## Endomorphisms of the random graph

## Martyn Quick



#### York Semigroup Seminar 7th March 2018

This is joint work with:

- Bob Gray (UEA)
- Jay McPhee (formerly St Andrews)
- James Mitchell (St Andrews)
- Igor Dolinka (Novi Sad)

This work appears in: **DGMMQ** "Automorphism groups of countable algebraically closed graphs and endomorphisms of the random graph," *Math. Proc. Camb. Phil. Soc.* **160** (2016).

All graphs considered are countable simple graphs: No multiple edges and no loops. [Arises in model theory]

Start with vertices:  $v_1, v_2, \ldots$ . For each pair of vertices, toss a coin: If **H** the vertices are joined; if **T** the vertices are not joined by an edge.

With probability 1, the resulting graph, the random graph R, is existentially closed:

If A and B are disjoint finite sets of vertices, there exists some vertex v that is joined to all the vertices in A and to none of the vertices in B.

This property uniquely characterises R.

A back-and-forth argument shows that any two countable graphs satisfying the condition are isomorphic.

#### R is homogeneous:

Every isomorphism  $\phi: \Gamma_1 \to \Gamma_2$  between finite subgraphs of R can be extended to an automorphism  $\hat{\phi}$  of R.

## R is the Fraïssé limit of the finite graphs

The class C of finite graphs satisfy the hereditary property, joint embedding property and amalgamation property. Fraïssé's Theorem says C has a Fraïssé limit. This is the random graph R: age(R) = C.

## Theorem (Truss, 1985)

The automorphism group of R is simple.

## Construction of the random graph

If  $\Gamma = (V, E)$  is any countable graph, enumerate the finite subsets of V as  $(A_i)_{i \in \mathbb{N}}$ . Define  $\mathcal{G}(\Gamma)$  to be the graph with vertices

 $V \cup \{ v_i \mid i \in \mathbb{N} \},\$ 

edges E plus new edges joining each  $v_i$  to each vertex in  $A_i$  for all  $i \in \mathbb{N}$ . Then

- $\Gamma$  is a subgraph of  $\mathcal{G}(\Gamma)$ ,
- given two disjoint finite subsets A and B of V, there exists some v joined to every vertex of A and to none of the vertices in B (namely  $v_i$  when  $A = A_i$ ).

Now define  $\Gamma_0 = \Gamma$  and  $\Gamma_{n+1} = \mathcal{G}(\Gamma_n)$  for each n.

#### Observation

 $\Gamma_{\infty} = \mathcal{G}^{\infty}(\Gamma) = \varinjlim \Gamma_n = \bigcup_{n=0}^{\infty} \Gamma_n \text{ is isomorphic to the random graph } R.$ 

## Green's relations on $M = \operatorname{End} R$

$$\begin{split} f \ \mathscr{L} g & \text{when } Mf = Mg & (\mathscr{R} \text{ sim.}) \\ \mathscr{H} = \mathscr{L} \cap \mathscr{R} \\ \mathscr{D} = \mathscr{L} \circ \mathscr{R} = \mathscr{R} \circ \mathscr{L} \end{split}$$

- Maximal subgroups of End R are the  $\mathscr{H}$ -classes of idempotents  $(f^2 = f)$ .
- Regular  $\mathscr{D}$ -classes are those that contain group  $\mathscr{H}$ -classes.
- If f is an idempotent, then  $f|_{im f} = id$  and

 $H_f \cong \operatorname{Aut}(\operatorname{im} f).$ 

Indeed, if  $g \in \operatorname{Aut}(\operatorname{im} f)$ , then  $fg \in \operatorname{End} R$  satisfies

 $(fg^{-1})(fg) = f, \quad (fg)f = fg, \qquad (fg)(fg^{-1}) = f, \quad f(fg) = fg$ 

so  $fg \mathscr{H} f$ . The isomorphism is  $fg \leftrightarrow g$ .

Upshot: Need to understand the idempotent endomorphisms f of R.

Note that since R is existentially closed, it is also algebraically closed:

**a.c.:** If A is any finite set of vertices, there exists some vertex v joined to all vertices in A.

This is inherited by images: im f is algebraically closed. Conversely, if  $\Gamma$  is a.c., we can extend the identity map to a homomorphism  $\mathcal{G}^{\infty}(\Gamma) \to \Gamma$ .

#### Theorem (Bonato–Delić, 2000)

There is an idempotent endomorphism f of R with  $\operatorname{im} f \cong \Gamma$  if and only if  $\Gamma$  is a.c.

# Uncountably many idempotent endomorphisms with given image

Suppose  $\Gamma_0 = \Gamma$  is a.c.  $\Gamma_{n+1} = \mathcal{G}(\Gamma_n)$ . Assume we've constructed  $f_n \colon \Gamma_n \to \Gamma$  with  $f_n|_{\Gamma} = \mathrm{id}$ .

In  $\Gamma_{n+1}$  have vertices  $v_i$  corresponding to finite  $A_i \subseteq V(\Gamma_n)$ .

#### Extend $f_n$ as follows:

 Assume images of v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>k</sub> have already been specified; i.e., have defined f<sub>n+1</sub> on the subgraph induced by V ∪ {v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>k</sub>}.

• 
$$\Gamma$$
 is a.c.  $\Rightarrow \exists w$  adjacent to every vertex of  $(A_{k+1} \cup \{v_1, \dots, v_k\})f_{n+1}.$ 

• Extend: Define  $v_{k+1} \mapsto w$ .

There are infinitely many choices for w. (Need only more than one!)

#### **Conclusion:** $2^{\aleph_0}$ extensions to $\Gamma_{\infty} \cong R$ .

## Constructing a.c. graphs

Let  $\Gamma$  be any countable graph and  $S \subseteq \{2, 3, 4, ...\}$ . Construct  $L_S$ :



Write <sup>†</sup> to denote the complement. Then

 $(\Gamma \stackrel{.}{\cup} L_S)^{\dagger}$  is a.c.

and, provided  $L_S \not\cong \Gamma$ ,

 $\operatorname{Aut}(\Gamma \dot{\cup} L_S)^{\dagger} \cong \operatorname{Aut}(\Gamma \dot{\cup} L_S) \cong \operatorname{Aut}\Gamma \times \operatorname{Aut}L_S \cong \operatorname{Aut}\Gamma.$ 

**Conclusion:**  $2^{\aleph_0}$  a.c. graphs with specified automorphism group.

## Theorem (DGMMQ)

 (i) Let Γ be a countable graph. There are 2<sup>ℵ0</sup> regular D-classes of End R whose group ℋ-classes are isomorphic to Aut Γ.

(ii) Every regular  $\mathscr{D}$ -class of End R contains  $2^{\aleph_0}$  group  $\mathscr{H}$ -classes.

Every group that could appear as a maximal subgroup of  $\operatorname{End} R$  occurs and does so as many times as it possibly could.

## Theorem (DGMMQ)

 (i) Let Γ be a countable graph. There are 2<sup>ℵ0</sup> regular D-classes of End R whose group ℋ-classes are isomorphic to Aut Γ.

(ii) Every regular  $\mathcal{D}$ -class of End R contains  $2^{\aleph_0}$  group  $\mathcal{H}$ -classes.

#### Proof.

(i) Take  $S \subseteq \{2, 3, ...\}$  with  $L_S \not\cong \Gamma$ . There is an idempotent  $f_S$  with image  $\cong (\Gamma \cup L_S)^{\dagger}$ . Then

 $H_{f_S} \cong \operatorname{Aut}(\operatorname{im} f_S) \cong \operatorname{Aut} \Gamma.$ 

For  $S \neq T$ , these lie in different  $\mathscr{D}$ -classes because  $L_S \ncong L_T$ , so im  $f_S \ncong \operatorname{im} f_T$ . (ii) For each a.c. graph  $\Gamma$ , there are  $2^{\aleph_0}$  idempotents with image  $\cong \Gamma$ .

## $\mathscr{L}\text{-}$ and $\mathscr{R}\text{-}\text{classes}$ in $\operatorname{\textbf{regular}}\ \mathscr{D}\text{-}\text{classes}$

## Theorem (DGMMQ)

Every regular  $\mathcal{D}$ -class in End R contains  $2^{\aleph_0}$  many  $\mathcal{L}$ - and  $\mathcal{R}$ -classes.

For f, g regular:

| $f \mathrel{\mathscr L} g$ | iff | Vf = Vg                                         |
|----------------------------|-----|-------------------------------------------------|
| $f \mathrel{\mathscr R} g$ | iff | $\ker f = \ker g$                               |
| $f \mathscr{D} g$          | iff | $\operatorname{im} f \cong \operatorname{im} g$ |

 $[\Rightarrow$  holds without the regularity assumption.]

**2<sup>\aleph\_0</sup>** *R*-classes: Given an a.c. graph  $\Gamma$ , there are  $2^{\aleph_0}$  idempotents with image  $\cong \Gamma$  (extend the identity map on  $\Gamma$ ).

All such f are  $\mathscr L\text{-related},$  but not  $\mathscr R\text{-related}.$ 

## Uncountably many regular $\mathscr{L}$ -classes

Start with an a.c. graph  $\Gamma$  (having vertices  $v_i$ ). Construct  $\Gamma^{\sharp}$  with vertices

 $V^{\sharp} = \{ v_{i,0}, v_{i,1} \mid i \in \mathbb{N} \}$ 

and edges

 $(v_{i,0}, v_{j,0}), (v_{i,0}, v_{j,1}), (v_{i,1}, v_{j,0}), (v_{i,1}, v_{j,1})$ 

whenever  $(v_i, v_j)$  is an edge in  $\Gamma$ . Note

- $\Gamma^{\sharp}$  is also algebraically closed.
- For any sequence  $\mathbf{b} = (b_i)$  with  $b_i \in \{0, 1\}$ , the subgraph  $\Lambda_{\mathbf{b}}$  induced by  $\{v_{i,b_i} \mid i \in \mathbb{N}\}$  is isomorphic to  $\Gamma$ .

Build a copy of R (as  $\mathcal{G}^{\infty}(\Gamma^{\sharp})$ ) around  $\Gamma^{\sharp}$ . Hence construct idempotent f in End R with im  $f = \Gamma^{\sharp}$ . Given b, apply the map  $\phi_{\mathbf{b}}$  that maps  $v_{i,0}, v_{i,1} \mapsto v_{i,b_i}$ . Note the  $f\phi_b$  are  $\mathscr{D}$ -related but not  $\mathscr{L}$ -related.

## What about **non-regular** *D*-classes?

Our conclusions are less complete.

Write R = (V, E). If  $f \in \text{End } R$ , the key is understanding the difference between

im f = (Vf, Ef) vs.  $\langle Vf \rangle = (Vf, E \cap (Vf \times Vf)).$ 

 $f \in \operatorname{End} R$  is regular if  $\exists g$  with fgf = f.

$$f \text{ regular } \Rightarrow \inf f = (Vf, Ef) = \langle Vf \rangle$$

#### Proposition (Cameron–Nešetřil, 2006)

Let  $\Gamma = (V', E')$  be a countable graph. Then  $\Gamma$  is algebraically closed if and only if  $(V', F) \cong R$  for some  $F \subseteq E'$ .

We use this to construct a injective homomorphism  $f : R \to \Gamma$  such that  $\operatorname{im} f = (V', F) \neq \langle V f \rangle = (V', E').$ 

Martyn Quick (St Andrews)

Let  $\Gamma$  be an a.c. graph with  $\Gamma \not\cong R$ . Create  $\Gamma^{\sharp}$  with vertices  $\{v_{i,0}, v_{i,1} \mid i \in \mathbb{N}\}$ . Set  $\Lambda_0 = \langle v_{i,0} \mid i \in \mathbb{N} \rangle \cong \Gamma$ . Build  $R = \mathcal{G}^{\infty}(\Gamma^{\sharp}) = (V, E)$ .

Use Cameron-Nešetřil: there is an injective endomorphism  $f: R \to R$  with  $Vf = \{v_{i,0} \mid i \in \mathbb{N}\}$ . So im  $f \cong R$  and  $\langle Vf \rangle = \Lambda_0 \cong \Gamma$ . In particular, f is not regular.

If  $\mathbf{b} = (b_i) \in \{0,1\}^{\mathbb{N}}$ , the map  $v_{i,j} \mapsto v_{i,j+b_i}$  is an automorphism of  $\Gamma^{\sharp}$ . It extends to an automorphism  $\psi_{\mathbf{b}}$  of R. Then  $f\psi_{\mathbf{b}}$  is  $\mathscr{R}$ -related to f. No pair of these are  $\mathscr{L}$ -related.

Can also create  $2^{\aleph_0}$  many  $\mathscr{R}$ -classes in  $D_f$ . Varying  $\Gamma$  yields  $2^{\aleph_0}$  many  $\mathscr{D}$ -classes.

## Theorem (DGMMQ)

- (i) There exists a non-regular injective endomorphism f of R such that the  $\mathscr{D}$ -class of f contains  $2^{\aleph_0}$  many  $\mathscr{L}$  and  $\mathscr{R}$ -classes.
- (ii) There are  $2^{\aleph_0}$  many non-regular  $\mathscr{D}$ -classes in  $\operatorname{End} R$ .

## Questions

- O Can the injectivity condition in (i) be removed?
- Obes (i) hold for all non-regular Declasses?

## Schützenberger Groups

## If the $\mathscr{H}$ -class of $f \in \operatorname{End} R$ is not a group, can create the Schützenberger group $\mathcal{S}_H$ .

This highlights the distinction between  $\operatorname{im} f = (Vf, Ef)$  and  $\langle Vf \rangle$  for certain f arising via Cameron–Nešetřil:

Let  $\Gamma_0 = (V_0, E_0)$  be a.c. and construct R as  $R = \mathcal{G}^{\infty}(\Gamma_0)$ . There is an injective endomorphism f with  $Vf = V_0$ .

#### Proposition

Let  $H = H_f$  for such f. Then

 $\mathcal{S}_H \cong \operatorname{Aut}(\operatorname{im} f) \cap \operatorname{Aut}\langle Vf \rangle.$ 

By a suitable construction of  $\Gamma_0$  around a particular graph  $\Gamma$  obtain:

## Theorem (DGMMQ)

Let  $\Gamma$  be a countable graph. There are  $2^{\aleph_0}$  many non-regular  $\mathscr{D}$ -classes in End R that have Schützenberger groups isomorphic to Aut  $\Gamma$ .

Martyn Quick (St Andrews)

Also have analogous results for the endomorphism of the countable universal homogeneous directed graph D and the countable universal homogeneous bipartite graph B.

Definition of bipartite graphs?

The partition is preserved by a homomorphism, but the parts may be interchanged.

Some unusual observations for bipartite graphs: e.g., the finite complete bipartite graphs are a.c.

Maximal subgroups / group  $\mathscr{H}$ -classes:

## Theorem (DGMMQ)

- Let Γ be a countable graph. There are 2<sup>ℵ0</sup> regular D-classes of End B whose group H-classes are isomorphic to Aut Γ.
- ② Let f be an idempotent. If im f  $\cong$  K<sub>1,1</sub>, then D<sub>f</sub> contains 2<sup>ℵ0</sup> many group  $\mathscr{H}$ -classes. If im f  $\cong$  K<sub>1,1</sub>, then D<sub>f</sub> contains  $\aleph_0$  many group  $\mathscr{H}$ -classes (each  $\cong$  C<sub>2</sub>).

 $\mathscr{L}\text{-}$  and  $\mathscr{R}\text{-}\text{classes}$  in regular  $\mathscr{D}\text{-}\text{classes}\text{:}$ 

## Theorem (DGMMQ)

Let f be a regular endomorphism of B.

- If  $\inf f$  is infinite,  $D_f$  contains  $2^{\aleph_0}$  many  $\mathcal{L}$  and  $\mathcal{R}$ -classes.
- If im f is finite but not K<sub>1,1</sub>, then D<sub>f</sub> contains ℵ<sub>0</sub> many ℒ-classes and 2<sup>ℵ0</sup> many ℛ-classes.
- If  $\inf f \cong K_{1,1}$ , then  $D_f$  contains  $\aleph_0$  many  $\mathscr{L}$ -classes and one  $\mathscr{R}$ -class.

## Thank you for your attention!