Sufficient Conditions For A Group Of Homeomorphisms Of The Cantor Set To Be 2-Generated

C. Bleak ${ }^{1}$ J. Hyde ${ }^{1}$
${ }^{1}$ University of St Andrews
March 5, 2015

The Cantor Set, Cones, Open Sets, Clopen Sets

- By the Cantor set we mean the set of functions from \mathbb{N} to $\{0,1\}$ which we will denote $\{0,1\}^{\mathbb{N}}$.
- If u is a partial function from \mathbb{N} to $\{0,1\}$ with domain finite and closed downwards then we will use \bar{u} for the set $\left\{f \in\{0,1\}^{\mathbb{N}} \mid u \subseteq f\right\}$. We will call such \bar{u} cones.
- The open subsets of $\{0,1\}^{\mathbb{N}}$ are the arbitrary unions of cones.
- The clopen subsets of $\{0,1\}^{\mathbb{N}}$ are the finite unions of cones.
- We will use H for the group of homeomorphisms of $\{0,1\}^{\mathbb{N}}$ that is the group bijections on $\{0,1\}^{\mathbb{N}}$ such that both the image and pre-image of each open set is also open.

Thompson's Group V

- V is a subgroup of H intruduced by R . Thompson circa 1965.
- We will define elements of V piecewise with the domains and ranges of pieces being cones.
- For cones \bar{u} and \bar{v} the only bijection $f: \bar{u} \rightarrow \bar{v}$ which is allowed to be a piece of an element of V is defined by $(u w) f:=(v w)$ where here we are thinking of $u w$ and $v w$ as infinite strings instead of as functions.
- V is simple and 2-generated.

Important Properties

Definition

If G is a group of homeomorphisms of the Cantor set we will say G is vigorous if for any proper clopen subset A of $\{0,1\}^{\mathbb{N}}$ and any B, C non-empty proper clopen subsets of $\{0,1\}^{\mathbb{N}} \backslash A$ there exists $g \in \operatorname{pstab}_{G}(A)$ with $B g \subseteq C$.
Definition
If G is a group of homeomorphisms of the Cantor set we will say G is flawless if the set
$\left\{[a, b] \mid a, b \in \operatorname{pstab}_{G}(A)\right.$ for some A non-empty and clopen $\}$ generates G.

Lemma

If G is a vigorous subgroup of H then G is flawless exactly if G is simple.

Statement Of Theorem

Theorem
If G is a vigorous simple subgroup of H and E is a finitely generated subgroup of G then there exists F a 2-generated subgroup of G containing E.

Corollary
If G is a finitely generated vigorous simple subgroup of H then G is 2-generated.

Examples

Definition

We will use K for the set of vigorous simple (or equivalently flawless) finitely generated (and therefore 2-generated) subgroups of H. Note that H acts on K by conjugation.

Example

Our first example is V though it has been known to be 2-generated for a while.

Lemma
If G, H are in K then $\langle G \cup H\rangle$ is also in K.
Lemma
If $G \in K$ and $g \in G$ and $h \in H$ and A is a non-empty clopen set with $A \cap \operatorname{supp}(g)=\emptyset$ and $\operatorname{supp}(h) \cap \operatorname{supp}\left(h^{\mathscr{E}}\right)=\emptyset$ then $\langle G \cup\{[g, h]\}\rangle$ is in K.

Sketch Of Proof Of Theorem

- If $g, h \in G$ are such that $\operatorname{supp}(g) \cap \operatorname{supp}(h)$ is setwise stabilised by both g and h then $\operatorname{supp}([g, h]) \subseteq \operatorname{supp}(g) \cap \operatorname{supp}(h)$.
- We can find $\left(u_{i}\right)_{i}$ and $\left(v_{i}\right)_{i}$ lists over G and $\left(A_{i}\right)_{i}$ a list of non-empty clopen sets with all lists of length j and $u_{i}, v_{i} \in \operatorname{pstab}_{G}\left(A_{i}\right)$ for each i and with $E \leq\left\langle\left[u_{1}, v_{1}\right], \cdots,\left[u_{j}, v_{j}\right]\right\rangle$.
- For each $n \geq 2$ and X a non-empty proper clopen subset of $\{0,1\}^{\mathbb{N}}$ we can construct a partition of $\{0,1\}^{\mathbb{N}}$ into n bits with one of the bits being X and an element $\sigma \in G$ with σ nearly cyclically permuting the components of the partition.
- There exists $f: \mathbb{N} \rightarrow \mathbb{N}$ (independent of n) unbounded such that for any set of $(n) f$ commutators of elements of G with supports contained in $X \cup X \sigma$ there exists $\xi \in G$ such that that $\langle\sigma, \xi\rangle$ contains the set of $(n) f$ commutators

Sketch Of A Proof Continued

- There exists a, b, c in G with the supports of a and b contained in $X \cup X \sigma$ and c in $\left\langle\left\{[a, b]^{\left(\sigma^{n}\right)} \mid n \in \mathbb{N}\right\}\right\rangle$ with $X c \supseteq\{0,1\}^{\mathbb{N}} \backslash X$.
- We can choose σ and ξ such that for each $i \leq j$ there is t_{i} in $\langle\sigma, \xi\rangle$ with the supports of $u_{i}^{t_{i}}$ and $v_{i}^{t_{i}}$ contained in X.
- In fact we can choose σ and ξ such that for each $i \leq j$ there exists t_{i} in $\langle\sigma, \xi\rangle$ and $p, q \leq j$ with $\xi^{\sigma^{\rho} t_{i}}$ agrees with u_{i} on $\operatorname{supp}\left(u_{i}\right)$ and $\operatorname{supp}\left(\xi^{\sigma^{q} t_{i}}\right)$ agrees with v_{i} on $\operatorname{supp}\left(v_{i}\right)$ and

$$
\left(\operatorname{supp}\left(\xi^{\sigma^{p} t_{i}}\right) \backslash \operatorname{supp}\left(u_{i}\right)\right) \cap\left(\operatorname{supp}\left(\xi^{\sigma^{q} t_{i}}\right) \backslash \operatorname{supp}\left(v_{i}\right)\right)=\varnothing
$$

Question

- Do there exist finitely presented simple groups which are not 2-generated?
- By the classification of finite simple groups all finite simple groups are 2-generated so if there are finitely presented simple groups which are not 2-generated they must be infinite.
- One possible approach to proving that no such group exists would be to prove the main theorem holds even if $\{0,1\}^{\mathbb{N}}$ is replaced by another space from some nice class and show that all finitely presented simple groups act vigorously on some space from this class.
- The proof can be easily modified to work for the circle and we are checking if it works for arbitrary manifolds.

