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Inverse Semigroups

Definition
An element a′ ∈ S is an inverse of a ∈ S if a = aa′a and
a′ = a′aa′. If each element of S has exactly one inverse in S , then
S is an inverse semigroup.

Definition
For a, b ∈ S ,

aR b ⇔ a = bt and b = as for some s, t ∈ S

and

a σ b ⇔ ea = eb for some e ∈ E (S)

⇔ af = bf for some f ∈ E (S).
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Left Restriction and Weakly Left Ample Semigroups

Definition
Suppose S is a semigroup and E a set of idempotents of S . Let
a, b ∈ S . Then a R̃E b if and only if for all e ∈ E ,

ea = a if and only if eb = b.

Definition
A semigroup S is left restriction (formerly known as weakly left
E -ample) if the following hold:

1) E is a subsemilattice of S ;
2) Every element a ∈ S is R̃E -related to an idempotent in E
(idempotent denoted by a+);
3) R̃E is a left congruence;
4) For all a ∈ S and e ∈ E ,

ae = (ae)+a (the left ample condition).
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Proper Left Restriction and Weakly Left Ample Semigroups

Let S be a left restriction semigroup with distinguished semilattice
E . Then for a, b ∈ S ,

a σE b ⇔ ea = eb for some e ∈ E .

Definition
A left restriction semigroup is proper if and only if R̃E ∩ σE = ι.
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Left Ample Semigroups

Definition
Let S be a semigroup and let a, b ∈ S . Then aR∗ b if and only if
for all x , y ∈ S1,

xa = ya⇔ xb = yb.

Proposition

Let R∗ and R̃ be the relations defined above on a semigroup S.
Then

R ⊆ R∗ ⊆ R̃E .
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Left Ample Semigroups

Definition
A semigroup S is left ample (formally known as left type A) if the
following hold:

1) E (S) is a subsemilattice of S ;
2) Every element a ∈ S is R∗-related to an idempotent in E (S)
(idempotent denoted by a+);
3) For all a ∈ S and e ∈ E (S),

ae = (ae)+a.

Definition
A left ample semigroup is proper if and only if R∗ ∩ σ = ι.
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The Szendrei Expansion

Definition
Let M be a monoid and let Pf

1(M) denote the finite subsets of M
that contain the identity.

The Szendrei expansion of M is

Sz(M) = {(A, g) : A ∈ P1
f (M), g ∈ A}.

For (A, g), (B, h) ∈ Sz(M),

(A, g)(B, h) = (A ∪ gB, gh).
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The Szendrei Expansion

Proposition (Hollings)

Let M be an arbitrary monoid. Then Sz(M) is a proper left
restriction monoid with distinguished semilattice

E = {(A, 1) : A ∈ Pf
1(M)}.

Proposition (Fountain, Gomes)

If M is a unipotent monoid, Sz(M) is a weakly left ample monoid.

Proposition (Fountain, Gomes, Gould)

If M is a right cancellative monoid, Sz(M) is a left ample monoid.

Proposition (Birget & Rhodes, Szendrei)

If M is a group, Sz(M) is an inverse monoid.
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The Graph Expansion

Monoid presentation (X , f , S), where X is a set, S a monoid and
f : X → S such that < Xf >= S .

Let Γ = Γ(X , f ,S) be the Cayley graph of (X , f ,S), which has
vertices V (Γ) = S and edges E (Γ). For s ∈ S and x ∈ X an edge
is given by (s, x , s(xf )).

•
x
- •

s s(xf )
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The Graph Expansion

∆ is a subgraph of the Cayley graph Γ if ∆ is a graph such that

I V (∆) ⊆ V (Γ);

I E (∆) ⊆ E (Γ);

I the initial and terminal vertices of an edge in ∆ are vertices of
Γ.

Union of finite subgraphs ∆ and Σ: subgraph created by taking
vertices V (∆ ∪ Σ) = V (∆) ∪ V (Σ) and edges
E (∆ ∪ Σ) = E (∆) ∪ E (Σ).

Claire Cornock An Introduction to Graph Expansions



The Graph Expansion

There is a path between a, b ∈ V (∆), where a is the initial vertex,
if there is a sequence of edges e1, e2, ..., en such that

•
e1- •

e2- •...........................•
en- •

a a(e1f ) a(e1f )(e2f ) b,

where b = a(e1f )(e2f )...(enf ).

A subgraph is said to be a-rooted if there is a path from the vertex
a ∈ S to any other vertex in the subgraph.
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The Graph Expansion

The action of a monoid S on a subgraph ∆ is defined by

t · v = tv

for t ∈ S and v ∈ V (∆). An edge, (s, x , s(xf )) say, in the
subgraph becomes (ts, x , ts(xf )), i.e. the subgraph

•
x
- •

s s(xf )

becomes

•
x
- •

ts ts(xf ).
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The Graph Expansion

Let Γf be the set of finite 1-rooted subgraphs of Γ. Then a graph
expansion is defined by

M = M(X , f ,S) = {(∆, s) : ∆ ∈ Γf , s ∈ ∆},

with binary operation

(∆, s)(Σ, t) = (∆ ∪ sΣ, st)

for (∆, s), (Σ, t) ∈ M.
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The Graph Expansion

Proposition (Gomes)

Let (X , f , S) be a monoid presentation. Then M = M(X , f , S) is a
proper left restriction monoid, where (A, a)+ = (A, 1) for
(A, a) ∈ M.

Proposition (Gomes, Gould)

A graph expansion M(X , f , S) is a weakly left ample monoid if and
only if S is a unipotent monoid.

Proposition (Gould)

A graph expansion M(X , f , S) is a left ample monoid if and only if
S is right cancellative.
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The Category A(X )

Let X be a set and A a class of algebras of a given fixed type.

A(X ): category with objects pairs (f ,A) where A ∈ A, f : X → A
and < Xf >= A.

A morphism in A(X ) from (f ,A) to (g ,B) is a homomorphism
θ : A→ B such that the following diagram commutes:

X

A
θ

-
�

f

B

g

-
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The Category PLR(X )

PLR(X ): category where PLR is the class of proper left restriction
monoids.
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The Category PLR(X , f , S)

Let (X , f , S) be the monoid presentation of a fixed monoid S .

An object (g ,M) of PLR(X ) is an object of PLR(X , f ,S) if the
following diagram commutes:

X

M

g

?

σ]M

- S

f

-

where σ]M is a homomorphism with kernel σM .
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The Category PLR(X , f , S)

Facts:

I (f , S) is an object in PLR(X , f ,S);

I If (g ,M) is an object in the category, then σ]M : M → S is the
unique morphism in Mor((g ,M), (f , S));

I (f , S) is a terminal object in PLR(X , f , S).
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The Category PLR(X , f , S)

Proposition

Let (X , f , S) be a monoid presentation of a monoid S. Putting
M = M(X , f , S) we have

I M =< X τM >, where τM : X → M is defined by
xτM = (Γx , xf );

I (τM ,M) is an initial object in PLA(X , f , S).

Theorem
Let X be a set, ι : X → X ∗ be the canonical embedding and
M = (X , ι,X ∗).
Then τM : X → M is an embedding and M is the free left
restriction monoid on X τM .
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Varieties Work

Definition
Let V be a variety of monoids and N a left restriction monoid.
Then N has a proper cover over V if N has a proper cover M such
that M/σ ∈ V .

If V is a variety of monoids, then the class of left restriction
monoids having proper covers over V is a variety of left restriction
monoids, where the variety is determined by

Σ = {ū+v̄ ≡ v̄+ū : ū ≡ v̄ is a law in V }.
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