Sufficient Conditions For A Group Of Homeomorphisms Of The Cantor Set To Be 2-Generated

C. Bleak¹ J. Hyde¹

¹University of St Andrews

March 5, 2015

The Cantor Set, Cones, Open Sets, Clopen Sets

- ▶ By the Cantor set we mean the set of functions from \mathbb{N} to $\{0,1\}$ which we will denote $\{0,1\}^{\mathbb{N}}$.
- If u is a partial function from N to {0,1} with domain finite and closed downwards then we will use u
 for the set { f ∈ {0,1}^N | u ⊆ f }. We will call such u
 cones.
- ► The open subsets of {0,1}^N are the arbitrary unions of cones.
- ► The clopen subsets of {0,1}^N are the finite unions of cones.
- We will use *H* for the group of homeomorphisms of {0,1}^N that is the group bijections on {0,1}^N such that both the image and pre-image of each open set is also open.

Thompson's Group V

- ► V is a subgroup of H intruduced by R. Thompson circa 1965.
- ► We will define elements of *V* piecewise with the domains and ranges of pieces being cones.
- For cones ū and v the only bijection f : ū → v which is allowed to be a piece of an element of V is defined by (uw)f := (vw) where here we are thinking of uw and vw as infinite strings instead of as functions.
- ► V is simple and 2-generated.

Important Properties

Definition

If G is a group of homeomorphisms of the Cantor set we will say G is vigorous if for any proper clopen subset A of $\{0,1\}^{\mathbb{N}}$ and any B, C non-empty proper clopen subsets of $\{0,1\}^{\mathbb{N}} \setminus A$ there exists $g \in \text{pstab}_G(A)$ with $Bg \subseteq C$.

Definition

If G is a group of homeomorphisms of the Cantor set we will say G is *flawless* if the set

 $\{[a, b] \mid a, b \in \mathsf{pstab}_{\mathcal{G}}(A) \text{ for some } A \text{ non-empty and clopen}\}$

generates G.

Lemma

If G is a vigorous subgroup of H then G is flawless exactly if G is simple.

Statement Of Theorem

Theorem

If G is a vigorous simple subgroup of H and E is a finitely generated subgroup of G then there exists F a 2-generated subgroup of G containing E.

Corollary

If G is a finitely generated vigorous simple subgroup of H then G is 2-generated.

Examples

Definition

We will use K for the set of vigorous simple (or equivalently flawless) finitely generated (and therefore 2-generated) subgroups of H. Note that H acts on K by conjugation.

Example

Our first example is V though it has been known to be 2-generated for a while.

Lemma

If G, H are in K then $\langle G \cup H \rangle$ is also in K.

Lemma

If $G \in K$ and $g \in G$ and $h \in H$ and A is a non-empty clopen set with $A \cap \operatorname{supp}(g) = \emptyset$ and $\operatorname{supp}(h) \cap \operatorname{supp}(h^g) = \emptyset$ then $\langle G \cup \{[g, h]\}\rangle$ is in K.

Sketch Of Proof Of Theorem

- If g, h ∈ G are such that supp(g) ∩ supp(h) is setwise stabilised by both g and h then supp([g, h]) ⊆ supp(g) ∩ supp(h).
- We can find (u_i)_i and (v_i)_i lists over G and (A_i)_i a list of non-empty clopen sets with all lists of length j and u_i, v_i ∈ pstab_G(A_i) for each i and with E ≤ ⟨[u₁, v₁], · · · , [u_j, v_j]⟩.
- For each n ≥ 2 and X a non-empty proper clopen subset of {0,1}^N we can construct a partition of {0,1}^N into n bits with one of the bits being X and an element σ ∈ G with σ nearly cyclically permuting the components of the partition.
- There exists f : N → N (independent of n) unbounded such that for any set of (n)f commutators of elements of G with supports contained in X ∪ Xσ there exists ξ ∈ G such that that ⟨σ, ξ⟩ contains the set of (n)f commutators

Sketch Of A Proof Continued

- There exists a, b, c in G with the supports of a and b contained in X ∪ Xσ and c in ⟨{[a, b]^(σⁿ) | n ∈ ℕ}⟩ with Xc ⊇ {0,1}^ℕ \ X.
- We can choose σ and ξ such that for each i ≤ j there is t_i in ⟨σ, ξ⟩ with the supports of u_i^{t_i} and v_i^{t_i} contained in X.
- In fact we can choose σ and ξ such that for each i ≤ j there exists t_i in ⟨σ, ξ⟩ and p, q ≤ j with ξ^{σ^pt_i} agrees with u_i on supp(u_i) and supp(ξ^{σ^qt_i}) agrees with v_i on supp(v_i) and

 $(\operatorname{supp}(\xi^{\sigma^{p}t_{i}}) \setminus \operatorname{supp}(u_{i})) \cap (\operatorname{supp}(\xi^{\sigma^{q}t_{i}}) \setminus \operatorname{supp}(v_{i})) = \emptyset.$

Question

- Do there exist finitely presented simple groups which are not 2-generated?
- By the classification of finite simple groups all finite simple groups are 2-generated so if there are finitely presented simple groups which are not 2-generated they must be infinite.
- One possible approach to proving that no such group exists would be to prove the main theorem holds even if {0,1}^ℕ is replaced by another space from some nice class and show that all finitely presented simple groups act vigorously on some space from this class.
- The proof can be easily modified to work for the circle and we are checking if it works for arbitrary manifolds.