Ends of Semigroups

Simon Craik simon@mcs.st-and.ac.uk

School of Mathematics and Statistics, University of St Andrews

02/11/2011

Ends of Graphs

Let Γ be a graph

a ray is an infinite path

• ____ • ____ • ____ · · ·

Two rays are equivalent if there exists infinitely many disjoint paths between them

Equivalence classes of rays are called the ends of a graph.

Ends of Groups

The ends of a group wrt a generating set are the ends of the corresponding Cayley graph.

- 1. The number of ends of a group is invariant under change of finite generating sets.
- 2. A finitely generated group has 1, 2 or 2^{\aleph_0} ends.
- 3. The number ends of a group and a subgroup of finite index are the same.
- 4. If a group has > 1 end then it is a HNN extension with finite base or a free product with finite amalgamation.

Let Γ be a digraph

an out-ray is a infinite directed path of the form

 $\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \cdots$

an in-ray is a infinite directed path of the form

 $\bullet \longleftarrow \bullet \longleftarrow \bullet \longleftarrow \cdots$

a ray is either an in-ray or an out-ray.

A ray x is greater than a ray y, written $y \preccurlyeq x$, if there are infinitely many disjoint directed paths from x to y

Two rays are equivalent if $x \preccurlyeq y$ and $y \preccurlyeq x$. The equivalences classes are the ends of a digraph.

 \preccurlyeq gives a partial order on the set of ends.

This definition was introduced by Zuther and generalises the notion of ends for graphs.

The left/right ends of a semigroup wrt a generating set are the ends of the corresponding left/right Cayley digraph.

Lemma

Let *S* be a semigroup and let *A* and *B* be finite generating sets for *S*. Then the end poset of $Cay_r(S, A)$ is isomorphic the end poset of $Cay_r(S, B)$.

Left and Right Ends

Example

The semigroup $L_n \times \mathbb{Z} \times \mathbb{Z} \times R_m$ has n right ends and m left ends.

Theorem

Let S be an infinite cancellative semigroup then S has 1, 2 or infinitely many ends and if S has 2 ends then S is a group.

Cancellative Semigroups

Theorem

Let S be a cancellative semigroup which is not a group. Then the following are equivalent:

- 1. S has 1 right end.
- 2. S has 1 left end.
- 3. For any finite gernerating set *A* of *S* there exists $a \in A$ such that $\langle a \rangle \cong (\mathbb{N}, +)$ and there exists $K \in \mathbb{N}$ such that for all $s \in S$ there exists $i, j \in \mathbb{N}$ satisfying $d_A(s, a^i), d_A(a^j, s) < K$.
- 4. *S* has a presentation of the form $\langle a, u_1, \ldots, u_n | u_i a = a^{\alpha(i)} u_{\beta(i)}, u_i u_j = a^{f(i,j)} u_{g(i,j)} \rangle$.

Semigroups with 1 End: Infinitely many *R*-classes

Theorem

A finitely generated semigroup *S* with finitely many \mathcal{R} -classes has one end if and only if *S* has a subsemigroup of finite Rees index isomorphic to a Rees matrix semigroup $\mathcal{M}[G; \{i\}, \{\lambda_1, \lambda_2, \dots, \lambda_n\}; P]$ where *G* is a finitely generated group with 1 end.

Semigroups with 1 End: Finitely many \mathcal{R} -classes

Lemma

Let *S* be a finitely generated semigroup. Then *S* has 1 right end if and only if *S* is a disjoint union of a finitely generated semigroup *T* such that $|tS| = \infty$ for all $t \in T$ and with 1 right end and an ideal I satisfying the condition $|iS| < \infty$ for all $i \in I$.

Theorem

Let *S* be a finitely generated semigroup with no infinite \mathcal{R} -class and such that $|sS| = \infty$ for all $s \in S$ and *A* be a finite generating set. If *S* has 1 end then for any ray $\mathbf{r} = 1 \rightarrow r_1 \rightarrow \dots$ there exists $N, M \in \mathbb{N}$ such that for all $x \in S$ there exists $i \in \mathbb{N}$ with $d_A(r_i, x), d_A(x, r_{i+M}) \leq N$.

Definitions of Index

Definition Let *S* be a semigroup and *T* be a subsemigroup of *S*. The Rees index of *T* in *S* is $|S \setminus T| + 1$.

Definition

Let *S* be a semigroup and *T* be a subsemigroup of *S*. For $x, y \in S$ we will say that $x \mathcal{R}^T y$ if $xT^1 = yT^1$, and $x \mathcal{L}^T y$ if $T^1x = T^1y$. The intersection $\mathcal{H}^T = \mathcal{R}^T \cap \mathcal{L}^T$ is an equivalence relation on *S*. The Green index of *T* in *S* is defined to be $|(S \setminus T)/\mathcal{H}^T| + 1$.

Indices

Theorem

Let S be a semigroup and let T be a subsemigroup of finite Rees index then S has the same end poset as T.

Example

The semigroup $\mathbb{Z} \times \mathbb{Z} \times mon \langle a | a^2 = a \rangle$ has $\mathbb{Z} \times \mathbb{Z}$ as a subgroup of finite Green index.

Theorem

Let S be a cancellative semigroup and let T be a subsemigroup of finite Green index then S has the same end poset as T.

Proposition

Let S be a finitely generated semigroup with an infinite \mathcal{R} -class and 1 right end. Then S is residually finite if and only if its maximal subgroups are residually finite.

Lemma

Let *S* be a finitely generated semigroup with no infinite \mathcal{R} -class, such that $|xS| = \infty$ for all $x \in S$ and with 1 right end. Then *S* is residually finite.