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Regular languages: example

I A programming problem: given a natural number in binary,

w ∈ {0, 1}∗, determine if w is congruent 1 modulo 3.

I Solution 1: a (deterministic) automaton A:

q0 q1 q2

1

0

1

0

0

1

Answer yes iff A accepts w .

I Solution 2: a homomorphism ϕ : {0, 1}∗ → S3 defined by

0 7→ (1 2), 1 7→ (0 1).

Answer yes iff the permutation ϕ(w) sends 0 to 1.

.
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I A programming problem: given a natural number in binary,

w ∈ {0, 1}∗, determine if w is congruent 1 modulo 3.

I Solution 1: a (deterministic) automaton A:

q0 q1 q2

1

0

1

0

0

1

Answer yes iff A accepts w .

I Solution 3: an MSO sentence ϕ:

∃Q0∃Q1∃Q2(Q0(first) ∧ Q1(last)∧

∀x [0(x) ∧ Q0(x)→ Q0(Sx)] ∧ [1(x) ∧ Q0(x)→ Q1(Sx)] ∧ . . . ).

Answer yes iff w satisfies the formula ϕ.
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Regular languages

Regular languages are subsets L ⊆ Σ∗ which are ...

I recognizable by a finite automaton;

I invariant under a finite index monoid congruence;

I definable by a monadic second order sentence.

Myhill-Nerode 1958; Büchi 1960
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Monoids and finite index congruences

I A monoid is a set M equipped with an associative binary

operation and a unit.
I The set Σ∗ of finite words is a free monoid.

I multiplication is concatenation;
I unit is the empty word ε;

I A congruence on M is an equivalence relation θ which respects
multiplication.

I The quotient M/θ is again a monoid;
I A congruence θ has finite index if M/θ is finite.

I Any language L ⊆ Σ∗ has an associated syntactic congruence,

θL, i.e., the finest congruence under which L is invariant:

w ∈ L and wθLw
′ implies w ′ ∈ L.

I L is called regular iff θL has finite index.
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Logic on words

I Syntax. Monadic Second Order (MSO) logic over <, Σ.
I Basic propositional connectives: ∧, ¬.
I Quantification over first-order variables x , y , . . . and monadic

second-order variables P, Q, . . . .
I Relational signature: x < y , a(x) for a ∈ Σ.

I Semantics. A word w = a1 . . . an gives a structure W .
I The underlying set of W is {1, . . . , n}.
I The natural linear order <W interprets the binary predicate <.
I For every letter a ∈ Σ, aW := {i ∈ {1, . . . , n} : ai = a}.
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Logic on words

I Syntax. Monadic Second Order (MSO) logic over <, Σ.

I Semantics. A word w = a1 . . . an gives a structure W .

I For a sentence ϕ, Lϕ := {w ∈ Σ∗ | w |= ϕ}.

I A language L is regular iff L = Lϕ for some ϕ in MSO.

I Shortcuts such as S(x), first, last, ⊆, ... are
MSO-definable.
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Logic on words: examples
ϕ : ∃P

[
P(first) ∧ ¬P(last) ∧ ∀x(P(x)↔ ¬P(S(x))

]
.

I aaaa |= ϕ, but aaaaa 6|= ϕ.

I W |= ϕ iff W has even length.

ψ : ∃P
[
∃xP(x) ∧ P ⊆ a ∧ ∀y

(
(∀x [P(x)→ x < y ]) → b(y)

) ]
.

I aacbaccaabbb |= ϕ, but aacbaccaabbc 6|= ϕ.

I W |= ϕ iff W has a non-empty subset of a-positions after

which there are only b-positions.

ψ′ : ∃x
[
a(x) ∧ ∀y [x < y → (¬a(y) ∧ b(y))]

]
.

I “There is a last a-position, with only b-positions after that.”

ψ and ψ′ are equivalent, and ψ′ is first order.

Question. Does such an equivalent first order formula exist for ϕ?
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Duality

Key insight. The connection between MSO logic on words and

monoids is an instance of Stone-Jónsson-Tarski duality.

Algebra Space

Lindenbaum algebra of a logic Canonical model

Residuated Boolean algebra of

regular languages

(Pro)finite monoid

Equations between languages Equations between words

Gehrke, Grigorieff, Pin 2008
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Profinite monoids and their clopens

I A profinite monoid is a monoid equipped with a Boolean

topology in which multiplication is continuous.

I Also: a limit of finite monoids with the discrete topology.

I A subset of a profinite monoid is clopen iff it is recognizable,

i.e., invariant under a finite index topological congruence.
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Duality and profinite monoids

I There are natural division operators on the Boolean algebra of

clopen sets of a profinite monoid:

K\L = {m | mK ⊆ L}, L/K = {m | Km ⊆ L}.

I These ‘multiplicative operators’ are dual to the monoid’s
multiplication,

more precisely, to two distinct ternary relations derived from it.

Under this duality...

I the free profinite monoid is dual to the residuated Boolean

algebra of all regular languages;

I quotients of the free profinite monoid correspond to

subalgebras of regular languages that are ideals for division.
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Logic and monoids

A language L ⊆ Σ∗ is MSO-definable

if, and only if,

L is invariant under a finite index monoid congruence.

A congruence θ on Σ∗ is called aperiodic if Σ∗/θ does not have

non-trivial subgroups.

Schützenberger 1965; McNaughton, Papert 1971

11 / 27



Logic and monoids

A language L ⊆ Σ∗ is FO-definable

if, and only if,

L is invariant under a finite index aperiodic monoid congruence.

A congruence θ on Σ∗ is called aperiodic if Σ∗/θ does not have

non-trivial subgroups.

Schützenberger 1965; McNaughton, Papert 1971

11 / 27



Logic and monoids

A language L ⊆ Σ∗ is FO-definable

if, and only if,

L is invariant under a finite index aperiodic monoid congruence.

A congruence θ on Σ∗ is called aperiodic if Σ∗/θ does not have

non-trivial subgroups.

Schützenberger 1965; McNaughton, Papert 1971

11 / 27



ω

In a finite monoid, any element x has a unique idempotent, xω, in

its orbit {x , x2, x3, . . . }.

Fact. A finite monoid is aperiodic iff it validates the equation

xω = xωx .

The quotient of the free profinite monoid obtained by enforcing

xω = xωx is the free pro-aperiodic monoid.

This is the dual space of the residuated algebra of FO-definable

languages (instance of Eilenberg-Reiterman).
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Logic on words: example revisited

ϕ : ∃P
[
P(first) ∧ ¬P(last) ∧ ∀x(P(x)↔ ¬P(S(x))

]
.

I Lϕ = {w : w has even length}.

Question. Does an equivalent first order formula exist for ϕ?

No, because:

I any quotient under which Lϕ is invariant must contain a

subgroup Z2; or:

I for any generator a of the free profinite monoid, we have

aω ∈ L̂ϕ and aωa 6∈ L̂ϕ, so Lϕ ‘falsifies’ the equation xω = xωx .
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Monoids and logic

Regular languages

finite monoids MSO-formulas

recognized by defined by

aperiodic

xω = xωx

first-order

tomorrow

Schützenberger, 1965; McNaughton & Papert, 1970.
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The free profinite aperiodic monoid

Theorem.

The free profinite aperiodic monoid

=

The topological monoid of ultrafilters of FO-definable languages

=

The topological monoid of ≡FO-classes of pseudo-finite words.

G. & Steinberg STACS 2017
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Pseudo-finite words

I By a pseudo-finite word we mean a first-order structure

(W , <, (aW )a∈Σ) that is a model of the theory of finite words.

I A pseudo-finite word is a discrete linear order with endpoints

which is partitioned by the sets aW

and every occurring

first-order property has a last occurrence.
I For example:

I any finite word is pseudo-finite;
I the word aN + aN

op
= aaaa . . . . . . aaaa is pseudo-finite.

I the word aN + bN
op

= aaaa . . . . . . bbbb is not!

I The first-order sentence

∃xa(x)→ (∃x0a(x0) ∧ ∀y > x0¬a(y))

is true in every finite word, but not in aN + bN
op
.
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is true in every finite word, but not in aN + bN
op
.

16 / 27



Pseudo-finite words

I By a pseudo-finite word we mean a first-order structure

(W , <, (aW )a∈Σ) that is a model of the theory of finite words.

I A pseudo-finite word is a discrete linear order with endpoints

which is partitioned by the sets aW

and every occurring

first-order property has a last occurrence.

I For example:
I any finite word is pseudo-finite;
I the word aN + aN

op
= aaaa . . . . . . aaaa is pseudo-finite.

I the word aN + bN
op

= aaaa . . . . . . bbbb

is not!

I The first-order sentence

∃xa(x)→ (∃x0a(x0) ∧ ∀y > x0¬a(y))

is true in every finite word, but not in aN + bN
op
.

16 / 27



Pseudo-finite words

I By a pseudo-finite word we mean a first-order structure

(W , <, (aW )a∈Σ) that is a model of the theory of finite words.

I A pseudo-finite word is a discrete linear order with endpoints

which is partitioned by the sets aW

and every occurring

first-order property has a last occurrence.

I For example:
I any finite word is pseudo-finite;
I the word aN + aN

op
= aaaa . . . . . . aaaa is pseudo-finite.

I the word aN + bN
op

= aaaa . . . . . . bbbb is not!

I The first-order sentence

∃xa(x)→ (∃x0a(x0) ∧ ∀y > x0¬a(y))

is true in every finite word, but not in aN + bN
op
.

16 / 27



Pseudo-finite words

I By a pseudo-finite word we mean a first-order structure

(W , <, (aW )a∈Σ) that is a model of the theory of finite words.

I A pseudo-finite word is a discrete linear order with endpoints

which is partitioned by the sets aW

and every occurring

first-order property has a last occurrence.

I For example:
I any finite word is pseudo-finite;
I the word aN + aN

op
= aaaa . . . . . . aaaa is pseudo-finite.

I the word aN + bN
op

= aaaa . . . . . . bbbb is not!

I The first-order sentence

∃xa(x)→ (∃x0a(x0) ∧ ∀y > x0¬a(y))

is true in every finite word, but not in aN + bN
op
.

16 / 27



Pseudo-finite words

I By a pseudo-finite word we mean a first-order structure

(W , <, (aW )a∈Σ) that is a model of the theory of finite words.

I A pseudo-finite word is a discrete linear order with endpoints

which is partitioned by the sets aW and every occurring

first-order property has a last occurrence.
I For example:

I any finite word is pseudo-finite;
I the word aN + aN

op
= aaaa . . . . . . aaaa is pseudo-finite.

I the word aN + bN
op

= aaaa . . . . . . bbbb is not!

I The first-order sentence

∃xa(x)→ (∃x0a(x0) ∧ ∀y > x0¬a(y))

is true in every finite word, but not in aN + bN
op
.

16 / 27



Ultrafilters and pseudo-finite words

I An ultrafilter U of FO-definable languages uniquely determines

an ≡FO -class [W ] of pseudo-finite words.

I This is a homeomorphism between the ultrafilter space and the

space of types.

I There is a natural topological monoid multiplication on types:

if W ≡W ′ then VW ≡ VW ′ and WV ≡W ′V .
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The free profinite aperiodic monoid

Theorem.

The free profinite aperiodic monoid

=

The topological monoid of ultrafilters of FO-definable languages

=

The topological monoid of ≡FO-classes of pseudo-finite words.

G. & Steinberg STACS 2017
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An application: the aperiodic ω-word problem

Decision problem. Given two terms in · and ()ω, are they equal in

every finite aperiodic monoid?
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Realizing ω-words as ω-saturated models

I A countable model is ω-saturated if it realizes all the complete

types over a finite parameter set.
I The following pseudo-finite words are ω-saturated:

I finite words;
I the constant word on N + Q× Z + Nop.

I Crucially, substitutions of ω-saturated words into ω-saturated

words are again ω-saturated.
I Thus, any ω-term can be realized as an ω-saturated word.
I Using the uniqueness of countable ω-saturated models,

equality of ω-terms reduces to isomorphism of these words,

which we know is decidable.

Hüschenbett & Kufleitner STACS 2013;

G. & Steinberg STACS 2017
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Overview

Logic on words

Duality

Equations between words

Equations between languages
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Solving equations

I Solve for x ∈ R: x2 + 1 = 0.

I A field F is existentially closed if any existential sentence that

becomes true in some field extension of F already holds in F .
I This is first order definable: F is existentially closed iff

for every non-constant polynomial p, F |= ∃xp(x) = 0.

I A T -structure A is existentially closed∗ if any existential

sentence that becomes true in some T -structure extending A

already holds in A.
I This property is often first order definable:

I Linear orders without endpoints: density;
I Boolean algebras: atomless;
I Heyting algebras: mimick fields, use uniform interpolation.

∗ If the class of T -structures does not have amalgamation, a more complicated definition is needed.
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Model companion

A first order theory T ∗ which captures the existentially closed

models for a universal theory T is called a model companion of T .

Theorem.
The theory T ∗, if it exists, is the unique theory such that:

1. T and T ∗ believe the same universal sentences;

T and T ∗ are co-theories

2. T ∗ believes any sentence to be equivalent to an existential sentence.

T ∗ is model complete

Robinson, 1963
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Model companions and languages

Theorem.

The first order theory T ∗ of an algebra for word languages, P(ω),

is the model companion of

a theory T of algebras for a linear temporal logic.

Ghilardi & G. JSL 2017
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Proof idea: set-up

Skip

I Enrich the Boolean algebra P(ω) with temporal operators:
I Xa := {t ∈ ω | t + 1 ∈ a},
I Fa := {t ∈ ω | ∃t ′ ≥ t : t ′ ∈ a},
I I := {0}.

I Axioms for temporal logic → a first order theory T .

Theorem. The theory T ∗ of P(ω) is the model companion of T .

i.e., T ∗ is model complete and T ∗ is a co-theory of T .
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Proof idea: co-theories

I Need to show: any equation of the form t(p) = > that is valid

in P(ω) is valid in all T -structures.

I The theory T axiomatizes linear temporal logic on X, F, I:
I Boolean algebra axioms, X is a homomorphism, Fa is the least

fix point of the function x 7→ a ∨ Xx .
I I is an atom and I ≤ Fa whenever a 6= ⊥.

I If t(p) 6= > in some T -structure A, consider its dual space X .

I By carefully using filtration-type techniques, we may read off

from X a valuation p → P(ω) which invalidates t(p) = >.
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Proof idea: model completeness

I Any first order formula ϕ(p) in the temporal algebra P(ω)

translates to an MSO formula Φ(P) in logic on words.

I This MSO formula Φ defines a regular language LΦ.

I Build an automaton A for Φ.

I Describe the automaton A with an existential first order

formula ϕ′ in the temporal algebra P(ω).

I Conclusion. P(ω) believes that any first order formula ϕ is

equivalent to an existential formula ϕ′.
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Model companions and languages

Theorem.

The first order theory T ∗ of an algebra for word languages, P(ω),

is the model companion of

a theory T of algebras for a linear temporal logic.
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Model companions and languages

Theorem.

The first order theory T ∗ of an algebra for tree languages, P(2∗),

is the model companion of

a theory T of algebras for a fair computation tree logic.

Ghilardi & G. LICS 2016
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The future

I From FO to MSO

I Model companions for more logics

I Using ordered spaces
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