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Basic definitions

An element e of a semigroup is idempotent if

e? = e. The set of idempotents of a semigroup S is

denoted by F/(S5).

A semigroup is idempotent if each of its elements is
idempotent (that is, if £(5) =.S5). A semilattice is
a commutative and idempotent monoid.

A variety of finite monoids is a class of finite
monoids closed under taking submonoids, quotient
monoids and finite direct products.
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Kernels and extensions



The kernel of a group morphism

Let 7 : H — G be a surjective group morphism.
The kernel of 7 is the group

T = Ker(n) = 7 (1)
and H is an extension of GG by 7T

The synthesis problem in finite group theory
consists in constructing  given G and T'.
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The kernel of a group morphism

Let 7 : H — G be a surjective group morphism.
The kernel of 7 is the group

T = Ker(n) = 7 (1)
and H is an extension of GG by 7T

The synthesis problem in finite group theory
consists in constructing  given G and T'.

» Is there a similar theory for semigroups?
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A specific example

A monoid M is an extension of a group by a
semilattice if there is a surjective morphism 7 from
M onto a group G such that 7 '(1) is a semilattice.

e How to characterize the extensions of a group
by a semilattice?

e Is there a synthesis theorem in this case?

e In the finite case, what is the variety generated
by the extensions of a group by a semilattice?
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The difference between semigroups and groups

Let 7 : H — G be a surjective group morphism and
let K =7 1(1). Then m(hy) = 7(hy) iff
hihy' € K.

If 7: M — G be a surjective monoid morphism and
K = 771(1), there is in general no way to decide
whether 7(m;) = m(ms), given K.

For this reason, the notion of a kernel of a monoid
morphism has to be stronger. ..

LIAFA, CNRS and University Paris Diderot



The kernel category of a morphism

Let G be a group and let 7 : M — (' be a
surjective morphism. The kernel category Ker(m)
of 7 has (& as its object set and for all g, h € G

Mor(u,v) = {(u,m,v) € G x M x G | ur(m) = v}

Note that Mor(u, u) is a monoid equal to 7 !(1)
and that G acts naturally (on the left) on Ker(m):
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A first necessary condition

Proposition

Let 7 be a surjective morphism from a monoid M
onto a group G such that 7 '(1) is a semilattice.
Then 7 1(1) = E(M) and the idempotents of M

commute.

Proof. As 7 !(1) is a semilattice, 7' (1) C E(M).
If ¢ is idempotent, then 7(e) is idempotent and
therefore is equal to 1. Thus (M) C 7 (1). ©
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A second necessary condition

Let M be a monoid with commuting idempotents.
e It is E-unitary if for all e, f € F(M) and
x € M, one of the conditions ex = f or
xre = f implies that = is idempotent.
e |t is F-dense if, for each x € M, there are
elements x; and x5 in M such that z;2 and
xrTo are idempotent.

Note that any finite monoid is E-dense, since every
element has an idempotent power. But (N, +) is
not [/-dense since its unique idempotent is 0.
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A second necessary condition (2)

Proposition

Let 7 be a surjective morphism from a monoid M
onto a group G such that 7 '(1) = E(M). Then
M is E-unitary dense.

Proof. If ex = f then 7(e)n(x) = 7(f), that is
m(x) = 1. Thus z € E(M) and M is E-unitary.

Let z € M and let ¢ = w(z). Let = be such that
m(Z) = g~ . Then m(zx) = 1 = w(22). Therefore
Tx and zx are idempotent. Thus M is E—dense. O
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The fundamental group 7((M)

Let /(M) be the free group with basis M. Then
there is a natural injection m — (m) from M into
F(M). The fundamental group (M) of M is the
group with presentation

(M| (m)(n) = (mn) for all m,n € M)

Fact. If M is an FE-dense monoid with commuting
idempotents, then 7, (M) is the quotient of M by
the congruence ~ defined by u ~ v iff there exists
an idempotent e such that eu = ev.
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Characterization of extensions of groups

Theorem (Margolis-Pin, J. Algebra 1987)

Let M be a monoid whose idempotents form a
subsemigroup. TFCAE:
(1) there is a surjective morphism 7 : M — G
onto a group G such that n=(1) = E(M),
(2) the surjective morphism m : M — T1;(M)
satisfies 71 (1) = E(M),
(3) M is E-unitary dense.
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Categories

Notation: w and v are objects, =, v, p, ¢, p + x,
p + x + y are morphisms, p, q, * + y, y + x are

loops.
iec@liposl

Y

For each object wu, there is a loop 0, based on u
such that, for every morphism x from u to v,
0,+x=xand z+ 0, = .

The local monoid at u is the monoid formed by the
loops based on .
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Groups acting on a category (1)

An action of a group G on a category (' is given by
a group morphism from (' into the automorphism
group of C'. We write gx for the result of the action
of g € G on an object or morphism . Note that for
all g € G and p,q € ("

e g(p+4q) = 9p+ 94,
L gou - Ogu-
The group G acts freely on C' if gz = x implies

g = 1. It acts transitively if the orbit of any object
of C' under GG is Obj(C).
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The monoid C,

Let G be a group acting freely and transitively on a
category (. Let u be an object of (' and let

Cu=A{(p.9) | g € G,p € Mor(u, gu)}

Then €, is a monoid under the multiplication
defined by (p, g)(q,h) = (p + gq, gh).
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A property of he monoid (',

Proposition

Let GG be a group acting freely and transitively on a
category. Then for each object u, the monoid C,, is
isomorphic to C'/G.
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The synthesis theorem

Theorem (Margolis-Pin, J. Algebra 1987)

Let M be a monoid. The following conditions are
equivalent:
(1) M is an extension of a group by a semilattice,
(2) M is E-unitary dense with commuting
idempotents,
(3) M is isomorphic to C /G, where GG is a group
acting freely and transitively on a connected,
idempotent and commutative category.
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The covering theorem

Let M and N be monoids with commuting
idempotents. A cover is a surjective morphism
~v : M — N which induces an isomorphism from
E(M) to E(N).

Theorem (Fountain, 1990)

Every F-dense monoid with commuting
idempotents has an E-unitary dense cover with
commuting idempotents.
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Closure properties

Proposition

The class of extensions of groups by semilattices is
closed under taking submonoids and direct product.

Proof. Let 7 be a surjective morphism from a
monoid M onto a group G such that 77 1(1) is a
semilattice. If V be a submonoid of M, then (V)
is a submonoid of G and hence is group H. Thus N
is an extension of H and 7 '(1) N N is a
semilattice.

Direct products: easy. O
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Variety generated by finite extensions

Let V be the variety generated by extensions of
groups by semilattices.

A monoid belongs to V iff it is a quotient of an
extension of a group by a semilattice.

M
v/ N\ ai(1) = B(M)
N/ \G

The monoid N belongs to V.
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Variety generated by finite extensions

Let V be the variety generated by extensions of
groups by semilattices.

A monoid belongs to V iff it is a quotient of an
extension of a group by a semilattice.

M
v/ N\ ai(1) = B(M)
N/ \G

The monoid N belongs to V.

» This diagram is typical of a relational morphism.
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Relational morphisms

Let M and N be monoids. A relational morphism
from M to N isa map 7: M — P(N) such that:

(1) 7(s) is nonempty for all s € M,
(2) 7(s)7(t) C 7(st) forall s,t € M,
(3) 1e7(1).
Examples of relational morphisms include:
e Morphisms
e Inverses of surjective morphisms

e The composition of two relational morphisms
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Graph of a relational morphism

The graph 12 of 7 is a submonoid of M x N. Let

a: R — M and g : R — N be the projections.

Then « is surjective and 7 = Soa !,

RCMxN
7N
M L N
a(m,n) =m (m) = B(a (m))
B(m,n) = 7' (n) = a(67'(n))
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An example of relational morphism

Let () be a finite set. Let S(()) the symmetric group
on () and let /(()) be the monoid of all injective
partial functions from () to () under composition.

Let 7: I(Q) — S(Q) be the relational morphism
defined by 7(f) = {Bijections extending f}

121374
Fl3l-12]-
h|3]1]2]4
he |3]4]2]1

7(f) = {h1, ha}
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Relational morphisms

Proposition

Let 7 : M — N be a relational morphism. If'T" is a

subsemigroup of N, then
T T)={zeM|r(x)NT # 0}
is a subsemigroup of M.

In our example, 771(1) is a semilattice since

7 1(1) = {f € I(Q) | the identity extends [}
= {subidentities on Q} = (P(Q),N)
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Finite extensions and relational morphisms

A monoid belongs to V iff it is a quotient of an
extension of a group by a semilattice.

M 1 -
~ - 7 (1) semilattice
v(m~ (1)) semilattice
N—"——@

Proposition

A monoid N belongs to V iff there is a relational
morphism 7 from N onto a group GG such that
71(1) is a semilattice.
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Finite extensions and relational morphisms (2)

Consider the canonical factorization of 7:

RCNxG
VRN
N T G

Then « induces a isomorphism from 371(1) onto
771(1) since

B 1) ={(n.1) e R|1€7(n)}
T ) ={neN|1c7(n)
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A noneffective characterization

Theorem (Margolis-Pin, J. Algebra 1987)

Let N be a finite monoid. TFCAE
(1) N belongs to V,

(2) N is a quotient of an extension of a group by
a semilattice,

(3) N is covered by an extension of a group by a
semilattice,

(4) there is a relational morphism 7 from N onto
a group G such that 7—'(1) is a semilattice.
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The finite covering theorem

Theorem (Ash, 1987)

Every finite monoid with commuting idempotents
has a finite E-unitary cover with commuting
idempotents.

Corollary

The variety V is the variety of finite monoids with
commuting idempotents.

LIAFA, CNRS and University Paris Diderot



Part IV

Group radical



Group radical of a monoid

Let M be a finite monoid. The group radical of M

is the set
KEM)= () ')
T M—G
where the intersection runs over the set of all
relational morphisms from A into a finite group.
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Universal relational morphisms

Proposition

For each finite monoid M, there exists a finite
group G and a relational morphism 7 : M — G
such that K(M) = 771(1).

Proof. There are only finitely many subsets of M.
Therefore K(M) =7, (1) --- N7, (1) where
- M—G,....,t: M — G,. Let

T: M — Gy x --- x (G, be the relational
morphism defined by 7(m) = 7(m) x --- x 7,(m).
Then 771(1) = K(M). ©
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Another characterization of V

Let M be a finite monoid. TFCAE:
(1) M belongs to V,
(2) K (M) is a semilattice,
(3) The idempotents of M commute and
K(M)=E(M).

» Is there an algorithm to compute K (M)?
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Ash’s small theorem

Theorem (Ash 1987)

If M is a finite monoid with commuting
idempotents, then K(M) = E(M).

Corollary

The variety V is the variety of finite monoids with
commuting idempotents.
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Ash’s theorem

Denote by D(M) the least submonoid 7" of M
closed under weak conjugation: if t € 17" and
aaa = a, then ata € 1" and ata € T

Theorem (Ash 1991)
For each finite monoid M, one has K (M) = D(M).

Corollary

One can effectively compute K (M ).
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The pro-group topology
The pro-group topology on A* [on FFG(A)] is the

least topology such that every morphism from A*
on a finite (discrete) group is continuous.

Proposition

Let L be a subset of A* and v € A*. Thenu € L
iff, for every morphism 3 from A* onto a finite

group G, B(u) € B(L).
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A topological characterization of A (M)

Theorem (Pin, J. Algebra 1991)

Let oo : A* — M be surjective morphism. Then
m € K(M) iff1 € a=l(m).

leal(m) < forall f: A* = G,1 € B(at(m))
< forall7: M — G,1 € 7(m)
< forall7: M — G,mer (1)
<~ me K(M)
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Finitely generated subgroups of the free group

Theorem (M. Hall 1950)

Every finitely generated subgroup of the free group
Is closed.

Theorem (Ribes-Zalesskii 1993)

Let Hy,..., H, be finitely generated subgroups of
the free group. Then H\H, - -- H,, is closed.
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Computation of the closure of a set

Theorem (Pin-Reutenauer, 1991 (mod R.Z.))

There is a simple algorithm to compute the closure
of a given rational subset of the free group.

Theorem (Pin, 1991 (mod P.R.))

There is a simple algorithm to compute the closure
of a given rational language of the free monoid.
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Another proof of Ash’s theorem

Theorem (Pin, 1988)

Given the simple algorithm to compute the closure
of a rational language, one has K (M) = D(M).

Therefore, Ribes-Zalesskii's theorem gives another
proof of Ash’'s theorem.

Theorem

Given a decidable variety \V, the variety generated
by V-extensions of groups is decidable.
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