Endomorphisms of the random graph

Martyn Quick

York Semigroup Seminar 7th March 2018

This is joint work with:

- Bob Gray (UEA)
- Jay McPhee (formerly St Andrews)
- James Mitchell (St Andrews)
- Igor Dolinka (Novi Sad)

This work appears in: DGMMQ "Automorphism groups of countable algebraically closed graphs and endomorphisms of the random graph," Math. Proc. Camb. Phil. Soc. 160 (2016).

All graphs considered are countable simple graphs:
No multiple edges and no loops.

The random graph R

[Arises in model theory]
Start with vertices: v_{1}, v_{2}, \ldots
For each pair of vertices, toss a coin:
If \mathbf{H} the vertices are joined; if \mathbf{T} the vertices are not joined by an edge.

With probability 1 , the resulting graph, the random graph R, is existentially closed:
If A and B are disjoint finite sets of vertices, there exists some vertex v that is joined to all the vertices in A and to none of the vertices in B.

This property uniquely characterises R.
A back-and-forth argument shows that any two countable graphs satisfying the condition are isomorphic.

More properties of the random graph

R is homogeneous:

Every isomorphism $\phi: \Gamma_{1} \rightarrow \Gamma_{2}$ between finite subgraphs of R can be extended to an automorphism $\hat{\phi}$ of R.

R is the Fraissé limit of the finite graphs

The class \mathcal{C} of finite graphs satisfy the hereditary property, joint embedding property and amalgamation property. Fraïssé's Theorem says \mathcal{C} has a Fraïssé limit. This is the random graph R : age $(R)=\mathcal{C}$.

Theorem (Truss, 1985)

The automorphism group of R is simple.

Construction of the random graph

If $\Gamma=(V, E)$ is any countable graph, enumerate the finite subsets of V as $\left(A_{i}\right)_{i \in \mathbb{N}}$. Define $\mathcal{G}(\Gamma)$ to be the graph with vertices

$$
V \cup\left\{v_{i} \mid i \in \mathbb{N}\right\}
$$

edges E plus new edges joining each v_{i} to each vertex in A_{i} for all $i \in \mathbb{N}$. Then

- Γ is a subgraph of $\mathcal{G}(\Gamma)$,
- given two disjoint finite subsets A and B of V, there exists some v joined to every vertex of A and to none of the vertices in B (namely v_{i} when $A=A_{i}$).
Now define $\Gamma_{0}=\Gamma$ and $\Gamma_{n+1}=\mathcal{G}\left(\Gamma_{n}\right)$ for each n.

Observation

$\Gamma_{\infty}=\mathcal{G}^{\infty}(\Gamma)=\underset{\longrightarrow}{\lim } \Gamma_{n}=\bigcup_{n=0}^{\infty} \Gamma_{n}$ is isomorphic to the random graph R.

Green's relations on $M=\operatorname{End} R$

$$
\begin{array}{rl}
f & \mathscr{L} g \quad \text { when } M f=M g \\
\mathscr{H} & =\mathscr{L} \cap \mathscr{R} \\
\mathscr{D} & =\mathscr{L} \circ \mathscr{R}=\mathscr{R} \circ \mathscr{L}
\end{array}
$$

- Maximal subgroups of End R are the \mathscr{H}-classes of idempotents $\left(f^{2}=f\right)$.
- Regular \mathscr{D}-classes are those that contain group \mathscr{H}-classes.
- If f is an idempotent, then $\left.f\right|_{\operatorname{im} f}=\mathrm{id}$ and

$$
H_{f} \cong \operatorname{Aut}(\operatorname{im} f)
$$

Indeed, if $g \in \operatorname{Aut}(\operatorname{im} f)$, then $f g \in \operatorname{End} R$ satisfies

$$
\left(f g^{-1}\right)(f g)=f, \quad(f g) f=f g, \quad(f g)\left(f g^{-1}\right)=f, \quad f(f g)=f g
$$

so $f g \mathscr{H} f$. The isomorphism is $f g \leftrightarrow g$.

Idempotents in End R

Upshot: Need to understand the idempotent endomorphisms f of R.

Note that since R is existentially closed, it is also algebraically closed:
a.c.: If A is any finite set of vertices, there exists some vertex v joined to all vertices in A.

This is inherited by images: $\operatorname{im} f$ is algebraically closed. Conversely, if Γ is a.c., we can extend the identity map to a homomorphism $\mathcal{G}^{\infty}(\Gamma) \rightarrow \Gamma$.

Theorem (Bonato-Delić, 2000)

There is an idempotent endomorphism f of R with $\operatorname{im} f \cong \Gamma$ if and only if Γ is a.c.

Uncountably many idempotent endomorphisms with given image

Suppose $\Gamma_{0}=\Gamma$ is a.c. $\quad \Gamma_{n+1}=\mathcal{G}\left(\Gamma_{n}\right)$.
Assume we've constructed $f_{n}: \Gamma_{n} \rightarrow \Gamma$ with $\left.f_{n}\right|_{\Gamma}=\mathrm{id}$.
In Γ_{n+1} have vertices v_{i} corresponding to finite $A_{i} \subseteq V\left(\Gamma_{n}\right)$.
Extend f_{n} as follows:

- Assume images of $v_{1}, v_{2}, \ldots, v_{k}$ have already been specified; i.e., have defined f_{n+1} on the subgraph induced by $V \cup\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$.
- Γ is a.c. $\Rightarrow \exists w$ adjacent to every vertex of $\left(A_{k+1} \cup\left\{v_{1}, \ldots, v_{k}\right\}\right) f_{n+1}$.
- Extend: Define $v_{k+1} \mapsto w$.

There are infinitely many choices for w. (Need only more than one!)
Conclusion: $2^{\aleph_{0}}$ extensions to $\Gamma_{\infty} \cong R$.

Constructing a.c. graphs

Let Γ be any countable graph and $S \subseteq\{2,3,4, \ldots\}$.
Construct L_{S} :

Write ${ }^{\dagger}$ to denote the complement. Then

$$
\left(\Gamma \dot{\cup} L_{S}\right)^{\dagger} \text { is a.c. }
$$

and, provided $L_{S} \not \neq \Gamma$,

$$
\operatorname{Aut}\left(\Gamma \dot{\cup} L_{S}\right)^{\dagger} \cong \operatorname{Aut}\left(\Gamma \dot{\cup} L_{S}\right) \cong \operatorname{Aut} \Gamma \times \operatorname{Aut} L_{S} \cong \operatorname{Aut} \Gamma
$$

Conclusion: $2^{\aleph_{0}}$ a.c. graphs with specified automorphism group.

The maximal subgroups of End R

Theorem (DGMMQ)

(i) Let Γ be a countable graph.

There are $2^{\aleph_{0}}$ regular \mathscr{D}-classes of End R whose group \mathscr{H}-classes are isomorphic to Aut Γ.
(ii) Every regular \mathscr{D}-class of $\operatorname{End} R$ contains $2^{\aleph_{0}}$ group \mathscr{H}-classes.

Every group that could appear as a maximal subgroup of End R occurs and does so as many times as it possibly could.

The maximal subgroups of End R

Theorem (DGMMQ)

(i) Let Γ be a countable graph.

There are $2^{\aleph_{0}}$ regular \mathscr{D}-classes of End R whose group \mathscr{H}-classes are isomorphic to Aut Γ.
(ii) Every regular \mathscr{D}-class of End R contains $2^{\aleph_{0}}$ group \mathscr{H}-classes.

Proof.

(i) Take $S \subseteq\{2,3, \ldots\}$ with $L_{S} \not \not \equiv \Gamma$. There is an idempotent f_{S} with image $\cong\left(\Gamma \dot{\cup} L_{S}\right)^{\dagger}$. Then

$$
H_{f_{S}} \cong \operatorname{Aut}\left(\operatorname{im} f_{S}\right) \cong \operatorname{Aut} \Gamma
$$

For $S \neq T$, these lie in different \mathscr{D}-classes because $L_{S} \neq L_{T}$, so $\operatorname{im} f_{S} \neq \operatorname{im} f_{T}$.
(ii) For each a.c. graph Γ, there are $2^{\aleph_{0}}$ idempotents with image $\cong \Gamma$.

\mathscr{L} - and \mathscr{R}-classes in regular \mathscr{D}-classes

Theorem (DGMMQ)

Every regular \mathscr{D}-class in End R contains $2^{\aleph_{0}}$ many \mathscr{L} - and \mathscr{R}-classes.
For f, g regular:

$$
\begin{array}{rll}
f \mathscr{L} g & \text { iff } & V f=V g \\
f \mathscr{R} g & \text { iff } & \operatorname{ker} f=\operatorname{ker} g \\
f \mathscr{D} g & \text { iff } & \text { im } f \cong \operatorname{im} g
\end{array}
$$

[\Rightarrow holds without the regularity assumption.]
$2^{\aleph_{0}} \mathscr{R}$-classes: Given an a.c. graph Γ, there are $2^{\aleph_{0}}$ idempotents with image $\cong \Gamma$ (extend the identity map on Γ).

All such f are \mathscr{L}-related, but not \mathscr{R}-related.

Uncountably many regular \mathscr{L}-classes

Start with an a.c. graph Γ (having vertices v_{i}).
Construct Γ^{\sharp} with vertices
and edges

$$
V^{\sharp}=\left\{v_{i, 0}, v_{i, 1} \mid i \in \mathbb{N}\right\}
$$

$$
\left(v_{i, 0}, v_{j, 0}\right),\left(v_{i, 0}, v_{j, 1}\right),\left(v_{i, 1}, v_{j, 0}\right),\left(v_{i, 1}, v_{j, 1}\right)
$$

whenever $\left(v_{i}, v_{j}\right)$ is an edge in Γ.
Note

- Γ^{\sharp} is also algebraically closed.
- For any sequence $\mathbf{b}=\left(b_{i}\right)$ with $b_{i} \in\{0,1\}$, the subgraph $\Lambda_{\mathbf{b}}$ induced by $\left\{v_{i, b_{i}} \mid i \in \mathbb{N}\right\}$ is isomorphic to Γ.
Build a copy of R (as $\mathcal{G}^{\infty}\left(\Gamma^{\sharp}\right)$) around Γ^{\sharp}. Hence construct idempotent f in $\operatorname{End} R$ with $\operatorname{im} f=\Gamma^{\sharp}$.
Given b, apply the map $\phi_{\mathbf{b}}$ that maps $v_{i, 0}, v_{i, 1} \mapsto v_{i, b_{i}}$. Note the $f \phi_{b}$ are \mathscr{D}-related but not \mathscr{L}-related.

What about non-regular \mathscr{D}-classes?

Our conclusions are less complete.
Write $R=(V, E)$.
If $f \in \operatorname{End} R$, the key is understanding the difference between

$$
\operatorname{im} f=(V f, E f) \quad \text { vs. } \quad\langle V f\rangle=(V f, E \cap(V f \times V f))
$$

$f \in \operatorname{End} R$ is regular if $\exists g$ with $f g f=f$.

$$
f \text { regular } \quad \Rightarrow \quad \operatorname{im} f=(V f, E f)=\langle V f\rangle
$$

Proposition (Cameron-Nešetřil, 2006)

Let $\Gamma=\left(V^{\prime}, E^{\prime}\right)$ be a countable graph. Then Γ is algebraically closed if and only if $\left(V^{\prime}, F\right) \cong R$ for some $F \subseteq E^{\prime}$.

We use this to construct a injective homomorphism $f: R \rightarrow \Gamma$ such that $\operatorname{im} f=\left(V^{\prime}, F\right) \neq\langle V f\rangle=\left(V^{\prime}, E^{\prime}\right)$.

Uncountably many non-regular \mathscr{D}-classes

Let Γ be an a.c. graph with $\Gamma \not \approx R$.
Create Γ^{\sharp} with vertices $\left\{v_{i, 0}, v_{i, 1} \mid i \in \mathbb{N}\right\}$. Set $\Lambda_{0}=\left\langle v_{i, 0} \mid i \in \mathbb{N}\right\rangle \cong \Gamma$.
Build $R=\mathcal{G}^{\infty}\left(\Gamma^{\sharp}\right)=(V, E)$.
Use Cameron-Nešetřil: there is an injective endomorphism $f: R \rightarrow R$ with $V f=\left\{v_{i, 0} \mid i \in \mathbb{N}\right\}$. So im $f \cong R$ and $\langle V f\rangle=\Lambda_{0} \cong \Gamma$.
In particular, f is not regular.
If $\mathbf{b}=\left(b_{i}\right) \in\{0,1\}^{\mathbb{N}}$, the map $v_{i, j} \mapsto v_{i, j+b_{i}}$ is an automorphism of Γ^{\sharp}.
It extends to an automorphism ψ_{b} of R.
Then $f \psi_{\mathrm{b}}$ is \mathscr{R}-related to f.
No pair of these are \mathscr{L}-related.
Can also create $2^{\aleph_{0}}$ many \mathscr{R}-classes in D_{f}.
Varying Γ yields $2^{\aleph_{0}}$ many \mathscr{D}-classes.

Summary for non-regular \mathscr{D}-classes

Theorem (DGMMQ)

(i) There exists a non-regular injective endomorphism f of R such that the \mathscr{D}-class of f contains $2^{\aleph_{0}}$ many \mathscr{L} - and \mathscr{R}-classes.
(ii) There are $2^{\aleph_{0}}$ many non-regular \mathscr{D}-classes in End R.

Questions

(1) Can the injectivity condition in (i) be removed?
(2) Does (i) hold for all non-regular \mathscr{D}-classes?

Schützenberger Groups

If the \mathscr{H}-class of $f \in \operatorname{End} R$ is not a group, can create the Schützenberger group \mathcal{S}_{H}.
This highlights the distinction between $\operatorname{im} f=(V f, E f)$ and $\langle V f\rangle$ for certain f arising via Cameron-Nešetřil:
Let $\Gamma_{0}=\left(V_{0}, E_{0}\right)$ be a.c. and construct R as $R=\mathcal{G}^{\infty}\left(\Gamma_{0}\right)$. There is an injective endomorphism f with $V f=V_{0}$.

Proposition

Let $H=H_{f}$ for such f. Then

$$
\mathcal{S}_{H} \cong \operatorname{Aut}(\operatorname{im} f) \cap \operatorname{Aut}\langle V f\rangle
$$

By a suitable construction of Γ_{0} around a particular graph Γ obtain:

Theorem (DGMMQ)

Let Γ be a countable graph. There are $2^{\aleph_{0}}$ many non-regular \mathscr{D}-classes in End R that have Schützenberger groups isomorphic to Aut Γ.

Directed graphs \& bipartite graphs

Also have analogous results for the endomorphism of the countable universal homogeneous directed graph D and the countable universal homogeneous bipartite graph B.

Definition of bipartite graphs?
The partition is preserved by a homomorphism, but the parts may be interchanged.

Some unusual observations for bipartite graphs: e.g., the finite complete bipartite graphs are a.c.

Some results for bipartite graphs, I

Maximal subgroups / group \mathscr{H}-classes:

Theorem (DGMMQ)

(1) Let Γ be a countable graph.

There are $2^{\aleph_{0}}$ regular \mathscr{D}-classes of End B whose group \mathscr{H}-classes are isomorphic to Aut Γ.
(2) Let f be an idempotent.

If $\operatorname{im} f \not \approx K_{1,1}$, then D_{f} contains $2^{\aleph_{0}}$ many group \mathscr{H}-classes. If im $f \cong K_{1,1}$, then D_{f} contains \aleph_{0} many group \mathscr{H}-classes (each $\cong C_{2}$).

Some results for bipartite graphs, II

\mathscr{L} - and \mathscr{R}-classes in regular \mathscr{D}-classes:

Theorem (DGMMQ)

Let f be a regular endomorphism of B.
(1) If $\operatorname{im} f$ is infinite, D_{f} contains $2^{\aleph_{0}}$ many \mathscr{L} - and \mathscr{R}-classes.
(2) If $\operatorname{im} f$ is finite but not $K_{1,1}$, then D_{f} contains \aleph_{0} many \mathscr{L}-classes and $2^{\aleph_{0}}$ many \mathscr{R}-classes.
(3) If $\operatorname{im} f \cong K_{1,1}$, then D_{f} contains \aleph_{0} many \mathscr{L}-classes and one \mathscr{R}-class.

The end!

Thank you for your attention!

