the congruence on X^{*} generated by R.
- i.e., there is a surmorphism $X^{*} \rightarrow A$ with kernel R^{\sharp}.
- We can use presentations to define homomorphisms $\phi: A \rightarrow B$.
- Define $\phi(x)$ for all $x \in X$.

Presentations

- Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X: R\rangle$ if:
- X is a generating set for A,
- R is a set of equations (relations) over X : e.g., $x y=y x$,
- R is complete: every equation over X follows from R.
- Formally, A has presentation $\langle X: R\rangle$ if $A \cong X^{*} / R^{\sharp}$:
- X is a set and X^{*} is the free algebra (of same type as A),
- $R \subseteq X^{*} \times X^{*}$ and R^{\sharp} is the congruence on X^{*} generated by R.
- i.e., there is a surmorphism $X^{*} \rightarrow A$ with kernel R^{\sharp}.
- We can use presentations to define homomorphisms $\phi: A \rightarrow B$.
- Define $\phi(x)$ for all $x \in X$.
- For $a=x_{1} \cdots x_{k}$, define $\phi(a)=\phi\left(x_{1}\right) \cdots \phi\left(x_{k}\right)$.

Presentations

- Let A be an algebraic structure: e.g., a group, ring, category...
- Informally, A has presentation $\langle X: R\rangle$ if:
- X is a generating set for A,
- R is a set of equations (relations) over X : e.g., $x y=y x$,
- R is complete: every equation over X follows from R.
- Formally, A has presentation $\langle X: R\rangle$ if $A \cong X^{*} / R^{\sharp}$:
- X is a set and X^{*} is the free algebra (of same type as A),
- $R \subseteq X^{*} \times X^{*}$ and R^{\sharp} is the congruence on X^{*} generated by R.
- i.e., there is a surmorphism $X^{*} \rightarrow A$ with kernel R^{\sharp}.
- We can use presentations to define homomorphisms $\phi: A \rightarrow B$.
- Define $\phi(x)$ for all $x \in X$.
- For $a=x_{1} \cdots x_{k}$, define $\phi(a)=\phi\left(x_{1}\right) \cdots \phi\left(x_{k}\right)$.
- Well-defined $\Leftrightarrow \phi(u)=\phi(v)$ for every relation $u=v$.

Presentations (examples)

Theorem (Moore, 1897)

The symmetric group $\mathcal{S}_{n} \cong\left\langle s_{1}, \ldots, s_{n-1}: R\right\rangle$.

$$
\begin{array}{rlrl}
s_{i}^{2} & =\iota & & \text { for all } i \\
s_{i} s_{j} & =s_{j} s_{i} & & \text { if }|i-j|>1 \\
s_{i} s_{j} s_{i} & =s_{j} s_{i} s_{j} & & \text { if }|i-j|=1 . \\
s_{i} \equiv & &
\end{array}
$$

Presentations (examples)

Theorem (Moore, 1897)

The symmetric group $\mathcal{S}_{n} \cong\left\langle s_{1}, \ldots, s_{n-1}: R\right\rangle$.

$$
\begin{align*}
& s_{i}^{2}=\iota \tag{R1}\\
& s_{i} s_{j}=s_{j} s_{i} \\
& s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j} \\
& \text { for all } i \\
& \text { if }|i-j|>1 \tag{R2}\\
& \text { if }|i-j|=1 \text {. } \tag{R3}\\
& s_{i} \equiv \bullet \bullet \bullet \bullet \bullet!\quad(i, i+1)
\end{align*}
$$

Presentations (examples)

Theorem (Moore, 1897)

The symmetric group $\mathcal{S}_{n} \cong\left\langle s_{1}, \ldots, s_{n-1}: R\right\rangle$.

$$
\begin{array}{rlrl}
s_{i}^{2} & =\iota & & \text { for all } i \\
s_{i} s_{j} & =s_{j} s_{i} & & \text { if }|i-j|>1 \\
s_{i} s_{j} s_{i} & =s_{j} s_{i} s_{j} & & \text { if }|i-j|=1 . \\
s_{i} \equiv & &
\end{array}
$$

Presentations (examples)

Theorem (Moore, 1897)

The symmetric group $\mathcal{S}_{n} \cong\left\langle s_{1}, \ldots, s_{n-1}: R\right\rangle$.

$$
\begin{array}{rlrl}
s_{i}^{2} & =\iota & & \text { for all } i \\
s_{i} s_{j} & =s_{j} s_{i} & & \text { if }|i-j|>1 \\
s_{i} s_{j} s_{i} & =s_{j} s_{i} s_{j} & & \text { if }|i-j|=1 . \\
s_{i} \equiv & &
\end{array}
$$

Presentations (examples)

Theorem (Artin, 1925)

The braid group $\mathcal{B}_{n} \cong\left\langle\sigma_{1}, \ldots, \sigma_{n-1}: R\right\rangle$.

$$
\begin{align*}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & \text { if }|i-j|>1 \\
\sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} & \text { if }|i-j|=1 .
\end{align*}
$$

Presentations (examples)

Theorem (Artin, 1925)

The braid group $\mathcal{B}_{n} \cong\left\langle\sigma_{1}, \ldots, \sigma_{n-1}: R\right\rangle$.

$$
\begin{align*}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & \text { if }|i-j|>1 \\
\sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} & \text { if }|i-j|=1
\end{align*}
$$

Presentations (examples)

Theorem (Artin, 1925)

The braid group $\mathcal{B}_{n} \cong\left\langle\sigma_{1}, \ldots, \sigma_{n-1}: R\right\rangle$.

$$
\begin{align*}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & \text { if }|i-j|>1 \tag{R1}\\
\sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} & \text { if }|i-j|=1 .
\end{align*}
$$

Presentations (examples)

Theorem (Artin, 1925)

The braid group $\mathcal{B}_{n} \cong\left\langle\sigma_{1}, \ldots, \sigma_{n-1}: R\right\rangle$.

$$
\begin{align*}
& \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \text { if }|i-j|>1 \tag{R1}\\
& \sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} \text { if }|i-j|=1 . \\
& \sigma_{i} \equiv \ldots \ldots . . .
\end{align*}
$$

Presentations (examples)

Theorem (Artin, 1925)

The braid group $\mathcal{B}_{n} \cong\left\langle\sigma_{1}, \ldots, \sigma_{n-1}: R\right\rangle$.

$$
\begin{align*}
& \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \text { if }|i-j|>1 \tag{R1}\\
& \sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} \text { if }|i-j|=1 . \\
& \sigma_{i} \equiv \ldots \ldots . . .
\end{align*}
$$

A Reidemeister move!

Presentations (examples)

- Those examples were groups.

Presentations (examples)

- Those examples were groups.
- Presentations for many semigroups are known.

Presentations (examples)

- Those examples were groups.
- Presentations for many semigroups are known.
- For an integer $n \geq 0$, let $\mathbf{n}=\{1, \ldots, n\}$.

Presentations (examples)

- Those examples were groups.
- Presentations for many semigroups are known.
- For an integer $n \geq 0$, let $\mathbf{n}=\{1, \ldots, n\}$.
- The full transformation semigroup:

$$
\mathcal{T}_{n}=\{\text { functions } \mathbf{n} \rightarrow \mathbf{n}\} .
$$

Presentations (examples)

- Those examples were groups.
- Presentations for many semigroups are known.
- For an integer $n \geq 0$, let $\mathbf{n}=\{1, \ldots, n\}$.
- The full transformation semigroup:

$$
\mathcal{T}_{n}=\{\text { functions } \mathbf{n} \rightarrow \mathbf{n}\} .
$$

- The partial transformation semigroup:

$$
\mathcal{P} \mathcal{T}_{n}=\{\text { partial functions } \mathbf{n} \rightarrow \mathbf{n}\} .
$$

Presentations (examples)

- Those examples were groups.
- Presentations for many semigroups are known.
- For an integer $n \geq 0$, let $\mathbf{n}=\{1, \ldots, n\}$.
- The full transformation semigroup:

$$
\mathcal{T}_{n}=\{\text { functions } \mathbf{n} \rightarrow \mathbf{n}\} .
$$

- The partial transformation semigroup:

$$
\mathcal{P} \mathcal{T}_{n}=\{\text { partial functions } \mathbf{n} \rightarrow \mathbf{n}\} .
$$

- The symmetric inverse semigroup:

$$
\mathcal{I}_{n}=\{\text { partial bijections } \mathbf{n} \rightarrow \mathbf{n}\} .
$$

Presentations (examples)

- Those examples were groups.
- Presentations for many semigroups are known.
- For an integer $n \geq 0$, let $\mathbf{n}=\{1, \ldots, n\}$.
- The full transformation semigroup:

$$
\mathcal{T}_{n}=\{\text { functions } \mathbf{n} \rightarrow \mathbf{n}\} .
$$

- The partial transformation semigroup:

$$
\mathcal{P} \mathcal{T}_{n}=\{\text { partial functions } \mathbf{n} \rightarrow \mathbf{n}\} .
$$

- The symmetric inverse semigroup:

$$
\mathcal{I}_{n}=\{\text { partial bijections } \mathbf{n} \rightarrow \mathbf{n}\} .
$$

- Each contains the symmetric group:

$$
\mathcal{S}_{n}=\{\text { bijections } \mathbf{n} \rightarrow \mathbf{n}\} .
$$

Presentations (examples)

Theorem (Moore, 1897)

The symmetric group $\mathcal{S}_{n} \cong\left\langle s_{1}, \ldots, s_{n-1}: R\right\rangle$.

$$
\begin{aligned}
s_{i}^{2} & =\iota & & \text { for all } i \\
s_{i} s_{j} & =s_{j} s_{i} & & \text { if }|i-j|>1 \\
s_{i} s_{j} s_{i} & =s_{j} s_{i} s_{j} & & \text { if }|i-j|=1 .
\end{aligned}
$$

Presentations (examples)

Theorem (Ǎ̌zenštat, 1958)

The full transformation semigroup $\mathcal{T}_{n} \cong\left\langle s_{1}, \ldots, s_{n-1}, e: R\right\rangle$.

$$
\begin{array}{rlrl}
s_{i}^{2} & =\iota & & \text { for all } i \\
s_{i} s_{j} & =s_{j} s_{i} & & \text { if }|i-j|>1 \\
s_{i} s_{j} s_{i} & =s_{j} s_{i} s_{j} & & \text { if }|i-j|=1 \\
s_{i} e & =e s_{i} & & \text { if } i \geq 3 \\
e^{2}=e & =s_{1} e & & \\
e s_{2} e s_{2}=s_{2} e s_{2} e & =e s_{2} e & & \\
e s_{1} s_{2} s_{1} & =e s_{1} s_{2} e & & \\
e u e u & =\text { ueue } & & \text { where } u=s_{2} s_{1} s_{3} s_{2} . \\
s_{i} \equiv
\end{array}
$$

Presentations (examples)

Theorem (Popova, 1961)

The symmetric inverse semigroup $\mathcal{I}_{n} \cong\left\langle s_{1}, \ldots, s_{n-1}, e: R\right\rangle$.

$$
\begin{align*}
& s_{i}^{2}=\iota \quad \text { for all } i \tag{R1}\\
& s_{i} s_{j}=s_{j} s_{i} \\
& s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j} \tag{R3}\\
& s_{i} e=e s_{i} \\
& e^{2}=e \tag{R5}\\
& e s_{1} e s_{1}=s_{1} e s_{1} e=e s_{1} e . \tag{R6}\\
& \text { if }|i-j|>1 \tag{R2}\\
& \text { if }|i-j|=1 \\
& \text { if } i \geq 2 \tag{R4}
\end{align*}
$$

Categories

Categories

- For us: each category \mathcal{C} has object set $\mathbb{N}=\{0,1,2, \ldots\}$.

Categories

- For us: each category \mathcal{C} has object set $\mathbb{N}=\{0,1,2, \ldots\}$.
- Think of \mathcal{C} as a partial monoid.

Categories

- For us: each category \mathcal{C} has object set $\mathbb{N}=\{0,1,2, \ldots\}$.
- Think of \mathcal{C} as a partial monoid...... A set with:
- a partial product $x y=x \circ y(x, y \in \mathcal{C})$,

Categories

- For us: each category \mathcal{C} has object set $\mathbb{N}=\{0,1,2, \ldots\}$.
- Think of \mathcal{C} as a partial monoid...... A set with:
- a partial product $x y=x \circ y(x, y \in \mathcal{C})$,
- domain/range functions $\mathbf{d}, \mathbf{r}: \mathcal{C} \rightarrow \mathbb{N}$,

Categories

- For us: each category \mathcal{C} has object set $\mathbb{N}=\{0,1,2, \ldots\}$.
- Think of \mathcal{C} as a partial monoid...... A set with:
- a partial product $x y=x \circ y(x, y \in \mathcal{C})$,
- domain/range functions $\mathbf{d}, \mathbf{r}: \mathcal{C} \rightarrow \mathbb{N}$,
- many identity elements $\iota_{n}(n \in \mathbb{N})$ with $\mathbf{d}\left(\iota_{n}\right)=\mathbf{r}\left(\iota_{n}\right)=n$.

Categories

- For us: each category \mathcal{C} has object set $\mathbb{N}=\{0,1,2, \ldots\}$.
- Think of \mathcal{C} as a partial monoid...... A set with:
- a partial product $x y=x \circ y(x, y \in \mathcal{C})$,
- domain/range functions $\mathbf{d}, \mathbf{r}: \mathcal{C} \rightarrow \mathbb{N}$,
- many identity elements $\iota_{n}(n \in \mathbb{N})$ with $\mathbf{d}\left(\iota_{n}\right)=\mathbf{r}\left(\iota_{n}\right)=n$.
- Properties/axioms:
- $x y$ defined $\Leftrightarrow \mathbf{r}(x)=\mathbf{d}(y)$,

Categories

- For us: each category \mathcal{C} has object set $\mathbb{N}=\{0,1,2, \ldots\}$.
- Think of \mathcal{C} as a partial monoid...... A set with:
- a partial product $x y=x \circ y(x, y \in \mathcal{C})$,
- domain/range functions $\mathbf{d}, \mathbf{r}: \mathcal{C} \rightarrow \mathbb{N}$,
- many identity elements $\iota_{n}(n \in \mathbb{N})$ with $\mathbf{d}\left(\iota_{n}\right)=\mathbf{r}\left(\iota_{n}\right)=n$.
- Properties/axioms:
- $x y$ defined $\Leftrightarrow \mathbf{r}(x)=\mathbf{d}(y)$,
- $\mathbf{d}(x y)=\mathbf{d}(x)$ and $\mathbf{r}(x y)=\mathbf{r}(y)$,

Categories

- For us: each category \mathcal{C} has object set $\mathbb{N}=\{0,1,2, \ldots\}$.
- Think of \mathcal{C} as a partial monoid...... A set with:
- a partial product $x y=x \circ y(x, y \in \mathcal{C})$,
- domain/range functions $\mathbf{d}, \mathbf{r}: \mathcal{C} \rightarrow \mathbb{N}$,
- many identity elements $\iota_{n}(n \in \mathbb{N})$ with $\mathbf{d}\left(\iota_{n}\right)=\mathbf{r}\left(\iota_{n}\right)=n$.
- Properties/axioms:
- $x y$ defined $\Leftrightarrow \mathbf{r}(x)=\mathbf{d}(y)$,
- $\mathbf{d}(x y)=\mathbf{d}(x)$ and $\mathbf{r}(x y)=\mathbf{r}(y)$,
- $(x y) z=x(y z)$ when defined,

Categories

- For us: each category \mathcal{C} has object set $\mathbb{N}=\{0,1,2, \ldots\}$.
- Think of \mathcal{C} as a partial monoid...... A set with:
- a partial product $x y=x \circ y(x, y \in \mathcal{C})$,
- domain/range functions $\mathbf{d}, \mathbf{r}: \mathcal{C} \rightarrow \mathbb{N}$,
- many identity elements $\iota_{n}(n \in \mathbb{N})$ with $\mathbf{d}\left(\iota_{n}\right)=\mathbf{r}\left(\iota_{n}\right)=n$.
- Properties/axioms:
- $x y$ defined $\Leftrightarrow \mathbf{r}(x)=\mathbf{d}(y)$,
- $\mathbf{d}(x y)=\mathbf{d}(x)$ and $\mathbf{r}(x y)=\mathbf{r}(y)$,
- $(x y) z=x(y z)$ when defined,
- $\iota_{m} \circ x=x=x \circ \iota_{n}$ when defined.

Categories

- For us: each category \mathcal{C} has object set $\mathbb{N}=\{0,1,2, \ldots\}$.
- Think of \mathcal{C} as a partial monoid...... A set with:
- a partial product $x y=x \circ y(x, y \in \mathcal{C})$,
- domain/range functions $\mathbf{d}, \mathbf{r}: \mathcal{C} \rightarrow \mathbb{N}$,
- many identity elements $\iota_{n}(n \in \mathbb{N})$ with $\mathbf{d}\left(\iota_{n}\right)=\mathbf{r}\left(\iota_{n}\right)=n$.
- Properties/axioms:
- $x y$ defined $\Leftrightarrow \mathbf{r}(x)=\mathbf{d}(y)$,
- $\mathbf{d}(x y)=\mathbf{d}(x)$ and $\mathbf{r}(x y)=\mathbf{r}(y)$,
- $(x y) z=x(y z)$ when defined,
- $\iota_{m} \circ x=x=x \circ \iota_{n}$ when defined.
- Morphism sets: $\mathcal{C}_{m, n}=\{x \in \mathcal{C}: \mathbf{d}(x)=m, \mathbf{r}(x)=n\}$.

Categories

- For us: each category \mathcal{C} has object set $\mathbb{N}=\{0,1,2, \ldots\}$.
- Think of \mathcal{C} as a partial monoid...... A set with:
- a partial product $x y=x \circ y(x, y \in \mathcal{C})$,
- domain/range functions $\mathbf{d}, \mathbf{r}: \mathcal{C} \rightarrow \mathbb{N}$,
- many identity elements $\iota_{n}(n \in \mathbb{N})$ with $\mathbf{d}\left(\iota_{n}\right)=\mathbf{r}\left(\iota_{n}\right)=n$.
- Properties/axioms:
- $x y$ defined $\Leftrightarrow \mathbf{r}(x)=\mathbf{d}(y)$,
- $\mathbf{d}(x y)=\mathbf{d}(x)$ and $\mathbf{r}(x y)=\mathbf{r}(y)$,
- $(x y) z=x(y z)$ when defined,
- $\iota_{m} \circ x=x=x \circ \iota_{n}$ when defined.
- Morphism sets: $\mathcal{C}_{m, n}=\{x \in \mathcal{C}: \mathbf{d}(x)=m, \mathbf{r}(x)=n\}$.
- Endomorphism monoids: $\mathcal{C}_{n}=\mathcal{C}_{n, n}$.

Categories

- For us: each category \mathcal{C} has object set $\mathbb{N}=\{0,1,2, \ldots\}$.
- Think of \mathcal{C} as a partial monoid...... A set with:
- a partial product $x y=x \circ y(x, y \in \mathcal{C})$,
- domain/range functions $\mathbf{d}, \mathbf{r}: \mathcal{C} \rightarrow \mathbb{N}$,
- many identity elements $\iota_{n}(n \in \mathbb{N})$ with $\mathbf{d}\left(\iota_{n}\right)=\mathbf{r}\left(\iota_{n}\right)=n$.
- Properties/axioms:
- $x y$ defined $\Leftrightarrow \mathbf{r}(x)=\mathbf{d}(y)$,
- $\mathbf{d}(x y)=\mathbf{d}(x)$ and $\mathbf{r}(x y)=\mathbf{r}(y)$,
- $(x y) z=x(y z)$ when defined,
- $\iota_{m} \circ x=x=x \circ \iota_{n}$ when defined.
- Morphism sets: $\mathcal{C}_{m, n}=\{x \in \mathcal{C}: \mathbf{d}(x)=m, \mathbf{r}(x)=n\}$.
- Endomorphism monoids: $\mathcal{C}_{n}=\mathcal{C}_{n, n}$.
- Familiar example: $\mathcal{M}=\{$ all (finite) matrices over $\mathbb{R}\}$.

Transformation categories

Transformation categories

- Recall: $\mathbf{n}=\{1, \ldots, n\}$ for $n \in \mathbb{N}$.

Transformation categories

- Recall: $\mathbf{n}=\{1, \ldots, n\}$ for $n \in \mathbb{N}$.
- The full transformation category:

$$
\mathcal{T}=\{\text { functions } \mathbf{m} \rightarrow \mathbf{n}: m, n \in \mathbb{N}\} .
$$

Transformation categories

- Recall: $\mathbf{n}=\{1, \ldots, n\}$ for $n \in \mathbb{N}$.
- The full transformation category:

$$
\mathcal{T}=\{\text { functions } \mathbf{m} \rightarrow \mathbf{n}: m, n \in \mathbb{N}\} .
$$

- Morphism sets: $\mathcal{T}_{m, n}=\{$ functions $\mathbf{m} \rightarrow \mathbf{n}\}$.

Transformation categories

- Recall: $\mathbf{n}=\{1, \ldots, n\}$ for $n \in \mathbb{N}$.
- The full transformation category:

$$
\mathcal{T}=\{\text { functions } \mathbf{m} \rightarrow \mathbf{n}: m, n \in \mathbb{N}\} .
$$

- Morphism sets: $\mathcal{T}_{m, n}=\{$ functions $\mathbf{m} \rightarrow \mathbf{n}\}$.
- Endomorphism monoids: $\mathcal{T}_{n}=\mathcal{T}_{n, n}=\{$ functions $\mathbf{n} \rightarrow \mathbf{n}\}$.

Transformation categories

- Recall: $\mathbf{n}=\{1, \ldots, n\}$ for $n \in \mathbb{N}$.
- The full transformation category:

$$
\mathcal{T}=\{\text { functions } \mathbf{m} \rightarrow \mathbf{n}: m, n \in \mathbb{N}\} .
$$

- Morphism sets: $\mathcal{T}_{m, n}=\{$ functions $\mathbf{m} \rightarrow \mathbf{n}\}$.
- Endomorphism monoids: $\mathcal{T}_{n}=\mathcal{T}_{n, n}=\{$ functions $\mathbf{n} \rightarrow \mathbf{n}\}$.
- The partial transformation category:

$$
\mathcal{P} \mathcal{T}=\{\text { partial functions } \mathbf{m} \rightarrow \mathbf{n}: m, n \in \mathbb{N}\} .
$$

- Endomorphism monoids: $\mathcal{P} \mathcal{T}_{n}$.

Transformation categories

- Recall: $\mathbf{n}=\{1, \ldots, n\}$ for $n \in \mathbb{N}$.
- The full transformation category:

$$
\mathcal{T}=\{\text { functions } \mathbf{m} \rightarrow \mathbf{n}: m, n \in \mathbb{N}\} .
$$

- Morphism sets: $\mathcal{T}_{m, n}=\{$ functions $\mathbf{m} \rightarrow \mathbf{n}\}$.
- Endomorphism monoids: $\mathcal{T}_{n}=\mathcal{T}_{n, n}=\{$ functions $\mathbf{n} \rightarrow \mathbf{n}\}$.
- The partial transformation category:

$$
\mathcal{P} \mathcal{T}=\{\text { partial functions } \mathbf{m} \rightarrow \mathbf{n}: m, n \in \mathbb{N}\} .
$$

- Endomorphism monoids: $\mathcal{P} \mathcal{T}_{n}$.
- The symmetric inverse category:

$$
\mathcal{I}=\{\text { partial bijections } \mathbf{m} \rightarrow \mathbf{n}: m, n \in \mathbb{N}\} .
$$

- Endomorphism monoids: \mathcal{I}_{n}.

Diagram categories - \mathcal{P}

Diagram categories $-\mathcal{P}$

- My original motivation.

Diagram categories $-\mathcal{P}$

- My original motivation.
- For $n \in \mathbb{N}$, let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.

Diagram categories $-\mathcal{P}$

- My original motivation.
- For $n \in \mathbb{N}$, let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m, n}=\left\{\right.$ set partitions of $\left.\mathbf{m} \cup \mathbf{n}^{\prime}\right\}$

Diagram categories $-\mathcal{P}$

- My original motivation.
- For $n \in \mathbb{N}$, let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m, n}=\left\{\right.$ set partitions of $\left.\mathbf{m} \cup \mathbf{n}^{\prime}\right\}$
- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 5^{\prime}\right\},\left\{2^{\prime}\right\},\left\{3^{\prime}\right\}\right\} \in \mathcal{P}_{6,5}$

Diagram categories $-\mathcal{P}$

- My original motivation.
- For $n \in \mathbb{N}$, let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m, n}=\left\{\right.$ set partitions of $\left.\mathbf{m} \cup \mathbf{n}^{\prime}\right\}$

$$
\equiv\left\{\text { graphs on } \mathbf{m} \cup \mathbf{n}^{\prime}\right\} .
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 5^{\prime}\right\},\left\{2^{\prime}\right\},\left\{3^{\prime}\right\}\right\} \in \mathcal{P}_{6,5}$

Diagram categories $-\mathcal{P}$

- My original motivation.
- For $n \in \mathbb{N}$, let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m, n}=\left\{\right.$ set partitions of $\left.\mathbf{m} \cup \mathbf{n}^{\prime}\right\}$

$$
\equiv\left\{\text { graphs on } \mathbf{m} \cup \mathbf{n}^{\prime}\right\} .
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 5^{\prime}\right\},\left\{2^{\prime}\right\},\left\{3^{\prime}\right\}\right\} \in \mathcal{P}_{6,5}$

$$
6\left\{\begin{array}{llllll}
\bullet & { }^{\bullet} & 0_{\bullet} & \bullet & 5_{\bullet} & \bullet \\
\hline
\end{array}\right.
$$

$$
5^{\prime}\left\{\begin{array}{lllll}
\bullet & \bullet & \bullet & \bullet & \bullet \\
1^{\prime} & 2^{\prime} & \mathbf{3}^{\prime} & 4^{\prime} & 5^{\prime}
\end{array}\right.
$$

Diagram categories $-\mathcal{P}$

- My original motivation.
- For $n \in \mathbb{N}$, let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m, n}=\left\{\right.$ set partitions of $\left.\mathbf{m} \cup \mathbf{n}^{\prime}\right\}$

$$
\equiv\left\{\text { graphs on } \mathbf{m} \cup \mathbf{n}^{\prime}\right\} .
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 5^{\prime}\right\},\left\{2^{\prime}\right\},\left\{3^{\prime}\right\}\right\} \in \mathcal{P}_{6,5}$

Diagram categories $-\mathcal{P}$

- My original motivation.
- For $n \in \mathbb{N}$, let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m, n}=\left\{\right.$ set partitions of $\left.\mathbf{m} \cup \mathbf{n}^{\prime}\right\}$

$$
\equiv\left\{\text { graphs on } \mathbf{m} \cup \mathbf{n}^{\prime}\right\} .
$$

- Eg: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 5^{\prime}\right\},\left\{2^{\prime}\right\},\left\{3^{\prime}\right\}\right\} \in \mathcal{P}_{6,5}$

Diagram categories $-\mathcal{P}$

- My original motivation.
- For $n \in \mathbb{N}$, let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m, n}=\left\{\right.$ set partitions of $\left.\mathbf{m} \cup \mathbf{n}^{\prime}\right\}$

$$
\equiv\left\{\text { graphs on } \mathbf{m} \cup \mathbf{n}^{\prime}\right\} .
$$

- $\operatorname{Eg}: \alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 5^{\prime}\right\},\left\{2^{\prime}\right\},\left\{3^{\prime}\right\}\right\} \in \mathcal{P}_{6,5}$

Diagram categories $-\mathcal{P}$

- My original motivation.
- For $n \in \mathbb{N}$, let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m, n}=\left\{\right.$ set partitions of $\left.\mathbf{m} \cup \mathbf{n}^{\prime}\right\}$

$$
\equiv\left\{\text { graphs on } \mathbf{m} \cup \mathbf{n}^{\prime}\right\} .
$$

- $\operatorname{Eg}: \alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 5^{\prime}\right\},\left\{2^{\prime}\right\},\left\{3^{\prime}\right\}\right\} \in \mathcal{P}_{6,5}$

Diagram categories $-\mathcal{P}$

- My original motivation.
- For $n \in \mathbb{N}$, let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m, n}=\left\{\right.$ set partitions of $\left.\mathbf{m} \cup \mathbf{n}^{\prime}\right\}$

$$
\equiv\left\{\text { equiv-classes of graphs on } \mathbf{m} \cup \mathbf{n}^{\prime}\right\} .
$$

- $\operatorname{Eg}: \alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 5^{\prime}\right\},\left\{2^{\prime}\right\},\left\{3^{\prime}\right\}\right\} \in \mathcal{P}_{6,5}$

Diagram categories $-\mathcal{P}$

- My original motivation.
- For $n \in \mathbb{N}$, let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m, n}=\left\{\right.$ set partitions of $\left.\mathbf{m} \cup \mathbf{n}^{\prime}\right\}$

$$
\equiv\left\{\text { equiv-classes of graphs on } \mathbf{m} \cup \mathbf{n}^{\prime}\right\} .
$$

- $\operatorname{Eg}: \alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 5^{\prime}\right\},\left\{2^{\prime}\right\},\left\{3^{\prime}\right\}\right\} \in \mathcal{P}_{6,5}$

Diagram categories $-\mathcal{P}$

- My original motivation.
- For $n \in \mathbb{N}$, let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m, n}=\left\{\right.$ set partitions of $\left.\mathbf{m} \cup \mathbf{n}^{\prime}\right\}$

$$
\equiv\left\{\text { equiv-classes of graphs on } \mathbf{m} \cup \mathbf{n}^{\prime}\right\} .
$$

- $\operatorname{Eg}: \alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 5^{\prime}\right\},\left\{2^{\prime}\right\},\left\{3^{\prime}\right\}\right\} \in \mathcal{P}_{6,5}$

Diagram categories $-\mathcal{P}$

- My original motivation.
- For $n \in \mathbb{N}$, let $\mathbf{n}=\{1, \ldots, n\}$ and $\mathbf{n}^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
- For $m, n \in \mathbb{N}$, let $\mathcal{P}_{m, n}=\left\{\right.$ set partitions of $\left.\mathbf{m} \cup \mathbf{n}^{\prime}\right\}$

$$
\equiv\left\{\text { equiv-classes of graphs on } \mathbf{m} \cup \mathbf{n}^{\prime}\right\} .
$$

- $\operatorname{Eg}: \alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 5^{\prime}\right\},\left\{2^{\prime}\right\},\left\{3^{\prime}\right\}\right\} \in \mathcal{P}_{6,5}$

- The partition category is $\mathcal{P}=\bigcup_{m, n \in \mathbb{N}} \mathcal{P}_{m, n}$.

Diagram categories - composition in \mathcal{P}

Diagram categories - composition in \mathcal{P}
Let $\alpha \in \mathcal{P}_{m, n}$ and $\beta \in \mathcal{P}_{n, q}$.

Diagram categories - composition in \mathcal{P}

Let $\alpha \in \mathcal{P}_{\boldsymbol{m}, \boldsymbol{n}}$ and $\beta \in \mathcal{P}_{\boldsymbol{n}, \boldsymbol{q}}$. To calculate $\alpha \beta=\alpha \circ \beta \in \mathcal{P}_{\boldsymbol{m}, \boldsymbol{q}}$:
(1) connect bottom of α to top of β,

Diagram categories - composition in \mathcal{P}

Let $\alpha \in \mathcal{P}_{\boldsymbol{m}, \boldsymbol{n}}$ and $\beta \in \mathcal{P}_{\boldsymbol{n}, \boldsymbol{q}}$. To calculate $\alpha \beta=\alpha \circ \beta \in \mathcal{P}_{\boldsymbol{m}, \boldsymbol{q}}$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,

Diagram categories - composition in \mathcal{P}

Let $\alpha \in \mathcal{P}_{\boldsymbol{m}, \boldsymbol{n}}$ and $\beta \in \mathcal{P}_{\boldsymbol{n}, \boldsymbol{q}}$. To calculate $\alpha \beta=\alpha \circ \beta \in \mathcal{P}_{\boldsymbol{m}, \boldsymbol{q}}$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,
(3) smooth out resulting graph to obtain $\alpha \beta$.

Diagram categories - composition in \mathcal{P}

Let $\alpha \in \mathcal{P}_{\boldsymbol{m}, n}$ and $\beta \in \mathcal{P}_{n, \boldsymbol{q}}$. To calculate $\alpha \beta=\alpha \circ \beta \in \mathcal{P}_{\boldsymbol{m}, \boldsymbol{q}}$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,
(3) smooth out resulting graph to obtain $\alpha \beta$.

- Endomorphism monoids are partition monoids $\mathcal{P}_{n}=\mathcal{P}_{n, n}$.

Diagram categories - composition in \mathcal{P}

Let $\alpha \in \mathcal{P}_{\boldsymbol{m}, n}$ and $\beta \in \mathcal{P}_{n, \boldsymbol{q}}$. To calculate $\alpha \beta=\alpha \circ \beta \in \mathcal{P}_{\boldsymbol{m}, \boldsymbol{q}}$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,
(3) smooth out resulting graph to obtain $\alpha \beta$.

- Endomorphism monoids are partition monoids $\mathcal{P}_{n}=\mathcal{P}_{n, n}$.
- Identities: $\iota_{6}=$ •........

Diagram categories - composition in \mathcal{P}

Let $\alpha \in \mathcal{P}_{\boldsymbol{m}, n}$ and $\beta \in \mathcal{P}_{n, \boldsymbol{q}}$. To calculate $\alpha \beta=\alpha \circ \beta \in \mathcal{P}_{\boldsymbol{m}, \boldsymbol{q}}$:
(1) connect bottom of α to top of β,
(2) remove middle vertices and floating components,
(3) smooth out resulting graph to obtain $\alpha \beta$.

- Endomorphism monoids are partition monoids $\mathcal{P}_{n}=\mathcal{P}_{n, n}$.
- Identities: $\iota_{6}=$ •••••••
- There are linear/twisted versions as well...

Diagram categories $-\mathcal{B}$ and $\mathcal{T} \mathcal{L}$

Diagram categories $-\mathcal{B}$ and $\mathcal{T} \mathcal{L}$

- The Brauer category $\mathcal{B}=\{$ partitions with blocks of size 2$\}$:

Diagram categories $-\mathcal{B}$ and $\mathcal{T} \mathcal{L}$

- The Brauer category $\mathcal{B}=\{$ partitions with blocks of size 2$\}$:

- The Temperley-Lieb category $\mathcal{T} \mathcal{L}=\{$ planar Brauer partitions $\}:$

Diagram categories $-\mathcal{B}$ and $\mathcal{T} \mathcal{L}$

- The Brauer category $\mathcal{B}=\{$ partitions with blocks of size 2$\}$:

- The Temperley-Lieb category $\mathcal{T} \mathcal{L}=\{$ planar Brauer partitions $\}:$

- These are subcategories of \mathcal{P}.

Diagram categories $-\mathcal{B}$ and $\mathcal{T} \mathcal{L}$

- The Brauer category $\mathcal{B}=\{$ partitions with blocks of size 2$\}$:

- The Temperley-Lieb category $\mathcal{T} \mathcal{L}=\{$ planar Brauer partitions $\}:$

- These are subcategories of \mathcal{P}.
- Brauer and Temperley-Lieb monoids: \mathcal{B}_{n} and $\mathcal{T} \mathcal{L}_{n}$.

Diagram categories $-\mathcal{B}$ and $\mathcal{T} \mathcal{L}$

- The Brauer category $\mathcal{B}=\{$ partitions with blocks of size 2$\}$:

- The Temperley-Lieb category $\mathcal{T} \mathcal{L}=\{$ planar Brauer partitions $\}:$

- These are subcategories of \mathcal{P}.
- Brauer and Temperley-Lieb monoids: \mathcal{B}_{n} and $\mathcal{T} \mathcal{L}_{n}$.
- $\mathcal{B}_{m, n}=\mathcal{T} \mathcal{L}_{m, n}=\varnothing$ if m and n have opposite parities!

Diagram categories - what are they for?

Diagram categories - what are they for?

Diagram categories - what are they for?

- knot theory, representation theory, category theory, combinatorics...
- computer science, theoretical physics, biology...

Diagram categories - what are they for?

- knot theory, representation theory, category theory, combinatorics...
- computer science, theoretical physics, biology...
- semigroup theory...

Diagram categories - what are they for?

- knot theory, representation theory, category theory, combinatorics...
- computer science, theoretical physics, biology...
- semigroup theory...
- fun!

Diagram categories - presentations

Diagram categories - presentations

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{T} \mathcal{L} \cong\langle U, \cap: R\rangle$.

$$
\begin{gather*}
n \circ U=\iota_{0}, \tag{R1}\\
U \circ \cap=U \oplus \cap=n \oplus U, \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U) . \tag{R3}\\
U \equiv \because, \quad \Omega \equiv, \quad l=\iota_{1} \equiv .
\end{gather*}
$$

Diagram categories - presentations

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{T} \mathcal{L} \cong\langle U, \cap: R\rangle$.

$$
\begin{gather*}
n \circ U=\iota_{0}, \tag{R1}\\
U \circ \cap=U \oplus \cap=\Pi \oplus U, \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U) . \tag{R3}\\
U \equiv \because, \quad \cap \equiv, \quad I=\iota_{1} \equiv .
\end{gather*}
$$

What?!

Diagram categories - tensor operation

Diagram categories - tensor operation

- The categories \mathcal{P}, \mathcal{B} and $\mathcal{T} \mathcal{L}$ have another operation, \oplus :

Diagram categories－tensor operation

－The categories \mathcal{P}, \mathcal{B} and $\mathcal{T} \mathcal{L}$ have another operation，\oplus ：

$$
\begin{aligned}
& \beta=\text { ツ.....。 }
\end{aligned}
$$

Diagram categories - tensor operation

- The categories \mathcal{P}, \mathcal{B} and $\mathcal{T} \mathcal{L}$ have another operation, \oplus :

- \mathcal{P}, \mathcal{B} and $\mathcal{T} \mathcal{L}$ are all (strict) tensor categories.

Diagram categories - tensor operation

- The categories \mathcal{P}, \mathcal{B} and \mathcal{T} have another operation, \oplus :

- \mathcal{P}, \mathcal{B} and $\mathcal{T} \mathcal{L}$ are all (strict) tensor categories.
- $\mathbf{d}(\alpha \oplus \beta)=\mathbf{d}(\alpha)+\mathbf{d}(\beta)$ and $\mathbf{r}(\alpha \oplus \beta)=\mathbf{r}(\alpha)+\mathbf{r}(\beta)$.
- $\alpha \oplus(\beta \oplus \gamma)=(\alpha \oplus \beta) \oplus \gamma$,
- $\alpha \oplus \iota_{0}=\alpha=\iota_{0} \oplus \alpha$,
- $\iota_{m} \oplus \iota_{n}=\iota_{m+n}$,
- $(\alpha \circ \beta) \oplus(\gamma \circ \delta)=(\alpha \oplus \gamma) \circ(\beta \oplus \delta)$.

Diagram categories - tensor operation

- The categories \mathcal{P}, \mathcal{B} and \mathcal{T} have another operation, \oplus :

- \mathcal{P}, \mathcal{B} and $\mathcal{T} \mathcal{L}$ are all (strict) tensor categories.
- $\mathbf{d}(\alpha \oplus \beta)=\mathbf{d}(\alpha)+\mathbf{d}(\beta)$ and $\mathbf{r}(\alpha \oplus \beta)=\mathbf{r}(\alpha)+\mathbf{r}(\beta)$.
- $\alpha \oplus(\beta \oplus \gamma)=(\alpha \oplus \beta) \oplus \gamma$,
- $\alpha \oplus \iota_{0}=\alpha=\iota_{0} \oplus \alpha$,
- $\iota_{m} \oplus \iota_{n}=\iota_{m+n}$,
- $(\alpha \circ \beta) \oplus(\gamma \circ \delta)=(\alpha \oplus \gamma) \circ(\beta \oplus \delta)$.

Diagram categories - tensor operation

- The categories \mathcal{P}, \mathcal{B} and \mathcal{T} have another operation, \oplus :

- \mathcal{P}, \mathcal{B} and $\mathcal{T} \mathcal{L}$ are all (strict) tensor categories.
- $\mathbf{d}(\alpha \oplus \beta)=\mathbf{d}(\alpha)+\mathbf{d}(\beta)$ and $\mathbf{r}(\alpha \oplus \beta)=\mathbf{r}(\alpha)+\mathbf{r}(\beta)$.
- $\alpha \oplus(\beta \oplus \gamma)=(\alpha \oplus \beta) \oplus \gamma$,
- $\alpha \oplus \iota_{0}=\alpha=\iota_{0} \oplus \alpha$,
- $\iota_{m} \oplus \iota_{n}=\iota_{m+n}$,
- $(\alpha \circ \beta) \oplus(\gamma \circ \delta)=(\alpha \oplus \gamma) \circ(\beta \oplus \delta)$.

Diagram categories - tensor operation

- The categories \mathcal{P}, \mathcal{B} and \mathcal{T} have another operation, \oplus :

- \mathcal{P}, \mathcal{B} and $\mathcal{T} \mathcal{L}$ are all (strict) tensor categories.
- $\mathbf{d}(\alpha \oplus \beta)=\mathbf{d}(\alpha)+\mathbf{d}(\beta)$ and $\mathbf{r}(\alpha \oplus \beta)=\mathbf{r}(\alpha)+\mathbf{r}(\beta)$.
- $\alpha \oplus(\beta \oplus \gamma)=(\alpha \oplus \beta) \oplus \gamma$,
- $\alpha \oplus \iota_{0}=\alpha=\iota_{0} \oplus \alpha$,
- $\iota_{m} \oplus \iota_{n}=\iota_{m+n}$,
- $(\alpha \circ \beta) \oplus(\gamma \circ \delta)=(\alpha \oplus \gamma) \circ(\beta \oplus \delta)$.

Diagram categories - tensor operation

- The categories \mathcal{P}, \mathcal{B} and $\mathcal{T} \mathcal{L}$ have another operation, \oplus :

- \mathcal{P}, \mathcal{B} and $\mathcal{T} \mathcal{L}$ are all (strict) tensor categories.
- $\mathbf{d}(\alpha \oplus \beta)=\mathbf{d}(\alpha)+\mathbf{d}(\beta)$ and $\mathbf{r}(\alpha \oplus \beta)=\mathbf{r}(\alpha)+\mathbf{r}(\beta)$.
- $\alpha \oplus(\beta \oplus \gamma)=(\alpha \oplus \beta) \oplus \gamma$,
- $\alpha \oplus \iota_{0}=\alpha=\iota_{0} \oplus \alpha$,
- $\iota_{m} \oplus \iota_{n}=\iota_{m+n}$,
- $(\alpha \circ \beta) \oplus(\gamma \circ \delta)=(\alpha \oplus \gamma) \circ(\beta \oplus \delta)$.

- The categories $\mathcal{T}, \mathcal{P} \mathcal{T}$ and \mathcal{I} are also tensor categories.

Diagram categories - presentations

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{T} \mathcal{L} \cong\langle U, \cap: R\rangle$.

$$
\begin{gather*}
n \circ U=\iota_{0}, \tag{R1}\\
U \circ \cap=U \oplus \cap=n \oplus U, \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U) . \tag{R3}\\
U \equiv \because, \quad \cap \equiv, \quad I=\iota_{1} \equiv!
\end{gather*}
$$

Diagram categories - presentations

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{T} \mathcal{L} \cong\langle U, \cap: R\rangle$.

$$
\begin{gather*}
n \circ U=\iota_{0}, \tag{R1}\\
U \circ \cap=U \oplus \cap=n \oplus U, \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U) . \tag{R3}\\
U \equiv \because, \quad \cap \equiv \quad I=\iota_{1} \equiv .
\end{gather*}
$$

Diagram categories - presentations

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{T} \cong \cong\langle U, \Pi: R\rangle$.

$$
\begin{align*}
& n \circ U=\iota_{0}, \tag{R1}\\
& U \circ \cap=U \oplus \cap=n \oplus U \text {, } \tag{R2}\\
& (I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U) \text {. } \tag{R3}\\
& U \equiv \bullet, \quad n \equiv \ldots, \quad I=\iota_{1} \equiv \grave{\bullet} \text {. } \\
& =
\end{align*}
$$

Diagram categories - presentations

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{T} \mathcal{L} \cong\langle U, \cap: R\rangle$.

$$
\begin{gather*}
\cap \circ U=\iota_{0} \tag{R1}\\
U \circ \cap=U \oplus \cap=\cap \oplus U \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U) . \tag{R3}\\
U \equiv \bullet, \quad \cap \equiv \curvearrowright_{\bullet}, \quad I=\iota_{1} \equiv!
\end{gather*}
$$

Diagram categories - presentations

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{T} \mathcal{L} \cong\langle U, \cap: R\rangle$.

$$
\begin{gather*}
\cap \circ U=\iota_{0}, \tag{R1}\\
U \circ \cap=U \oplus \cap=\cap \oplus U, \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U) . \tag{R3}\\
U \equiv \bullet, \quad \cap \equiv{ }_{\bullet}, \quad I=\iota_{1} \equiv!
\end{gather*}
$$

- (R2) is my favourite relation.

Diagram categories - presentations

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{T} \mathcal{L} \cong\langle U, \cap: R\rangle$.

$$
\begin{gather*}
\cap \circ U=\iota_{0}, \tag{R1}\\
U \circ \cap=U \oplus \cap=\cap \oplus U, \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U) . \tag{R3}\\
U \equiv \bullet, \quad \cap \equiv{ }_{\bullet}, \quad I=\iota_{1} \equiv!
\end{gather*}
$$

- (R2) is my favourite relation.
- But it's actually unnecessary :-(

Diagram categories - presentations

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{T} \mathcal{L} \cong\langle U, \cap: R\rangle$.

$$
\begin{gather*}
n \circ U=\iota_{0}, \tag{R1}\\
U \circ \cap=U \oplus \cap=\cap \oplus U, \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U) . \tag{R3}\\
U \equiv \because, \cap \equiv, \quad I=\iota_{1} \equiv!
\end{gather*}
$$

- (R2) is my favourite relation.
- But it's actually unnecessary :-(
- e.g., $U \oplus \cap$

Diagram categories - presentations

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{T} \mathcal{L} \cong\langle U, \cap: R\rangle$.

$$
\begin{gather*}
n \circ U=\iota_{0}, \tag{R1}\\
U \circ \cap=U \oplus \cap=\cap \oplus U, \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U) . \tag{R3}\\
U \equiv \because, \cap \equiv, \quad I=\iota_{1} \equiv!
\end{gather*}
$$

- (R2) is my favourite relation.
- But it's actually unnecessary :-(
- e.g., $U \oplus \cap=\left(U \circ \iota_{0}\right) \oplus\left(\iota_{0} \circ \cap\right)$

Diagram categories - presentations

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{T} \mathcal{L} \cong\langle U, \cap: R\rangle$.

$$
\begin{gather*}
n \circ U=\iota_{0}, \tag{R1}\\
U \circ \cap=U \oplus \cap=\cap \oplus U, \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U) . \tag{R3}\\
U \equiv \because, \cap \equiv, \quad I=\iota_{1} \equiv!
\end{gather*}
$$

- (R2) is my favourite relation.
- But it's actually unnecessary :-(
- e.g., $U \oplus \cap=\left(U \circ \iota_{0}\right) \oplus\left(\iota_{0} \circ \cap\right)=\left(U \oplus \iota_{0}\right) \circ\left(\iota_{0} \oplus \cap\right)$

Diagram categories - presentations

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{T} \mathcal{L} \cong\langle U, \cap: R\rangle$.

$$
\begin{gather*}
n \circ U=\iota_{0}, \tag{R1}\\
U \circ \cap=U \oplus \cap=\cap \oplus U, \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U) . \tag{R3}\\
U \equiv \because, \quad \cap \equiv, \quad I=\iota_{1} \equiv!
\end{gather*}
$$

- (R2) is my favourite relation.
- But it's actually unnecessary :-(
- e.g., $U \oplus \cap=\left(U \circ \iota_{0}\right) \oplus\left(\iota_{0} \circ \cap\right)=\left(U \oplus \iota_{0}\right) \circ\left(\iota_{0} \oplus \cap\right)=U \circ \cap$.

Diagram categories - presentations

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{T} \mathcal{L} \cong\langle U, \cap: R\rangle$.

$$
\begin{align*}
& n \circ U=\iota_{0}, \tag{R1}\\
& (I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U) \text {. } \tag{R2}\\
& U \equiv \bullet, \quad n \equiv \ldots, \quad I=\iota \equiv \mathbf{\bullet} \text {. }
\end{align*}
$$

Diagram categories - presentations

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{T} \mathcal{L} \cong\langle U, \cap: R\rangle$.

$$
\begin{array}{r}
\cap \circ U=\iota_{0} \\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U) . \tag{R2}\\
U \equiv \bullet, \quad \cap \equiv \ldots, \quad I=\iota_{1} \equiv
\end{array}
$$

- Can you show that U and \cap (and I) generate $\mathcal{T} \mathcal{L}$?

Diagram categories - presentations

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{T} \mathcal{L} \cong\langle U, \cap: R\rangle$.

$$
\begin{array}{r}
\cap \circ U=\iota \\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U) . \tag{R2}\\
U \equiv \bullet, \quad \cap \equiv, \quad I=\iota_{1} \equiv
\end{array}
$$

- Can you show that U and \cap (and I) generate $\mathcal{T L}$?

$$
=\Pi \oplus I \oplus U \oplus \cap \oplus((I \oplus U \oplus I) \circ U) \oplus I!!
$$

Diagram categories - presentations

Theorem (cf. Lehrer and Zhang, 2015)

The Brauer category $\mathcal{B} \cong\langle X, U, \cap: R\rangle$.

$$
\begin{gather*}
X \circ X=I \oplus I, \quad \cap \circ U=\iota, \quad X \circ U=U, \quad \cap \circ X=\cap, \tag{R1}\\
(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X), \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U), \tag{R3}\\
(I \oplus X) \circ(U \oplus I)=(X \oplus I) \circ(I \oplus U), \tag{R4}\\
(\cap \oplus I) \circ(I \oplus X)=(I \oplus \cap) \circ(X \oplus I) . \tag{R5}
\end{gather*}
$$

Diagram categories - presentations

Theorem (cf. Lehrer and Zhang, 2015)

The Brauer category $\mathcal{B} \cong\langle X, U, \cap: R\rangle$.

$$
\begin{gather*}
X \circ X=I \oplus I, \quad \cap \circ U=\iota, \quad X \circ U=U, \quad \cap \circ X=\cap, \tag{R1}\\
(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X), \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U), \tag{R3}\\
(I \oplus X) \circ(U \oplus I)=(X \oplus I) \circ(I \oplus U), \tag{R4}\\
(\cap \oplus I) \circ(I \oplus X)=(I \oplus \cap) \circ(X \oplus I) . \tag{R5}
\end{gather*}
$$

$x \equiv$ Х, $\quad U \equiv{ }^{\bullet}, \quad n \equiv$ 。, $\quad I=\iota_{1} \equiv$ •

Diagram categories - presentations

Theorem (cf. Lehrer and Zhang, 2015)

The Brauer category $\mathcal{B} \cong\langle X, U, \cap: R\rangle$.

$$
\begin{gather*}
X \circ X=I \oplus I, \quad \cap \circ U=\iota, \quad X \circ U=U, \quad \cap \circ X=\cap, \tag{R1}\\
(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X), \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U), \tag{R3}\\
(I \oplus X) \circ(U \oplus I)=(X \oplus I) \circ(I \oplus U), \tag{R4}\\
(\cap \oplus I) \circ(I \oplus X)=(I \oplus \cap) \circ(X \oplus I) . \tag{R5}
\end{gather*}
$$

$x \equiv$ Х, $U \equiv{ }^{\bullet}, \quad n \equiv$ 。, $\quad I=\iota_{1} \equiv$ •

Diagram categories - presentations

Theorem (cf. Lehrer and Zhang, 2015)

The Brauer category $\mathcal{B} \cong\langle X, U, \cap: R\rangle$.

$$
\begin{gather*}
X \circ X=I \oplus I, \quad \cap \circ U=\iota 0, \quad X \circ U=U, \quad \cap \circ X=\Pi, \tag{R1}\\
(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X), \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U), \tag{R3}\\
(I \oplus X) \circ(U \oplus I)=(X \oplus I) \circ(I \oplus U), \tag{R4}\\
(\cap \oplus I) \circ(I \oplus X)=(I \oplus \cap) \circ(X \oplus I) . \tag{R5}
\end{gather*}
$$

$$
x \equiv \bigcup_{\bullet}, \quad U \equiv \bullet, \quad n \equiv \boldsymbol{\rho}^{\prime} \quad I=\iota_{1} \equiv \mathfrak{\bullet}
$$

Diagram categories - presentations

Theorem (cf. Lehrer and Zhang, 2015)

The Brauer category $\mathcal{B} \cong\langle X, U, \cap: R\rangle$.

$$
\begin{gather*}
X \circ X=I \oplus I, \quad \cap \circ U=\iota, \quad X \circ U=U, \quad \cap \circ X=\cap, \tag{R1}\\
(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X), \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U), \tag{R3}\\
(I \oplus X) \circ(U \oplus I)=(X \oplus I) \circ(I \oplus U), \tag{R4}\\
(\cap \oplus I) \circ(I \oplus X)=(I \oplus \cap) \circ(X \oplus I) . \tag{R5}
\end{gather*}
$$

$x \equiv$ 犬 $^{\prime}, \quad U \equiv{ }^{\bullet}, \quad n \equiv \ldots, \quad l=\iota_{1} \equiv$.

Diagram categories - presentations

Theorem (cf. Lehrer and Zhang, 2015)

The Brauer category $\mathcal{B} \cong\langle X, U, \cap: R\rangle$.

$$
\begin{gather*}
X \circ X=I \oplus I, \quad \cap \circ U=\iota 0, \quad X \circ U=U, \quad \cap \circ X=\Omega, \tag{R1}\\
(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X), \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U), \tag{R3}\\
(I \oplus X) \circ(U \oplus I)=(X \oplus I) \circ(I \oplus U), \tag{R4}\\
(\cap \oplus I) \circ(I \oplus X)=(I \oplus \cap) \circ(X \oplus I) . \tag{R5}
\end{gather*}
$$

$x \equiv$ 犬, $U \equiv{ }^{\bullet}, \quad n \equiv \ldots, \quad I=\iota_{1} \equiv$ •

Diagram categories - presentations

Theorem (cf. Lehrer and Zhang, 2015)

The Brauer category $\mathcal{B} \cong\langle X, U, \cap: R\rangle$.

$$
\begin{gather*}
X \circ X=I \oplus I, \quad \cap \circ U=\iota, \quad X \circ U=U, \quad \cap \circ X=\cap, \tag{R1}\\
(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X), \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U), \tag{R3}\\
(I \oplus X) \circ(U \oplus I)=(X \oplus I) \circ(I \oplus U), \tag{R4}\\
(\cap \oplus I) \circ(I \oplus X)=(I \oplus \cap) \circ(X \oplus I) . \tag{R5}
\end{gather*}
$$

$$
x \equiv \text { Х, } \quad U \equiv \bullet, \quad n \equiv \ldots, \quad I=\iota_{1} \equiv!.
$$

Diagram categories - presentations

Theorem (cf. Lehrer and Zhang, 2015)

The Brauer category $\mathcal{B} \cong\langle X, U, \cap: R\rangle$.

$$
\begin{gather*}
X \circ X=I \oplus I, \quad \cap \circ U=\iota 0, \quad X \circ U=U, \quad \cap \circ X=\cap, \tag{R1}\\
(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X), \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U), \tag{R3}\\
(I \oplus X) \circ(U \oplus I)=(X \oplus I) \circ(I \oplus U), \tag{R4}\\
(\cap \oplus I) \circ(I \oplus X)=(I \oplus \cap) \circ(X \oplus I) . \tag{R5}
\end{gather*}
$$

$x \equiv$ Х, $\quad U \equiv{ }^{\bullet}, \quad n \equiv$ 。, $\quad I=\iota_{1} \equiv$ •

Diagram categories - presentations

Theorem (cf. Lehrer and Zhang, 2015)

The Brauer category $\mathcal{B} \cong\langle X, U, \cap: R\rangle$.

$$
\begin{gather*}
X \circ X=I \oplus I, \quad \cap \circ U=\iota 0, \quad X \circ U=U, \quad \cap \circ X=\cap, \tag{R1}\\
(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X), \tag{R2}\\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U), \tag{R3}\\
(I \oplus X) \circ(U \oplus I)=(X \oplus I) \circ(I \oplus U), \tag{R4}\\
(\cap \oplus I) \circ(I \oplus X)=(I \oplus \cap) \circ(X \oplus I) . \tag{R5}
\end{gather*}
$$

$x \equiv$ Х, $\quad U \equiv{ }^{\bullet}, \quad n \equiv$ 。, $\quad I=\iota_{1} \equiv$ •

Diagram categories - presentations

Theorem (cf. Lehrer and Zhang, 2015)

The Brauer category $\mathcal{B} \cong\langle X, U, \cap: R\rangle$.

$$
\begin{gather*}
X \circ X=I I, \quad \cap \circ U=\iota 0, \quad X \circ U=U, \quad \cap \circ X=\cap, \tag{R1}\\
X I \circ I X \circ X I=I X \circ X I \circ I X, \tag{R2}\\
I \cap \circ U I=I=\cap I \circ I U, \tag{R3}\\
I X \circ U I=X I \circ I U, \tag{R4}\\
 \tag{R5}\\
n I \circ I X=I \cap \circ X I .
\end{gather*}
$$

$$
x \equiv \bigcup_{\bullet}, \quad U \equiv \bullet, \quad n \equiv \ldots, \quad I \equiv!.
$$

Diagram categories - presentations

Theorem (cf. Lehrer and Zhang, 2015)

The Brauer category $\mathcal{B} \cong\langle X, U, \cap: R\rangle$.

$$
\begin{gather*}
X \circ X=I I, \quad \cap \circ U=\iota, \quad X \circ U=U, \quad \cap \circ X=n, \tag{R1}\\
X I \circ I X \circ X I=I X \circ X I \circ I X, \tag{R2}\\
I \cap \circ U I=I=\cap I \circ I U, \tag{R3}\\
 \tag{R4}\\
I X \circ U I=X I \circ I U, \tag{R5}\\
\\
\cap I \circ I X=I \cap \circ X I .
\end{gather*}
$$

$$
x \equiv \bigcup_{\bullet}, \quad u \equiv \bullet, \quad n \equiv \ldots, \quad l \equiv!.
$$

Diagram categories - presentations

Theorem

The partition category $\mathcal{P} \cong\langle X, D, U, \cap: R\rangle$.

$$
\begin{gather*}
X \circ X=I \oplus I, \quad \cap \circ U=\iota_{0}, \tag{R1}\\
D \circ D=D=D \circ X=X \circ D, \tag{R2}\\
(D \oplus I) \circ(I \oplus D)=(I \oplus D) \circ(D \oplus I), \tag{R3}
\end{gather*}
$$

$(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X)$,
$(X \oplus I) \circ(I \oplus D) \circ(X \oplus I)=(I \oplus X) \circ(D \oplus I) \circ(I \oplus X)$, $X \circ(I \oplus U)=U \oplus I, \quad(I \oplus \cap) \circ X=\Pi \oplus I$,
$(I \oplus \Omega) \circ D \circ(I \oplus U)=I, \quad D \circ(I \oplus U \oplus \Omega) \circ D=D$.
$x \equiv$ Ø, $\quad D \equiv$ ん... $\quad U \equiv \bullet, \quad n \equiv, \quad I=\iota_{1} \equiv!$.

Diagram categories - presentations

Theorem (Comes, 2017)

The partition category $\mathcal{P} \cong\langle X, U, \cap, V, \Lambda: R\rangle$.

$$
\begin{align*}
& X \circ X=I \oplus I, \quad \Lambda \circ V=I, \quad \cap \circ U=\iota_{0}, \tag{R1}\\
& X \circ V=V, \quad \Lambda \circ X=\Lambda \text {, } \tag{R2}\\
& X \circ(I \oplus U)=U \oplus I, \quad(I \oplus \cap) \circ X=\Omega \oplus I, \tag{R3}\\
& (X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X) \text {, } \\
& (I \oplus V) \circ X=(X \oplus I) \circ(I \oplus X) \circ(V \oplus I), \tag{R5}\\
& X \circ(I \oplus \Lambda)=(\Lambda \oplus I) \circ(I \oplus X) \circ(X \oplus I) \text {, } \tag{R6}\\
& \Lambda \circ(I \oplus U)=I=(I \oplus \cap) \circ V, \tag{R7}\\
& (\Lambda \oplus I) \circ(I \oplus V)=V \circ \Lambda=(I \oplus \Lambda) \circ(V \oplus I) \text {. } \\
& \text { (R8) }
\end{align*}
$$

Diagram categories - presentations

Theorem (Comes, 2017)

The partition category $\mathcal{P} \cong\langle X, U, \cap, V, \Lambda: R\rangle$.

- Jellyfish partition categories
- Jonathan Comes
- Algebras and representation theory, to appear.

Diagram categories - presentations

Theorem (Comes, 2017)

The partition category $\mathcal{P} \cong\langle X, U, \cap, V, \Lambda: R\rangle$.

$$
X \equiv \mathscr{X}_{\bullet}, \quad U \equiv \bullet, \quad \cap \equiv, \quad V \equiv \bullet, \quad \Lambda \equiv \emptyset
$$

- Jellyfish partition categories
- Jonathan Comes
- Algebras and representation theory, to appear.
- The proof relies on some heavy machinery:
- Frobenius algebras and cobordism categories (Abrams, Kock).

Diagram categories - presentations

Theorem (cf. Lehrer and Zhang, 2015)

The Brauer category $\mathcal{B} \cong\langle X, U, \cap: R\rangle$.

$$
X \equiv \boldsymbol{X}_{\bullet}, \quad U \equiv \bullet, \quad n \equiv \boldsymbol{\bullet}^{\bullet}
$$

- The Brauer category and invariant theory
- Gus Lehrer and Ruibin Zhang
- J. European Mathematical Society, 2015.

Diagram categories - presentations

Theorem (cf. Lehrer and Zhang, 2015)

The Brauer category $\mathcal{B} \cong\langle X, U, \cap: R\rangle$.

$$
X \equiv \boldsymbol{X}_{\bullet}, \quad U \equiv \bullet, \quad n \equiv \boldsymbol{\bullet}^{\bullet}
$$

- The Brauer category and invariant theory
- Gus Lehrer and Ruibin Zhang
- J. European Mathematical Society, 2015.
- Quite detailed proof from scratch.

Diagram categories - presentations

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{T} \mathcal{L} \cong\langle U, \cap: R\rangle$.

$$
U \equiv \bullet \cdot \quad \cap \equiv \curvearrowright
$$

- Many proofs have been given.

Diagram categories - presentations

Theorem (folklore?)

The Temperley-Lieb category $\mathcal{T} \mathcal{L} \cong\langle U, \cap: R\rangle$.

$$
U \equiv{ }^{\bullet}, \quad n \equiv \curvearrowright
$$

- Many proofs have been given.
- The level of rigour varies...

Diagram categories - presentations

Original goal

Find a general framework for presentations of diagram categories.

Diagram categories - presentations

Original goal

Find a general framework for presentations of diagram categories.

- Completely rigorous.

Diagram categories - presentations

Original goal

Find a general framework for presentations of diagram categories.

- Completely rigorous.
- Use known presentations for diagram monoids.

Diagram categories - presentations

Original goal

Find a general framework for presentations of diagram categories.

- Completely rigorous.
- Use known presentations for diagram monoids.

Eventually

- A method that works.

Diagram categories - presentations

Original goal

Find a general framework for presentations of diagram categories.

- Completely rigorous.
- Use known presentations for diagram monoids.

Eventually

- A method that works.
- Key properties axiomatised.

Diagram categories - presentations

Original goal

Find a general framework for presentations of diagram categories.

- Completely rigorous.
- Use known presentations for diagram monoids.

Eventually

- A method that works.
- Key properties axiomatised.
- General results, applicable to many categories.

Diagram categories - presentations

Original goal

Find a general framework for presentations of diagram categories.

- Completely rigorous.
- Use known presentations for diagram monoids.

Eventually

- A method that works.
- Key properties axiomatised.
- General results, applicable to many categories.
- $\mathcal{P}, \mathcal{B}, \mathcal{T}$

Diagram categories - presentations

Original goal

Find a general framework for presentations of diagram categories.

- Completely rigorous.
- Use known presentations for diagram monoids.

Eventually

- A method that works.
- Key properties axiomatised.
- General results, applicable to many categories.
- $\mathcal{P}, \mathcal{B}, \mathcal{T}, \mathcal{P} \mathcal{T}, \mathcal{T}, \mathcal{I}$

Diagram categories - presentations

Original goal

Find a general framework for presentations of diagram categories.

- Completely rigorous.
- Use known presentations for diagram monoids.

Eventually

- A method that works.
- Key properties axiomatised.
- General results, applicable to many categories.
- $\mathcal{P}, \mathcal{B}, \mathcal{T}, \mathcal{P} \mathcal{T}, \mathcal{T}, \mathcal{I}, \mathcal{P} \mathcal{O}, \mathcal{O}, \mathcal{O} \mathcal{I}$

Diagram categories - presentations

Original goal

Find a general framework for presentations of diagram categories.

- Completely rigorous.
- Use known presentations for diagram monoids.

Eventually

- A method that works.
- Key properties axiomatised.
- General results, applicable to many categories.
- $\mathcal{P}, \mathcal{B}, \mathcal{T}, \mathcal{P} \mathcal{T}, \mathcal{T}, \mathcal{I}, \mathcal{P} \mathcal{O}, \mathcal{O}, \mathcal{O} \mathcal{I}, \mathcal{P V}, \mathcal{V}, \mathcal{I B} \ldots \ldots$

Categories - presentations

Categories - presentations

Basic pattern

- Given a tensor category \mathcal{C} (over \mathbb{N}).

Categories - presentations

Basic pattern

- Given a tensor category \mathcal{C} (over \mathbb{N}).
- Check it satisfies some basic structural properties.

Categories - presentations

Basic pattern

- Given a tensor category \mathcal{C} (over \mathbb{N}).
- Check it satisfies some basic structural properties.
- Find presentations for endomorphism monoids \mathcal{C}_{n}.

Categories - presentations

Basic pattern

- Given a tensor category \mathcal{C} (over \mathbb{N}).
- Check it satisfies some basic structural properties.
- Find presentations for endomorphism monoids \mathcal{C}_{n}.
- Theorem A: a (big) category presentation $\langle\Gamma: \Omega\rangle$ for \mathcal{C}.

Categories - presentations

Basic pattern

- Given a tensor category \mathcal{C} (over \mathbb{N}).
- Check it satisfies some basic structural properties.
- Find presentations for endomorphism monoids \mathcal{C}_{n}.
- Theorem A: a (big) category presentation $\langle\Gamma: \Omega\rangle$ for \mathcal{C}.
- Theorem B: a (small?) tensor category presentation $\langle\Delta$: $\overline{\text { I }}$.

Categories - presentations

Basic pattern

- Given a tensor category \mathcal{C} (over \mathbb{N}).
- Check it satisfies some basic structural properties.
- Find presentations for endomorphism monoids \mathcal{C}_{n}.
- Theorem A: a (big) category presentation $\langle\Gamma: \Omega\rangle$ for \mathcal{C}.
- Theorem B: a (small?) tensor category presentation $\langle\Delta$: 末〉.
- $\langle\Delta: \equiv\rangle$ is what we really want.

Categories - presentations

Basic pattern

- Given a tensor category \mathcal{C} (over \mathbb{N}).
- Check it satisfies some basic structural properties.
- Find presentations for endomorphism monoids \mathcal{C}_{n}.
- Theorem A: a (big) category presentation $\langle\Gamma: \Omega\rangle$ for \mathcal{C}.
- Theorem B: a (small?) tensor category presentation $\langle\Delta$: 末〉.
- $\langle\Delta: \equiv\rangle$ is what we really want.
- $\langle\Gamma: \Omega\rangle$ is a means to an end.

Categories - presentations

Basic pattern

- Given a tensor category \mathcal{C} (over \mathbb{N}).
- Check it satisfies some basic structural properties.
- Find presentations for endomorphism monoids \mathcal{C}_{n}.
- Theorem A: a (big) category presentation $\langle\Gamma: \Omega\rangle$ for \mathcal{C}.
- Theorem B: a (small?) tensor category presentation $\langle\Delta$: $\overline{\text { I }}\rangle$.
- $\langle\Delta: \equiv\rangle$ is what we really want.
- $\langle\Gamma: \Omega\rangle$ is a means to an end.
- The Micky-Ricky-Vicky Trick!

Theorem A - Key assumptions

Theorem A — Key assumptions

Assumption 1

- \mathcal{C} is a category over \mathbb{N}.

Theorem A — Key assumptions

Assumption 1

- \mathcal{C} is a category over \mathbb{N}.
- There is an integer $d \geq 1$ such that

$$
\mathcal{C}_{m, n} \neq \varnothing \Leftrightarrow m \equiv n(\bmod d) .
$$

Theorem A — Key assumptions

Assumption 1

- \mathcal{C} is a category over \mathbb{N}.
- There is an integer $d \geq 1$ such that

$$
\mathcal{C}_{m, n} \neq \varnothing \Leftrightarrow m \equiv n(\bmod d) .
$$

- $d=1$ for $\mathcal{C}=\mathcal{P}$.

Theorem A — Key assumptions

Assumption 1

- \mathcal{C} is a category over \mathbb{N}.
- There is an integer $d \geq 1$ such that

$$
\mathcal{C}_{m, n} \neq \varnothing \Leftrightarrow m \equiv n(\bmod d) .
$$

- $d=1$ for $\mathcal{C}=\mathcal{P}$.

Theorem A — Key assumptions

Assumption 1

- \mathcal{C} is a category over \mathbb{N}.
- There is an integer $d \geq 1$ such that

$$
\mathcal{C}_{m, n} \neq \varnothing \Leftrightarrow m \equiv n(\bmod d) .
$$

- $d=1$ for $\mathcal{C}=\mathcal{P}$.

Theorem A — Key assumptions

Assumption 1

- \mathcal{C} is a category over \mathbb{N}.
- There is an integer $d \geq 1$ such that

$$
\mathcal{C}_{m, n} \neq \varnothing \Leftrightarrow m \equiv n(\bmod d) .
$$

- $d=1$ for $\mathcal{C}=\mathcal{P}$.

Theorem A — Key assumptions

Assumption 1

- \mathcal{C} is a category over \mathbb{N}.
- There is an integer $d \geq 1$ such that

$$
\mathcal{C}_{m, n} \neq \varnothing \Leftrightarrow m \equiv n(\bmod d) .
$$

- $d=1$ for $\mathcal{C}=\mathcal{P}$.

- $d=2$ for $\mathcal{C}=\mathcal{B}$.

Theorem A — Key assumptions

Assumption 1

- \mathcal{C} is a category over \mathbb{N}.
- There is an integer $d \geq 1$ such that

$$
\mathcal{C}_{m, n} \neq \varnothing \Leftrightarrow m \equiv n(\bmod d) .
$$

- $d=1$ for $\mathcal{C}=\mathcal{P}$.

- $d=2$ for $\mathcal{C}=\mathcal{B}$.

Theorem A — Key assumptions

Assumption 1

- \mathcal{C} is a category over \mathbb{N}.
- There is an integer $d \geq 1$ such that

$$
\mathcal{C}_{m, n} \neq \varnothing \Leftrightarrow m \equiv n(\bmod d) .
$$

- $d=1$ for $\mathcal{C}=\mathcal{P}$.

- $d=2$ for $\mathcal{C}=\mathcal{B}$.

Theorem A — Key assumptions

Assumption 1

- \mathcal{C} is a category over \mathbb{N}.
- There is an integer $d \geq 1$ such that

$$
\mathcal{C}_{m, n} \neq \varnothing \Leftrightarrow m \equiv n(\bmod d) .
$$

- $d=1$ for $\mathcal{C}=\mathcal{P}$.

- $d=2$ for $\mathcal{C}=\mathcal{B}$.
- $d=1$ for $\mathcal{C}=\mathcal{T}$?

Theorem A — Key assumptions

Assumption 1

- \mathcal{C} is a category over \mathbb{N}.
- There is an integer $d \geq 1$ such that

$$
\mathcal{C}_{m, n} \neq \varnothing \Leftrightarrow m \equiv n(\bmod d) .
$$

- $d=1$ for $\mathcal{C}=\mathcal{P}$.

$$
\begin{array}{lllllll}
\bullet & \bullet & \bullet & \bullet & \bullet & \varphi_{0}^{m} & \\
? & ? & ? & ? & ? & ? & n=0
\end{array}
$$

- $d=2$ for $\mathcal{C}=\mathcal{B}$.
- $d=1$ for $\mathcal{C}=\mathcal{T}$?

Theorem A — Key assumptions

Assumption 1

- \mathcal{C} is a category over \mathbb{N}.
- There is an integer $d \geq 1$ such that

$$
\mathcal{C}_{m, n} \neq \varnothing \Leftrightarrow m \equiv n(\bmod d) .
$$

- $d=1$ for $\mathcal{C}=\mathcal{P}$.

- $d=2$ for $\mathcal{C}=\mathcal{B}$.
- $d=1$ for $\mathcal{C}=\mathcal{T}$?
- $\mathcal{T}_{m, n}=\varnothing \Leftrightarrow m>0=n$.

Theorem A — Key assumptions

Assumption 1

- \mathcal{C} is a category over \mathbb{N}.
- There is an integer $d \geq 1$ such that

$$
\mathcal{C}_{m, n} \neq \varnothing \Leftrightarrow m \equiv n(\bmod d) .
$$

- $d=1$ for $\mathcal{C}=\mathcal{P}$.

- $d=2$ for $\mathcal{C}=\mathcal{B}$.
- $d=1$ for $\mathcal{C}=\mathcal{T}$?
- $\mathcal{T}_{m, n}=\varnothing \Leftrightarrow m>0=n$.
- Things are a little more complicated for \mathcal{T}...

Theorem A — Key assumptions

Assumption 2

For each $n \in \mathbb{N}$ there exist $\lambda_{n} \in \mathcal{C}_{n, n+d}$ and $\rho_{n} \in \mathcal{C}_{n+d, n}$ such that

$$
\lambda_{n} \circ \rho_{n}=\iota_{n} .
$$

Theorem A — Key assumptions

Assumption 2

For each $n \in \mathbb{N}$ there exist $\lambda_{n} \in \mathcal{C}_{n, n+d}$ and $\rho_{n} \in \mathcal{C}_{n+d, n}$ such that

$$
\lambda_{n} \circ \rho_{n}=\iota_{n} .
$$

$$
\begin{aligned}
& \lambda_{n}=\bullet \bullet \bullet \bullet \bullet \bullet \in \in \mathcal{P}_{n, n+1} \\
& \rho_{n}=\bullet \bullet \bullet \bullet \bullet \bullet \bullet \in \mathcal{P}_{n+1, n}
\end{aligned}
$$

Theorem A — Key assumptions

Assumption 2

For each $n \in \mathbb{N}$ there exist $\lambda_{n} \in \mathcal{C}_{n, n+d}$ and $\rho_{n} \in \mathcal{C}_{n+d, n}$ such that

$$
\lambda_{n} \circ \rho_{n}=\iota_{n} .
$$

$$
\begin{aligned}
& \lambda_{n}=\bullet \bullet \bullet \bullet \bullet \in \mathcal{B}_{n, n+2} \\
& \rho_{n}=\bullet \bullet \bullet \bullet \bullet \bullet \bullet \in \mathcal{B}_{n+2, n}
\end{aligned}
$$

Theorem A — Key assumptions

Assumption 2

For each $n \in \mathbb{N}$ there exist $\lambda_{n} \in \mathcal{C}_{n, n+d}$ and $\rho_{n} \in \mathcal{C}_{n+d, n}$ such that

$$
\lambda_{n} \circ \rho_{n}=\iota_{n} .
$$

$$
\begin{aligned}
& \lambda_{n}=\bullet \bullet \bullet \bullet \bullet \\
& \rho_{n}=\bullet \bullet \mathcal{T}_{n, n+2} \\
& \bullet \bullet \bullet \bullet \bullet \\
& \in \mathcal{T} \mathcal{L}_{n+2, n}
\end{aligned}
$$

Theorem A — Key assumptions

Assumption 2

For each $n \in \mathbb{N}$ there exist $\lambda_{n} \in \mathcal{C}_{n, n+d}$ and $\rho_{n} \in \mathcal{C}_{n+d, n}$ such that

$$
\lambda_{n} \circ \rho_{n}=\iota_{n} .
$$

$$
\begin{aligned}
& \lambda_{n}=\bullet \bullet \bullet \bullet \bullet \bullet \in \in \mathcal{P} \mathcal{T}_{n, n+1} \\
& \rho_{n}=\bullet \bullet \bullet \bullet \bullet \bullet \bullet \in \mathcal{P} \mathcal{T}_{n+1, n}
\end{aligned}
$$

Theorem A — Key assumptions

Assumption 2

For each $n \in \mathbb{N}$ there exist $\lambda_{n} \in \mathcal{C}_{n, n+d}$ and $\rho_{n} \in \mathcal{C}_{n+d, n}$ such that

$$
\lambda_{n} \circ \rho_{n}=\iota_{n} .
$$

$$
\begin{aligned}
& \lambda_{n}=\text { ••••••• } \in \mathcal{I}_{n, n+1} \\
& \rho_{n}=\text { ••••••• } \bullet \in \mathcal{I}_{n+1, n}
\end{aligned}
$$

Theorem A — Key assumptions

Assumption 2

For each $n \in \mathbb{N}$ there exist $\lambda_{n} \in \mathcal{C}_{n, n+d}$ and $\rho_{n} \in \mathcal{C}_{n+d, n}$ such that

$$
\lambda_{n} \circ \rho_{n}=\iota_{n} .
$$

$$
\begin{aligned}
& \lambda_{n}=\bullet \bullet \bullet \bullet \bullet \bullet \in \in \mathcal{T}_{n, n+1} \\
& \rho_{n}=\bullet \bullet \bullet \bullet \bullet \bullet \bullet \in \mathcal{T}_{n+1, n}
\end{aligned}
$$

Theorem A — Key assumptions

Assumption 2

For each $n \in \mathbb{N}$ there exist $\lambda_{n} \in \mathcal{C}_{n, n+d}$ and $\rho_{n} \in \mathcal{C}_{n+d, n}$ such that

$$
\lambda_{n} \circ \rho_{n}=\iota_{n} .
$$

$$
\begin{aligned}
& \lambda_{n}=\bullet \bullet \bullet \bullet \bullet \bullet \in \mathcal{T}_{n, n+1} \\
& \rho_{n}=\bullet \bullet \bullet \bullet \bullet \bullet \bullet \in \mathcal{T}_{n+1, n}
\end{aligned}
$$

Theorem A — Key assumptions

Assumption 3

We have presentations $\mathcal{C}_{n} \cong\left\langle X_{n}: R_{n}\right\rangle$ for each n.

Theorem A — Key assumptions

Assumption 3

We have presentations $\mathcal{C}_{n} \cong\left\langle X_{n}: R_{n}\right\rangle$ for each n.

- \mathcal{T}_{n} (Aızzenštat), $\mathcal{P} \mathcal{T}_{n}$ and \mathcal{I}_{n} (Popova),
- \mathcal{P}_{n} (Halverson and Ram; E),
- \mathcal{B}_{n} (Kudryatseva and Mazorchuk),
- $\mathcal{T} \mathcal{L}_{n}$ (Jones; Kauffman; Borisavljević, Došen and Petrić),
- \mathcal{V}_{n} (Lavers), $\mathcal{I B}_{n}$ (Easdown and Lavers), $\mathcal{P} \mathcal{V}_{n}(E)$.

Theorem A — Key assumptions

Assumption 3

We have presentations $\mathcal{C}_{n} \cong\left\langle X_{n}: R_{n}\right\rangle$ for each n.

- \mathcal{T}_{n} (Aizenštat), $\mathcal{P} \mathcal{T}_{n}$ and \mathcal{I}_{n} (Popova),
- \mathcal{P}_{n} (Halverson and Ram; E),
- \mathcal{B}_{n} (Kudryatseva and Mazorchuk),
- $\mathcal{T} \mathcal{L}_{n}$ (Jones; Kauffman; Borisavljević, Došen and Petrić),
- \mathcal{V}_{n} (Lavers), $\mathcal{I B}_{n}$ (Easdown and Lavers), $\mathcal{P} \mathcal{V}_{n}(E)$.

Lemma

We have $\mathcal{C}=\langle\Gamma\rangle$, where $\Gamma=\left\{\lambda_{n}, \rho_{n}: n \in \mathbb{N}\right\} \cup \bigcup_{n \in \mathbb{N}} X_{n}$.

Theorem A — Key assumptions

Assumption 4

We assume that Ω is a set of relations over Γ such that:

Theorem A — Key assumptions

Assumption 4

We assume that Ω is a set of relations over Γ such that:

- Each relation holds in \mathcal{C}.

Theorem A — Key assumptions

Assumption 4

We assume that Ω is a set of relations over Γ such that:

- Each relation holds in \mathcal{C}.
- Ω contains:
- each R_{n},

Theorem A — Key assumptions

Assumption 4

We assume that Ω is a set of relations over Γ such that:

- Each relation holds in \mathcal{C}.
- Ω contains:
- each R_{n},
- $\lambda_{n} \rho_{n}=\iota_{n}$,

Theorem A — Key assumptions

Assumption 4

We assume that Ω is a set of relations over Γ such that:

- Each relation holds in \mathcal{C}.
- Ω contains:
- each R_{n},
- $\lambda_{n} \rho_{n}=\iota_{n}$,
- $\rho_{n} \lambda_{n}=w_{n}$ for some $w_{n} \in X_{n+d}^{*}$.

Theorem A — Key assumptions

Assumption 4

We assume that Ω is a set of relations over Γ such that:

- Each relation holds in \mathcal{C}.
- Ω contains:
- each R_{n},
- $\lambda_{n} \rho_{n}=\iota_{n}$,
- $\rho_{n} \lambda_{n}=w_{n}$ for some $w_{n} \in X_{n+d}^{*}$.
- For all $w \in X_{n+d}^{*}, \quad \lambda_{n} w \rho_{n} \sim w^{\prime} \quad$ for some $w^{\prime} \in X_{n}^{*}$.

Theorem A

Theorem A

If Assumptions $1-4$ hold, then \mathcal{C} has presentation $\langle\Gamma: \Omega\rangle$.

Theorem A

Theorem A
If Assumptions $1-4$ hold, then \mathcal{C} has presentation $\langle\Gamma: \Omega\rangle$.

- Theorem A applies to many categories.

Theorem A

Theorem A

If Assumptions $1-4$ hold, then \mathcal{C} has presentation $\langle\Gamma: \Omega\rangle$.

- Theorem A applies to many categories.
- $\mathcal{P}, \mathcal{B}, \mathcal{T L}, \mathcal{P} \mathcal{T}, \mathcal{T}^{+}, \mathcal{I}, \mathcal{P O}, \mathcal{O}^{+}, \mathcal{O} \mathcal{I}, \mathcal{P} \mathcal{V}, \mathcal{V}^{+}, \mathcal{I B} \ldots \ldots$

Theorem A

Theorem A

If Assumptions $1-4$ hold, then \mathcal{C} has presentation $\langle\Gamma: \Omega\rangle$.

- Theorem A applies to many categories.
- $\mathcal{P}, \mathcal{B}, \mathcal{T} \mathcal{L}, \mathcal{P} \mathcal{T}, \mathcal{T}^{+}, \mathcal{I}, \mathcal{P O}, \mathcal{O}^{+}, \mathcal{O} \mathcal{I}, \mathcal{P} \mathcal{V}, \mathcal{V}^{+}, \mathcal{I B} \ldots \ldots$
- Most parts of the assumptions are easy to check.

Theorem A

Theorem A

If Assumptions 1-4 hold, then \mathcal{C} has presentation $\langle\Gamma: \Omega\rangle$.

- Theorem A applies to many categories.
- $\mathcal{P}, \mathcal{B}, \mathcal{T L}, \mathcal{P} \mathcal{T}, \mathcal{T}^{+}, \mathcal{I}, \mathcal{P} \mathcal{O}, \mathcal{O}^{+}, \mathcal{O} \mathcal{I}, \mathcal{P} \mathcal{V}, \mathcal{V}^{+}, \mathcal{I B} \ldots \ldots$
- Most parts of the assumptions are easy to check.
- Exceptions:
- Presentations for endomorphism monoids \mathcal{C}_{n}.

Theorem A

Theorem A

If Assumptions $1-4$ hold, then \mathcal{C} has presentation $\langle\Gamma: \Omega\rangle$.

- Theorem A applies to many categories.
- $\mathcal{P}, \mathcal{B}, \mathcal{T L}, \mathcal{P} \mathcal{T}, \mathcal{T}^{+}, \mathcal{I}, \mathcal{P O}, \mathcal{O}^{+}, \mathcal{O} \mathcal{I}, \mathcal{P} \mathcal{V}, \mathcal{V}^{+}, \mathcal{I B} \ldots \ldots$
- Most parts of the assumptions are easy to check.
- Exceptions:
- Presentations for endomorphism monoids \mathcal{C}_{n}.
- For all $w \in X_{n+d}^{*}, \quad \lambda_{n} w \rho_{n} \sim w^{\prime} \quad$ for some $w^{\prime} \in X_{n}^{*}$.

Theorem A - applications

Theorem

The partition category $\mathcal{P} \cong\langle\Gamma: \Omega\rangle$:

$$
\begin{array}{rll}
\sigma_{i ; n}^{2}=\iota_{n}, & \varepsilon_{i ; n}^{2}=\varepsilon_{i ; n}, & \tau_{i ; n}^{2}=\tau_{i ; n}=\tau_{i ; n} \sigma_{i ; n}=\sigma_{i ; n} \tau_{i ; n}, \\
\sigma_{i ; n} \varepsilon_{i ; n}=\varepsilon_{i+1 ; n} \sigma_{i ; n}, & \varepsilon_{i ; n} \varepsilon_{i+1 ; n} \sigma_{i ; n}=\varepsilon_{i ; n} \varepsilon_{i+1 ; n}, & \\
\varepsilon_{i ; n} \varepsilon_{j ; n}=\varepsilon_{j ; n} \varepsilon_{i ; n}, & \tau_{i ; n} \tau_{j ; n}=\tau_{j ; n} \tau_{i ; n}, & \\
\sigma_{i ; n} \sigma_{j ; n}=\sigma_{j ; n} \sigma_{i ; n}, & \sigma_{i ; n} \tau_{j ; n}=\tau_{j ; n} \sigma_{i ; n}, & \text { if }|i-j|>1, \\
\sigma_{i ; n} \sigma_{j ; n} \sigma_{i ; n}=\sigma_{j ; n} \sigma_{i ; n} \sigma_{j ; n}, & \sigma_{i ; n} \tau_{j ; n} \sigma_{i ; n}=\sigma_{j ; n} \tau_{i ; n} \sigma_{j ; n}, & \text { if }|i-j|=1, \\
\sigma_{i ; n} \varepsilon_{j ; n}=\varepsilon_{j ; n} \sigma_{i ; n}, & \tau_{i ; n} \varepsilon_{j ; n}=\varepsilon_{j ; n} \tau_{i ; n}, & \text { if } j \neq i, i+1, \\
\tau_{i ; n} \varepsilon_{j ; n} \tau_{i ; n}=\tau_{i ; n}, & \varepsilon_{j ; n} \tau_{i ; n} \varepsilon_{j ; n}=\varepsilon_{j ; n}, & \text { if } j=i, i+1, \\
\lambda_{n} \rho_{n}=\iota_{n}, & \rho_{n} \lambda_{n}=\varepsilon_{n+1 ; n+1}, & \\
\theta_{i ; n} \lambda_{n}=\lambda_{n} \theta_{i ; n+1}, & \rho_{n} \theta_{i ; n}=\theta_{i ; n+1} \rho_{n}, & \text { for } \theta \in\{\sigma, \varepsilon, \tau\} .
\end{array}
$$

Theorem A - applications

Theorem

The Brauer category $\mathcal{B} \cong\langle\Gamma: \Omega\rangle$:

$$
\begin{array}{rll}
\sigma_{i ; n}^{2}=\iota_{n}, & \tau_{i ; n}^{2}=\tau_{i ; n}=\tau_{i ; n} \sigma_{i ; n}=\sigma_{i ; n} \tau_{i ; n}, & \\
\sigma_{i ; n} \sigma_{j ; n}=\sigma_{j ; n} \sigma_{i ; n}, & \tau_{i ; n} \tau_{j ; n}=\tau_{j ; n} \tau_{i ; n}, \quad \sigma_{i ; n} \tau_{j ; n}=\tau_{j ; n} \sigma_{i ; n}, & \text { if }|i-j|>1, \\
\sigma_{i ; n} \sigma_{j ; n} \sigma_{i ; n}=\sigma_{j ; n} \sigma_{i ; n} \sigma_{j ; n}, & \sigma_{i ; n} \tau_{j ; n} \sigma_{i ; n}=\sigma_{j ; n} \tau_{i ; n} \sigma_{j ; n}, & \tau_{i ; n} \sigma_{j ; n} \tau_{i ; n}=\tau_{i ; n}, \\
\lambda_{n} \rho_{n}=\iota_{n}, & \rho_{n} \lambda_{n}=\tau_{n+1 ; n+2}, & \\
\theta_{i ; n} \lambda_{n}=\lambda_{n} \theta_{i ; n+2}, & \rho_{n} \theta_{i ; n}=\theta_{i ; n+2} \rho_{n}, & \text { for } \theta \in\{\sigma, \tau\} .
\end{array}
$$

Theorem A - applications

Theorem

The Brauer category $\mathcal{B} \cong\langle\Gamma: \Omega\rangle$:

$$
\begin{array}{rll}
\sigma_{i ; n}^{2}=\iota_{n}, & \tau_{i ; n}^{2}=\tau_{i ; n}=\tau_{i ; n} \sigma_{i ; n}=\sigma_{i ; n} \tau_{i ; n}, & \\
\sigma_{i ; n} \sigma_{j ; n}=\sigma_{j ; n} \sigma_{i ; n}, & \tau_{i ; n} \tau_{j ; n}=\tau_{j ; n} \tau_{i ; n}, \quad \sigma_{i ; n} \tau_{j ; n}=\tau_{j ; n} \sigma_{i ; n}, & \text { if }|i-j|>1, \\
\sigma_{i ; n} \sigma_{j ; n} \sigma_{i ; n}=\sigma_{j ; n} \sigma_{i ; n} \sigma_{j ; n}, & \sigma_{i ; n} \tau_{j ; n} \sigma_{i ; n}=\sigma_{j ; n} \tau_{i ; n} \sigma_{j ; n}, & \tau_{i ; n} \sigma_{j ; n} \tau_{i ; n}=\tau_{i ; n}, \\
\lambda_{n} \rho_{n}=\iota_{n}, & \rho_{n} \lambda_{n}=\tau_{n+1 ; n+2}, & \\
\theta_{i ; n} \lambda_{n}=\lambda_{n} \theta_{i ; n+2}, & \rho_{n} \theta_{i ; n}=\theta_{i ; n+2} \rho_{n}, & \text { for } \theta \in\{\sigma, \tau\} .
\end{array}
$$

Theorem

The Temperley-Lieb category $\mathcal{T} \mathcal{L} \cong\langle\Gamma: \Omega\rangle$:

$$
\begin{gathered}
\tau_{i ; n}^{2}=\tau_{i ; n}, \quad \tau_{i ; n} \tau_{j ; n}=\tau_{j ; n} \tau_{i ; n} \text { if }|i-j|>1, \quad \tau_{i ; n} \tau_{j ; n} \tau_{i ; n}=\tau_{i ; n} \text { if }|i-j|=1, \\
\lambda_{n} \rho_{n}=\iota_{n}, \quad \rho_{n} \lambda_{n}=\tau_{n+1 ; n+2}, \quad \tau_{i ; n} \lambda_{n}=\lambda_{n} \tau_{i ; n+2}, \quad \rho_{n} \tau_{i ; n}=\tau_{i ; n+2} \rho_{n} .
\end{gathered}
$$

Theorem A

Theorem A

If Assumptions $1-4$ hold, then \mathcal{C} has presentation $\langle\Gamma: \Omega\rangle$.

Theorem A

Theorem A
If Assumptions $1-4$ hold, then \mathcal{C} has presentation $\langle\Gamma: \Omega\rangle$.

- But we really want a tensor presentation.

Theorem A

Theorem A

If Assumptions $1-4$ hold, then \mathcal{C} has presentation $\langle\Gamma: \Omega\rangle$.

- But we really want a tensor presentation.
- We make two further assumptions...

Theorem B — Key assumptions

Theorem B — Key assumptions

Assumption 5

We assume that \mathcal{C} is a (strict) tensor category over \mathbb{N}.

Theorem B — Key assumptions

Assumption 5

We assume that \mathcal{C} is a (strict) tensor category over \mathbb{N}.

Assumption 6

We assume that $\Delta \subseteq \mathcal{C}$, and \equiv is a set of relations:

Theorem B — Key assumptions

Assumption 5

We assume that \mathcal{C} is a (strict) tensor category over \mathbb{N}.

Assumption 6

We assume that $\Delta \subseteq \mathcal{C}$, and \equiv is a set of relations:

- Each relation holds in \mathcal{C}.

Theorem B — Key assumptions

Assumption 5

We assume that \mathcal{C} is a (strict) tensor category over \mathbb{N}.

Assumption 6

We assume that $\Delta \subseteq \mathcal{C}$, and \equiv is a set of relations:

- Each relation holds in \mathcal{C}.
- There is a morphism $\Gamma^{*} \rightarrow \Delta^{\circledast}: w \mapsto \widehat{w}:$
- For all $x \in \Gamma$, we have $\widehat{x} \Phi=x \phi$.
- For all $x \in \Delta$ and $m, n \in \mathbb{N}$, we have $\iota_{m} \oplus x \oplus \iota_{n} \approx \widehat{w}$ for some $w \in \Gamma^{*}$.
- For all $(u, v) \in \Omega$, we have $\widehat{u} \approx \widehat{v}$.

Theorem B

Theorem B

If Assumptions 1-6 hold, then \mathcal{C} has tensor presentation $\langle\Delta: \equiv\rangle$.

Theorem B

Theorem B

If Assumptions $1-6$ hold, then \mathcal{C} has tensor presentation $\langle\Delta: \equiv\rangle$.

- The main work is establishing the properties of the terms \widehat{w}.

Theorem B

Theorem B

If Assumptions 1-6 hold, then \mathcal{C} has tensor presentation $\langle\Delta: \equiv\rangle$.

- The main work is establishing the properties of the terms \widehat{w}.
- Finding the definition is easy enough.

Theorem B

Theorem B

If Assumptions 1-6 hold, then \mathcal{C} has tensor presentation $\langle\Delta: \equiv\rangle$.

- The main work is establishing the properties of the terms \widehat{w}.
- Finding the definition is easy enough.
- e.g., in the Brauer category \mathcal{B} :

Theorem B

Theorem B

If Assumptions 1-6 hold, then \mathcal{C} has tensor presentation $\langle\Delta: \equiv\rangle$.

- The main work is establishing the properties of the terms \widehat{w}.
- Finding the definition is easy enough.
- e.g., in the Brauer category \mathcal{B} :
- $\widehat{\sigma}_{5 ; 8}=I I I I X I I$

Theorem B

Theorem B

If Assumptions 1-6 hold, then \mathcal{C} has tensor presentation $\langle\Delta: \equiv\rangle$.

- The main work is establishing the properties of the terms \widehat{w}.
- Finding the definition is easy enough.
- e.g., in the Brauer category \mathcal{B} :
- $\widehat{\sigma}_{5 ; 8}=I I I I X I I=\iota_{4}$

Theorem B

Theorem B

If Assumptions 1-6 hold, then \mathcal{C} has tensor presentation $\langle\Delta: \equiv\rangle$.

- The main work is establishing the properties of the terms \widehat{w}.
- Finding the definition is easy enough.
- e.g., in the Brauer category \mathcal{B} :
- $\widehat{\sigma}_{5 ; 8}=I I I I X I I=\iota_{4} \oplus X$

Theorem B

Theorem B

If Assumptions 1-6 hold, then \mathcal{C} has tensor presentation $\langle\Delta: \equiv\rangle$.

- The main work is establishing the properties of the terms \widehat{w}.
- Finding the definition is easy enough.
- e.g., in the Brauer category \mathcal{B} :
- $\widehat{\sigma}_{5 ; 8}=I I I I X I I=\iota_{4} \oplus X \oplus \iota_{2}$,

Theorem B

Theorem B

If Assumptions 1-6 hold, then \mathcal{C} has tensor presentation $\langle\Delta: \equiv\rangle$.

- The main work is establishing the properties of the terms \widehat{w}.
- Finding the definition is easy enough.
- e.g., in the Brauer category \mathcal{B} :
- $\widehat{\sigma}_{5 ; 8}=\iota_{4} \oplus X \oplus \iota_{2}$,
- $\widehat{\tau}_{5 ; 8}=\iota_{4} \oplus U \oplus \cap \oplus \iota_{2}$,

Theorem B

Theorem B

If Assumptions 1-6 hold, then \mathcal{C} has tensor presentation $\langle\Delta: \equiv\rangle$.

- The main work is establishing the properties of the terms \widehat{w}.
- Finding the definition is easy enough.
- e.g., in the Brauer category \mathcal{B} :
- $\widehat{\sigma}_{5 ; 8}=\iota_{4} \oplus X \oplus \iota_{2}$,
- $\widehat{\lambda}_{8}=\iota_{8} \oplus U$,
- $\widehat{\tau}_{5 ; 8}=\iota_{4} \oplus U \oplus \cap \oplus \iota_{2}$,

$$
\lambda_{8} \equiv
$$

Theorem B

Theorem B

If Assumptions 1-6 hold, then \mathcal{C} has tensor presentation $\langle\Delta: \equiv\rangle$.

- The main work is establishing the properties of the terms \widehat{w}.
- Finding the definition is easy enough.
- e.g., in the Brauer category \mathcal{B} :
- $\widehat{\sigma}_{5 ; 8}=\iota_{4} \oplus X \oplus \iota_{2}$,
- $\widehat{\tau}_{5 ; 8}=\iota_{4} \oplus U \oplus \cap \oplus \iota_{2}$,
- $\widehat{\lambda}_{8}=\iota_{8} \oplus U$,
- $\widehat{\rho}_{8}=\iota_{8} \oplus \cap$.

Theorem B

Theorem B

If Assumptions 1-6 hold, then \mathcal{C} has tensor presentation $\langle\Delta: \equiv\rangle$.

- The main work is establishing the properties of the terms \widehat{w}.
- Finding the definition is easy enough.
- e.g., in the Brauer category \mathcal{B} :
- $\widehat{\sigma}_{5 ; 8}=\iota_{4} \oplus X \oplus \iota_{2}$,
- $\widehat{\tau}_{5 ; 8}=\iota_{4} \oplus U \oplus \cap \oplus \iota_{2}$,
- $\widehat{\lambda}_{8}=\iota_{8} \oplus U$,
- $\widehat{\rho}_{8}=\iota_{8} \oplus \cap$.
- There is a Theorem C for categories like \mathcal{T} :
- $\mathcal{C}_{m, n}=\varnothing \Leftrightarrow m>0=n$.

Theorem B - applications

Theorem

The Temperley-Lieb category $\mathcal{T} \mathcal{L} \cong\langle U, \cap: \equiv\rangle$.

$$
\begin{gathered}
\cap \circ U=\iota_{0} \\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U) . \\
U \equiv \bullet, \quad \cap \equiv \ldots, \quad I \equiv!
\end{gathered}
$$

Theorem B - applications

Theorem

The Brauer category $\mathcal{B} \cong\langle X, U, \cap: \Xi\rangle$.

$$
\begin{gathered}
X \circ X=I \oplus I, \quad \cap \circ U=\iota_{0}, \quad X \circ U=U, \quad \cap \circ X=\cap, \\
(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X), \\
(I \oplus \cap) \circ(U \oplus I)=I=(\cap \oplus I) \circ(I \oplus U), \\
(I \oplus X) \circ(U \oplus I)=(X \oplus I) \circ(I \oplus U), \\
(\cap \oplus I) \circ(I \oplus X)=(I \oplus \cap) \circ(X \oplus I) . \\
X \equiv \text {. } \quad U \equiv \bullet, \quad \cap \equiv \ldots \quad I \equiv!.
\end{gathered}
$$

Theorem B - applications

Theorem

The partition category $\mathcal{P} \cong\langle X, D, \cup, \cap: \equiv\rangle$.

$$
\begin{aligned}
& X \circ X=I \oplus I, \quad \cap \circ U=\iota, \\
& D \circ D=D=D \circ X=X \circ D, \\
& (D \oplus I) \circ(I \oplus D)=(I \oplus D) \circ(D \oplus I), \\
& (X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X) \text {, } \\
& (X \oplus I) \circ(I \oplus D) \circ(X \oplus I)=(I \oplus X) \circ(D \oplus I) \circ(I \oplus X) \text {, } \\
& X \circ(I \oplus U)=U \oplus I, \quad(I \oplus \cap) \circ X=\Pi \oplus I, \\
& (I \oplus \cap) \circ D \circ(I \oplus U)=I, \quad D \circ(I \oplus U \oplus \cap) \circ D=D .
\end{aligned}
$$

Theorem B - applications

Theorem

The transformation category $\mathcal{T} \cong\langle X, V, \Pi: \Xi\rangle$.

$$
\begin{gathered}
X \circ X=\iota_{2}, \quad X \circ V=V, \\
(V \oplus I) \circ V=(I \oplus V) \circ V, \quad(I \oplus \cap) \circ V=I, \\
(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X), \\
(\cap \oplus I) \circ X=I \oplus \cap, \quad(I \oplus V) \circ X=(X \oplus I) \circ(I \oplus X) \circ(V \oplus I) . \\
X \equiv \text { Ø, } V \equiv \because, \quad \cap \equiv, \quad I \equiv!.
\end{gathered}
$$

Theorem B - applications

Theorem

The partial transformation category $\mathcal{P} \mathcal{T} \cong\langle X, V, U, \cap: \equiv\rangle$.

$$
\begin{gathered}
X \circ X=\iota_{2}, \quad \cap \circ U=\iota_{0}, \\
X \circ V=V, \quad V \circ U=U \oplus U, \\
(V \oplus I) \circ V=(I \oplus V) \circ V, \quad(I \oplus \cap) \circ V=I, \\
(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X), \\
X \circ(U \oplus I)=I \oplus U, \quad(\cap \oplus I) \circ X=I \oplus \cap, \\
(I \oplus V) \circ X=(X \oplus I) \circ(I \oplus X) \circ(V \oplus I) . \\
X \equiv X, V \equiv \because, \quad U \equiv \bullet, \quad \cap \equiv, \quad I \equiv!
\end{gathered}
$$

Theorem B - applications

Theorem

The symmetric inverse category $\mathcal{I} \cong\langle X, U, \cap: \equiv\rangle$.

$$
\begin{gathered}
X \circ X=\iota_{2}, \quad \cap \circ U=\iota_{0}, \\
(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X), \\
X \circ(U \oplus I)=I \oplus U, \quad(\cap \oplus I) \circ X=I \oplus \cap . \\
X \equiv \text { X. } \quad U \equiv \cdot \quad \cap \equiv, \quad I \equiv!.
\end{gathered}
$$

Theorem B - applications

Theorem

Order-preserving transformations: $\mathcal{O} \cong\langle V, \cap: \Xi\rangle$.

$$
\begin{aligned}
& (V \oplus I) \circ V=(I \oplus V) \circ V, \quad(I \oplus \cap) \circ V=I=(\Omega \oplus I) \circ V . \\
& V \equiv \bigvee, \quad \cap \equiv, \quad I \equiv!
\end{aligned}
$$

Theorem B - applications

Theorem

Order-preserving partial transformations: $\mathcal{P O} \cong\langle V, U, \Pi: \equiv\rangle$.

$$
\begin{gathered}
\cap \circ U=\iota_{0}, \quad V \circ U=U \oplus U, \\
(V \oplus I) \circ V=(I \oplus V) \circ V, \quad(I \oplus \cap) \circ V=I=(\cap \oplus I) \circ V . \\
V \equiv!\cdot \quad U \equiv \bullet, \quad \cap \equiv, \quad I \equiv!.
\end{gathered}
$$

Theorem B - applications

Theorem

Order-preserving partial bijections: $\mathcal{O I} \cong\langle U, \cap: \bar{\Xi}\rangle$.

$$
\cap \circ U=\iota_{0} .
$$

$$
U \equiv \bullet, \quad \cap \equiv, \quad l \equiv!.
$$

Theorem B - applications

- More applications come from (partial) braids/vines.

Theorem B - applications

- More applications come from (partial) braids/vines.

Theorem B - applications

- More applications come from (partial) braids/vines.

Theorem B - applications

- More applications come from (partial) braids/vines.

- $\mathcal{P V}=$ the partial vine category.

Theorem B - applications

- More applications come from (partial) braids/vines.

- $\mathcal{P V}=$ the partial vine category.
- $\mathcal{V}=$ the (full) vine category.

Theorem B - applications

- More applications come from (partial) braids/vines.

- $\mathcal{P V}=$ the partial vine category.
- $\mathcal{V}=$ the (full) vine category.
- $\mathcal{I B}=$ the partial braid category.

Theorem B - applications

Theorem

The partial vine category $\mathcal{P V} \cong\left\langle X, X^{-1}, V, U, \Pi: \equiv\right\rangle$.

$$
\begin{aligned}
& X \circ X^{-1}=X^{-1} \circ X=\iota_{2}, \quad \cap \circ U=\iota_{0}, \\
& X \circ V=V, \quad V \circ U=U \oplus U, \\
& (V \oplus I) \circ V=(I \oplus V) \circ V, \quad(I \oplus \cap) \circ V=I, \\
& (X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X) \text {, } \\
& X \circ(U \oplus I)=I \oplus U, \quad X \circ(I \oplus U)=U \oplus I, \\
& (\cap \oplus I) \circ X=I \oplus \cap, \quad(I \oplus \cap) \circ X=\Pi \oplus I, \\
& (I \oplus V) \circ X=(X \oplus I) \circ(I \oplus X) \circ(V \oplus I) \text {, } \\
& (V \oplus I) \circ X=(I \oplus X) \circ(X \oplus I) \circ(I \oplus V) \text {. }
\end{aligned}
$$

Theorem B - applications

Theorem

The (full) vine category $\mathcal{V} \cong\left\langle X, X^{-1}, V, \cap: \Xi\right\rangle$.

$$
\begin{gathered}
X \circ X^{-1}=X^{-1} \circ X=\iota_{2}, \quad X \circ V=V, \\
(V \oplus I) \circ V=(I \oplus V) \circ V, \quad(I \oplus \cap) \circ V=I, \\
(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X), \\
(\cap \oplus I) \circ X=I \oplus \cap, \quad(I \oplus \cap) \circ X=\Omega \oplus I, \\
(I \oplus V) \circ X=(X \oplus I) \circ(I \oplus X) \circ(V \oplus I), \\
(V \oplus I) \circ X=(I \oplus X) \circ(X \oplus I) \circ(I \oplus V), \\
X \equiv
\end{gathered}
$$

Theorem B - applications

Theorem

The partial braid category $\mathcal{I B} \cong\left\langle X, X^{-1}, U, \cap: \equiv\right\rangle$.

$$
\begin{gathered}
X \circ X^{-1}=X^{-1} \circ X=\iota_{2}, \quad \cap \circ U=\iota_{0}, \\
(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X), \\
X \circ(U \oplus I)=I \oplus U, \quad X \circ(I \oplus U)=U \oplus I, \\
(\cap \oplus I) \circ X=I \oplus \cap, \quad(I \oplus \cap) \circ X=\Pi \oplus I \\
X \equiv \underbrace{}_{\bullet}, \quad X^{-1} \equiv, \quad U \equiv \bullet, \quad \cap \equiv, \quad I \equiv!
\end{gathered}
$$

Theorem B - applications

Theorem

The partial braid category $\mathcal{I B} \cong\left\langle X, X^{-1}, U, \cap: \equiv\right\rangle$.

$$
\begin{aligned}
& X \circ X^{-1}=X^{-1} \circ X=\iota_{2}, \quad \cap \circ U=\iota_{0}, \\
& (X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X) \text {, } \\
& X \circ(U \oplus I)=I \oplus U, \quad X \circ(I \oplus U)=U \oplus I, \\
& (\cap \oplus I) \circ X=I \oplus \cap, \quad(I \oplus \cap) \circ X=\Pi \oplus I . \\
& x \equiv \varliminf_{0}, x^{-1} \equiv \varliminf_{\bullet}, \quad U \equiv \bullet, \quad n \equiv, \quad l \equiv \text { 。 }
\end{aligned}
$$

- $\mathcal{P V}, \mathcal{V}$ and $\mathcal{I B}$ are braided tensor categories (Joyal+Street).

Theorem B - applications

Theorem

The partial braid category $\mathcal{I B} \cong\left\langle X, X^{-1}, U, \cap: \equiv\right\rangle$.

$$
\begin{gathered}
X \circ X^{-1}=X^{-1} \circ X=\iota_{2}, \quad \cap \circ U=\iota_{0}, \\
(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X), \\
X \circ(U \oplus I)=I \oplus U, \quad X \circ(I \oplus U)=U \oplus I, \\
(\cap \oplus I) \circ X=I \oplus \cap, \quad(I \oplus \cap) \circ X=\cap \oplus I \\
X \equiv
\end{gathered}
$$

- $\mathcal{P V}, \mathcal{V}$ and $\mathcal{I B}$ are braided tensor categories (Joyal+Street).
- Can put the braids into the free data of the presentation.

Theorem B - applications

Theorem

The partial braid category $\mathcal{I B} \cong\left\langle X, X^{-1}, U, \cap: \equiv\right\rangle$.

$$
\begin{gathered}
X \circ X^{-1}=X^{-1} \circ X=\iota_{2}, \quad \cap \circ U=\iota_{0}, \\
(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X), \\
X \circ(U \oplus I)=I \oplus U, \quad X \circ(I \oplus U)=U \oplus I, \\
(\cap \oplus I) \circ X=I \oplus \cap, \quad(I \oplus \cap) \circ X=\cap \oplus I \\
X \equiv
\end{gathered}
$$

- $\mathcal{P V}, \mathcal{V}$ and $\mathcal{I B}$ are braided tensor categories (Joyal+Street).
- Can put the braids into the free data of the presentation.
- e.g., $\mathcal{I B} \cong\left\langle U, \cap: \cap \circ U=\iota_{0}\right\rangle$.

Theorem B - applications

Theorem

The partial braid category $\mathcal{I B} \cong\left\langle X, X^{-1}, U, \cap: \equiv\right\rangle$.

$$
\begin{gathered}
X \circ X^{-1}=X^{-1} \circ X=\iota_{2}, \quad \cap \circ U=\iota_{0}, \\
(X \oplus I) \circ(I \oplus X) \circ(X \oplus I)=(I \oplus X) \circ(X \oplus I) \circ(I \oplus X), \\
X \circ(U \oplus I)=I \oplus U, \quad X \circ(I \oplus U)=U \oplus I, \\
(\cap \oplus I) \circ X=I \oplus \cap, \quad(I \oplus \cap) \circ X=\cap \oplus I \\
X \equiv \\
\bigcup_{0}, \quad X^{-1} \equiv
\end{gathered}
$$

- $\mathcal{P V}, \mathcal{V}$ and $\mathcal{I B}$ are braided tensor categories (Joyal+Street).
- Can put the braids into the free data of the presentation.
- e.g., $\mathcal{I B} \cong\left\langle U, \Pi: \cap \circ U=\iota_{0}\right\rangle \ldots .$.
......the bicyclic braided tensor category?!

I could go on... and on...

CATEGORIEZ!!!!!1!!!

Thank you :-)

- Presentations for tensor categories
- Coming soon to arXiv...

