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Regular languages: example

» A programming problem: given a natural number in binary,

w € {0,1}*, determine if w is congruent 1 modulo 3.
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» A programming problem: given a natural number in binary,

w € {0,1}*, determine if w is congruent 1 modulo 3.

» Solution 1: a (deterministic) automaton A:

0 1
1 0
Answer ves iff A accepts w.

» Solution 2: a homomorphism ¢: {0,1}* — S3 defined by

0 (12), 1+ (01).
Answer yes iff the permutation ¢(w) sends 0 to 1.
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Regular languages: example

» A programming problem: given a natural number in binary,
w € {0,1}*, determine if w is congruent 1 modulo 3.

» Solution 1: a (deterministic) automaton A:

0 1
1 0
Answer ves iff A accepts w.

» Solution 3: an MSO sentence :
HQQHQlan(Qo(fiI‘St) AN Ql(last)/\
Vx[0(x) A Qo(x) = Qo(Sx)] A [L(x) A Qo(x) = Q1(Sx)]A...).

Answer ves iff w satisfies the formula ¢.
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Regular languages

Regular languages are subsets L C ¥* which are ...

» recognizable by a finite automaton;
» invariant under a finite index monoid congruence;

» definable by a monadic second order sentence.

Myhill-Nerode 1958; Biichi 1960
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Monoids and finite index congruences

» A monoid is a set M equipped with an associative binary
operation and a unit.
» The set X* of finite words is a free monoid.
» multiplication is concatenation;
> unit is the empty word ¢;
» A congruence on M is an equivalence relation 6 which respects
multiplication.
» The quotient M/0 is again a monoid;
» A congruence 6 has finite index if M/6 is finite.

4/27



Monoids and finite index congruences

» A monoid is a set M equipped with an associative binary

operation and a unit.
The set X* of finite words is a free monoid.

v

» multiplication is concatenation;
> unit is the empty word ¢;
» A congruence on M is an equivalence relation 6 which respects
multiplication.
» The quotient M/0 is again a monoid;
» A congruence 6 has finite index if M/6 is finite.

v

Any language L C Y* has an associated syntactic congruence,
0, i.e., the finest congruence under which L is invariant:

w € L and wl;w' implies w’ € L.

v

L is called regular iff 6, has finite index.
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Logic on words

» Syntax. Monadic Second Order (MSO) logic over <, ¥.

» Basic propositional connectives: A, —.

» Quantification over first-order variables x, y, ...and monadic
second-order variables P, Q, . ...

» Relational signature: x < y, a(x) for a € ¥.
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Logic on words

» Syntax. Monadic Second Order (MSO) logic over <, ¥.

» Basic propositional connectives: A, —.

» Quantification over first-order variables x, y, ...and monadic
second-order variables P, Q, . ...

» Relational signature: x < y, a(x) for a € ¥.

» Semantics. A word w = a; ... a, gives a structure W.

» The underlying set of W is {1,..., n}.
» The natural linear order <" interprets the binary predicate <.

> For every letter ac ¥, "V :={i € {1,...,n}: a; = a}.
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Logic on words

» Syntax. Monadic Second Order (MSO) logic over <, ¥.

» Semantics. A word w = a; ... a, gives a structure W.

v

For a sentence ¢, L, :={w € X* | w |= ¢}.

v

A language L is regular iff L = L, for some ¢ in MSO.

v

Shortcuts such as S(x), first, last, C, ... are
MSO-definable.
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Logic on words: examples

@: 3P| P(first) A —P(last) A Vx(P(x) +» =P(S(x)) |.
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Logic on words: examples
@: 3P| P(first) A —P(last) A Vx(P(x) +» =P(S(x)) |.
> a2aaa = ¢, but aaaaa [~ ¢.
» W = ¢ iff W has even length.

¥: IP[3xP(x) A P CanVy((Wx[P(x) = x<y]) =b(y)) ]

» aacbaccaabbb = ¢, but aacbaccaabbc [~ ¢.

» W = ¢ iff W has a non-empty subset of a-positions after

which there are only b-positions.
¥ 3Ix[a(x) A Vy[x <y = (-a(y) Ab())] ]
» “There is a last a-position, with only b-positions after that.”

1 and v’ are equivalent, and 1)’ is first order.

Question. Does such an equivalent first order formula exist for ¢?
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Regular languages are subsets L C ¥* which are ...

» recognizable by a finite automaton;
» invariant under a finite index monoid congruence;

» definable by a monadic second order sentence.
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Duality

Key insight. The connection between MSO logic on words and

monoids is an instance of Stone-J6nsson-Tarski duality.

Algebra Space
Lindenbaum algebra of a logic Canonical model
Residuated Boolean algebra of (Pro)finite monoid

regular languages

Gehrke, Grigorieff, Pin 2008
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Profinite monoids and their clopens

» A profinite monoid is a monoid equipped with a Boolean

topology in which multiplication is continuous.

» Also: a limit of finite monoids with the discrete topology.
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Profinite monoids and their clopens

» A profinite monoid is a monoid equipped with a Boolean

topology in which multiplication is continuous.

» Also: a limit of finite monoids with the discrete topology.

» A subset of a profinite monoid is clopen iff it is recognizable,

i.e., invariant under a finite index topological congruence.
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Duality and profinite monoids

» There are natural division operators on the Boolean algebra of

clopen sets of a profinite monoid:
K\L={m | mKCL}, L/K={m|KmCcCL}.

» These ‘multiplicative operators’ are dual to the monoid's
multiplication,

more precisely, to two distinct ternary relations derived from it.
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Duality and profinite monoids

» There are natural division operators on the Boolean algebra of
clopen sets of a profinite monoid:
K\L={m | mKCL}, L/K={m|KmCcCL}.
» These ‘multiplicative operators’ are dual to the monoid's
multiplication,
more precisely, to two distinct ternary relations derived from it.
Under this duality...

» the free profinite monoid is dual to the residuated Boolean

algebra of all regular languages;

» quotients of the free profinite monoid correspond to

subalgebras of regular languages that are ideals for division.
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Key insight. The connection between MSO logic on words and
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Logic and monoids

A language L C ¥* is MSO-definable
if, and only if,

L is invariant under a finite index monoid congruence.
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Logic and monoids

A language L C ¥* is FO-definable
if, and only if,

L is invariant under a finite index aperiodic monoid congruence.

A congruence 6 on X* is called aperiodic if £*/60 does not have

non-trivial subgroups.

Schiitzenberger 1965; McNaughton, Papert 1971
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In a finite monoid, any element x has a unique idempotent, x“, in

its orbit {x,x? x3,... }.

Fact. A finite monoid is aperiodic iff it validates the equation
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In a profinite monoid, any element x has a unique idempotent, x*,

in its orbit-closure {x,x2,x3,...}.

Fact. A profinite monoid is aperiodic iff it validates the equation
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In a profinite monoid, any element x has a unique idempotent, x*,

in its orbit-closure {x,x2,x3,...}.

Fact. A profinite monoid is aperiodic iff it validates the equation

The quotient of the free profinite monoid obtained by enforcing
x¥ = x“x is the free pro-aperiodic monoid.
This is the dual space of the residuated algebra of FO-definable

languages (instance of Eilenberg-Reiterman).
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Logic on words: example revisited

@: 3P| P(first) A =P(last) A Vx(P(x) ¢ =P(8(x)) |.

» L, ={w: w has even length}.

Question. Does an equivalent first order formula exist for ?
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Logic on words: example revisited

@: 3P| P(first) A =P(last) A Vx(P(x) ¢ =P(8(x)) |.

» L, ={w: w has even length}.

Question. Does an equivalent first order formula exist for ?

No, because:
» any quotient under which L, is invariant must contain a
subgroup Z,; or:
» for any generator a of the free profinite monoid, we have

a¥ € Ly and a¥a & Ly, so L, ‘falsifies’ the equation x¥ = x“x.

13/27



Monoids and logic

[ Regular languages ]

recogV Wby

O C

finite monoids MSO-formulas
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Monoids and logic

[ Regular languages }

recogry defined by

aperiodic first-order

x¥ = x¥x

tomorrow
finite monoids MSO-formulas
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The free profinite aperiodic monoid

Theorem.

The free profinite aperiodic monoid

The topological monoid of ultrafilters of FO-definable languages

The topological monoid of =fp-classes of pseudo-finite words.

G. & Steinberg STACS 2017
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Pseudo-finite words

» By a pseudo-finite word we mean a first-order structure
(W, <, (a"),ex) that is a model of the theory of finite words.
» A pseudo-finite word is a discrete linear order with endpoints

which is partitioned by the sets a¥

16 /27



Pseudo-finite words

» By a pseudo-finite word we mean a first-order structure
(W, <, (a"),ex) that is a model of the theory of finite words.
» A pseudo-finite word is a discrete linear order with endpoints

which is partitioned by the sets a¥

» For example:
» any finite word is pseudo-finite;
» the word a" + & = aaaa...... aaaa is pseudo-finite.

16 /27



Pseudo-finite words

» By a pseudo-finite word we mean a first-order structure
(W, <, (a"),ex) that is a model of the theory of finite words.
» A pseudo-finite word is a discrete linear order with endpoints

which is partitioned by the sets a¥

» For example:
» any finite word is pseudo-finite;
» the word a" + & = aaaa...... aaaa is pseudo-finite.
> the word a" + b = aaaa...... bbbb

16 /27



Pseudo-finite words

» By a pseudo-finite word we mean a first-order structure
(W, <, (a"),ex) that is a model of the theory of finite words.
» A pseudo-finite word is a discrete linear order with endpoints

which is partitioned by the sets a¥

» For example:
» any finite word is pseudo-finite;
» the word a" + & = aaaa...... aaaa is pseudo-finite.

» the word & + BN°" = 223a...... bbbb is not!

16 /27



Pseudo-finite words

» By a pseudo-finite word we mean a first-order structure

(W, <, (a").ex) that is a model of the theory of finite words.

» A pseudo-finite word is a discrete linear order with endpoints

which is partitioned by the sets a¥

» For example:
» any finite word is pseudo-finite;
» the word a" + & = aaaa...... aaaa is pseudo-finite.

» the word & + BN°" = 223a...... bbbb is not!
» The first-order sentence
Ixa(x) — (Ixoa(xo) A Vy > xo—a(y))

is true in every finite word, but not in a4+ pN,

16 /27



Pseudo-finite words

» By a pseudo-finite word we mean a first-order structure

(W, <, (a").ex) that is a model of the theory of finite words.

» A pseudo-finite word is a discrete linear order with endpoints
which is partitioned by the sets a¥¥ and every occurring
first-order property has a last occurrence.

» For example:

» any finite word is pseudo-finite;
» the word a" + & = aaaa...... aaaa is pseudo-finite.

» the word & + BN°" = 223a...... bbbb is not!

» The first-order sentence
Ixa(x) — (Ixoa(xo) A Vy > xo—a(y))

is true in every finite word, but not in a4+ pN,
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Ultrafilters and pseudo-finite words

» An ultrafilter U of FO-definable languages uniquely determines

an =fp-class [W] of pseudo-finite words.

» This is a homeomorphism between the ultrafilter space and the

space of types.

» There is a natural topological monoid multiplication on types:

if W=W then VW = VW' and WV = W'V.
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The free profinite aperiodic monoid

Theorem.

The free profinite aperiodic monoid

The topological monoid of ultrafilters of FO-definable languages

The topological monoid of =fp-classes of pseudo-finite words.

G. & Steinberg STACS 2017
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An application: the aperiodic w-word problem

Decision problem. Given two terms in - and ()*, are they equal in

every finite aperiodic monoid?
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An application: the aperiodic w-word problem

Decision problem. Given two terms in - and ()*, are they equal in

the free profinite aperiodic monoid?
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Realizing w-words as w-saturated models

» A countable model is w-saturated if it realizes all the complete

types over a finite parameter set.
» The following pseudo-finite words are w-saturated:
> finite words;

» the constant word on N + Q x Z + N°P,
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Realizing w-words as w-saturated models

» A countable model is w-saturated if it realizes all the complete

types over a finite parameter set.
» The following pseudo-finite words are w-saturated:
> finite words;

» the constant word on N + Q x Z + N°P,
» Crucially, substitutions of w-saturated words into w-saturated
words are again w-saturated.
» Thus, any w-term can be realized as an w-saturated word.
» Using the uniqueness of countable w-saturated models,
equality of w-terms reduces to isomorphism of these words,

which we know is decidable.

Hiischenbett & Kufleitner STACS 2013;
G. & Steinberg STACS 2017
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Solving equations

» Solve for x e R: x24+1=0.
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Solving equations

» Solve for x € C: x> 4+1=0.

» A field F is existentially closed if any existential sentence that
becomes true in some field extension of F already holds in F.

» This is first order definable: F is existentially closed iff

for every non-constant polynomial p, F = 3xp(Xx) = 0.

» A T-structure A is existentially closed* if any existential
sentence that becomes true in some T-structure extending A
already holds in A.

» This property is often first order definable:

» Linear orders without endpoints: density;
» Boolean algebras: atomless;

» Heyting algebras: mimick fields, use uniform interpolation.

* If the class of T-structures does not have amalgamation, a more complicated definition is needed.
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Model companion

A first order theory T* which captures the existentially closed

models for a universal theory T is called a model companion of T.

Theorem.
The theory T*, if it exists, is the unique theory such that:

1. T and T* believe the same universal sentences;

2. T* believes any sentence to be equivalent to an existential sentence.

Robinson, 1963
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Model companion

A first order theory T* which captures the existentially closed

models for a universal theory T is called a model companion of T.
Theorem.
The theory T*, if it exists, is the unique theory such that:

1. T and T* believe the same universal sentences;

T and T* are co-theories

2. T believes any sentence to be equivalent to an existential sentence.

T is model complete

Robinson, 1963

21/27



Model companions and languages

Theorem.

The first order theory T* of an algebra for word languages, P(w),

is the model companion of

a theory T of algebras for a linear temporal logic.

Ghilardi & G. JSL 2017
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Proof idea: set-up

» Enrich the Boolean algebra P(w) with temporal operators:
» Xa:={tcw|t+1e€a}
» Fa={tew |3t/ >t:t €a},

» | :={0}.
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Proof idea: set-up

» Enrich the Boolean algebra P(w) with temporal operators:
» Xa:={tcw]|t+1e€a}
» Fa={tew|3t'>t:t €a},

» 1:={0}.
» Axioms for temporal logic — a first order theory T.

Theorem. The theory T* of P(w) is the model companion of T.
i.e., T* is model complete and T* is a co-theory of T.
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Proof idea: co-theories

» Need to show: any equation of the form t(p) = T that is valid

in P(w) is valid in all T-structures.

» The theory T axiomatizes linear temporal logic on X, F, I:

» Boolean algebra axioms, X is a homomorphism, Fa is the least
fix point of the function x — aV Xx.

» | is an atom and | < Fa whenever a # |.
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If t(P) # T in some T-structure A, consider its dual space X.

v

By carefully using filtration-type techniques, we may read off

from X a valuation p — P(w) which invalidates t(p) = T.
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Proof idea: model completeness

» Any first order formula () in the temporal algebra P(w)

translates to an MSO formula @(P) in logic on words.
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Proof idea: model completeness

v

Any first order formula (p) in the temporal algebra P(w)

translates to an MSO formula @(P) in logic on words.
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This MSO formula @ defines a regular language Lg.

Build an automaton A for &.

v

v

Describe the automaton A with an existential first order
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formula ¢’ in the temporal algebra P(w).
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Proof idea: model completeness

v

Any first order formula p(p) in the temporal algebra P(w)

translates to an MSO formula @(P) in logic on words.
» This MSO formula @ defines a regular language L.
» Build an automaton A for &.

» Describe the automaton A with an existential first order

/

formula ¢’ in the temporal algebra P(w).

» Conclusion. P(w) believes that any first order formula  is

equivalent to an existential formula '
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Model companions and languages

Theorem.

The first order theory T* of an algebra for word languages, P(w),
is the model companion of

a theory T of algebras for a linear temporal logic.

Ghilardi & G. JSL 2017
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Model companions and languages

Theorem.

The first order theory T* of an algebra for tree languages, P(2*),
is the model companion of

a theory T of algebras for a fair computation tree logic.

Ghilardi & G. LICS 2016
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The future

» From FO to MSO

» Model companions for more logics

» Using ordered spaces
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