An Introduction to Graph Expansions

Claire Cornock

York Semigroup 15th June 2010

Claire Cornock An Introduction to Graph Expansions

An element $a' \in S$ is an *inverse* of $a \in S$ if a = aa'a and a' = a'aa'. If each element of S has exactly one inverse in S, then S is an *inverse semigroup*.

Definition For $a, b \in S$,

 $a \mathcal{R} b \Leftrightarrow a = bt$ and b = as for some $s, t \in S$

and

$$a \sigma b \Leftrightarrow ea = eb$$
 for some $e \in E(S)$
 $\Leftrightarrow af = bf$ for some $f \in E(S)$.

ト くぼ ト く ヨ ト く ヨ ト

Suppose S is a semigroup and E a set of idempotents of S. Let $a, b \in S$. Then $a \widetilde{\mathcal{R}}_E b$ if and only if for all $e \in E$,

ea = a if and only if eb = b.

Definition

A semigroup S is *left restriction* (formerly known as *weakly left* E-ample) if the following hold:

E is a subsemilattice of S;
Every element a ∈ S is R̃_E-related to an idempotent in E (idempotent denoted by a⁺);
R̃_E is a left congruence;
For all a ∈ S and e ∈ E,

 $ae = (ae)^+ a$ (the left ample condition).

Let S be a left restriction semigroup with distinguished semilattice E. Then for $a, b \in S$,

 $a \sigma_E b \Leftrightarrow ea = eb$ for some $e \in E$.

Definition

A left restriction semigroup is *proper* if and only if $\widetilde{\mathcal{R}}_E \cap \sigma_E = \iota$.

Let S be a semigroup and let $a, b \in S$. Then $a \mathcal{R}^* b$ if and only if for all $x, y \in S^1$,

 $xa = ya \Leftrightarrow xb = yb.$

Proposition

Let \mathcal{R}^* and $\widetilde{\mathcal{R}}$ be the relations defined above on a semigroup S. Then

$$\mathcal{R} \subseteq \mathcal{R}^* \subseteq \widetilde{\mathcal{R}}_E.$$

A semigroup S is *left ample* (formally known as *left type A*) if the following hold:

1) E(S) is a subsemilattice of S; 2) Every element $a \in S$ is \mathcal{R}^* -related to an idempotent in E(S)(idempotent denoted by a^+); 3) For all $a \in S$ and $e \in E(S)$,

$$ae = (ae)^+a.$$

Definition

A left ample semigroup is *proper* if and only if $\mathcal{R}^* \cap \sigma = \iota$.

Let M be a monoid and let $\mathcal{P}_1^f(M)$ denote the finite subsets of M that contain the identity.

The Szendrei expansion of M is

$$Sz(M) = \{(A,g) : A \in \mathcal{P}^1_f(M), g \in A\}.$$

For $(A, g), (B, h) \in Sz(M)$,

$$(A,g)(B,h)=(A\cup gB,gh).$$

Proposition (Hollings)

Let M be an arbitrary monoid. Then Sz(M) is a proper left restriction monoid with distinguished semilattice

$$E = \{(A,1) : A \in \mathcal{P}_1^f(M)\}.$$

Proposition (Fountain, Gomes) If M is a unipotent monoid, Sz(M) is a weakly left ample monoid. Proposition (Fountain, Gomes, Gould) If M is a right cancellative monoid, Sz(M) is a left ample monoid. Proposition (Birget & Rhodes, Szendrei) If M is a group, Sz(M) is an inverse monoid.

Monoid presentation (X, f, S), where X is a set, S a monoid and $f: X \rightarrow S$ such that $\langle Xf \rangle = S$.

Let $\Gamma = \Gamma(X, f, S)$ be the Cayley graph of (X, f, S), which has vertices $V(\Gamma) = S$ and edges $E(\Gamma)$. For $s \in S$ and $x \in X$ an edge is given by (s, x, s(xf)).



 Δ is a $\mathit{subgraph}$ of the Cayley graph Γ if Δ is a graph such that

- $V(\Delta) \subseteq V(\Gamma);$
- $E(\Delta) \subseteq E(\Gamma);$

 the initial and terminal vertices of an edge in Δ are vertices of Γ.

Union of finite subgraphs Δ and Σ : subgraph created by taking vertices $V(\Delta \cup \Sigma) = V(\Delta) \cup V(\Sigma)$ and edges $E(\Delta \cup \Sigma) = E(\Delta) \cup E(\Sigma)$.

イロン イボン イラン イラン

There is a *path* between $a, b \in V(\Delta)$, where a is the initial vertex, if there is a sequence of edges $e_1, e_2, ..., e_n$ such that

$$\begin{array}{c} \bullet \\ a \\ \end{array} \\ \begin{array}{c} e_1 \\ a(e_1f) \\ \end{array} \\ \begin{array}{c} e_2 \\ a(e_1f) \\ \end{array} \\ \begin{array}{c} e_2 \\ a(e_1f) \\ \end{array} \\ \begin{array}{c} e_n \\ b(e_2f) \\ \end{array} \\ \begin{array}{c} e_n \\ b(e_2f) \\ \end{array} \\ \begin{array}{c} e_n \\ b(e_1f) \\ \end{array} \\ \end{array} \\ \begin{array}{c} e_n \\ b(e_1f) \\ \end{array} \\ \end{array} \\ \begin{array}{c} e_n \\ b(e_1f) \\ \end{array} \\ \end{array} \\ \begin{array}{c} e_n \\ b(e_1f) \\ \end{array} \\ \end{array} \\ \begin{array}{c} e_n \\ \end{array} \\ \end{array} \\ \begin{array}{c} e_n \\ \\ \end{array} \\ \end{array} \\ \end{array}$$
 \\ \begin{array}{c} e_n \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} e_n \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} e_n \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}

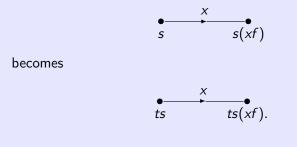
where $b = a(e_1 f)(e_2 f)...(e_n f)$.

A subgraph is said to be *a*-rooted if there is a path from the vertex $a \in S$ to any other vertex in the subgraph.

The action of a monoid S on a subgraph Δ is defined by

 $t \cdot v = tv$

for $t \in S$ and $v \in V(\Delta)$. An edge, (s, x, s(xf)) say, in the subgraph becomes (ts, x, ts(xf)), i.e. the subgraph



《日》 《圖》 《문》 《문》

Let Γ_f be the set of finite 1-rooted subgraphs of Γ . Then a graph expansion is defined by

$$M = M(X, f, S) = \{(\Delta, s) : \Delta \in \Gamma_f, s \in \Delta\},\$$

with binary operation

$$(\Delta, s)(\Sigma, t) = (\Delta \cup s\Sigma, st)$$

for $(\Delta, s), (\Sigma, t) \in M$.

Proposition (Gomes)

Let (X, f, S) be a monoid presentation. Then M = M(X, f, S) is a proper left restriction monoid, where $(A, a)^+ = (A, 1)$ for $(A, a) \in M$.

Proposition (Gomes, Gould)

A graph expansion M(X, f, S) is a weakly left ample monoid if and only if S is a unipotent monoid.

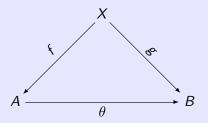
Proposition (Gould)

A graph expansion M(X, f, S) is a left ample monoid if and only if S is right cancellative.

Let X be a set and A a class of algebras of a given fixed type.

A(X): category with objects pairs (f, A) where $A \in A, f : X \to A$ and $\langle Xf \rangle = A$.

A morphism in $\mathbf{A}(X)$ from (f, A) to (g, B) is a homomorphism $\theta: A \to B$ such that the following diagram commutes:



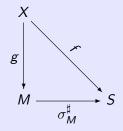
イロト イポト イラト イラト

PLR(*X*): category where $\mathcal{P}LR$ is the class of proper left restriction monoids.

《日》 《圖》 《문》 《문》

Let (X, f, S) be the monoid presentation of a <u>fixed</u> monoid S.

An object (g, M) of **PLR**(X) is an object of **PLR**(X, f, S) if the following diagram commutes:



where σ_M^{\sharp} is a homomorphism with kernel σ_M .

イロン イボン イラン イラン

Facts:

- (f, S) is an object in **PLR**(X, f, S);
- If (g, M) is an object in the category, then σ[♯]_M : M → S is the unique morphism in Mor((g, M), (f, S));
- (f, S) is a terminal object in **PLR**(X, f, S).

Proposition

Let (X, f, S) be a monoid presentation of a monoid S. Putting M = M(X, f, S) we have

•
$$M = \langle X\tau_M \rangle$$
, where $\tau_M : X \to M$ is defined by $x\tau_M = (\Gamma_x, xf)$;

•
$$(\tau_M, M)$$
 is an initial object in **PLA** (X, f, S) .

Theorem

Let X be a set, $\iota : X \to X^*$ be the canonical embedding and $M = (X, \iota, X^*)$. Then $\tau_M : X \to M$ is an embedding and M is the free left restriction monoid on $X\tau_M$.

Let V be a variety of monoids and N a left restriction monoid. Then N has a proper cover over V if N has a proper cover M such that $M/\sigma \in V$.

If V is a variety of monoids, then the class of left restriction monoids having proper covers over V is a variety of left restriction monoids, where the variety is determined by

$$\Sigma = \{ \bar{u}^+ \bar{v} \equiv \bar{v}^+ \bar{u} : \bar{u} \equiv \bar{v} \text{ is a law in } V \}.$$

> 《圖》 《臣》 《臣》

References

- J. Birget, J. Rhodes, 'Group Theory via Global Semigroup Theory'
- J. Fountain, G. Gomes, 'The Szendrei Expansion of a Semigroup'
- J. Fountain, G. Gomes, V. Gould, 'Enlargements, Semiabundancy and Unipotent Monoids'
- G. Gomes, 'Proper Extensions of Weakly Left Ample Semigroups'
- 🔋 G. Gomes, V. Gould, 'Graph Expansions of Unipotent Monoids'
- V. Gould, 'Graph Expansions of Right Cancellative Monoids'
- 🔋 V. Gould, 'Right Cancellative and Left Ample Monoids'
- C. Hollings, 'Partial Actions of Monoids'

(日) (周) (注) (日) (日)