Ordered Covers

Lubna Shaheen

Dept. of Mathematics, University of York

$$
\text { June } 2010
$$

Motivation

In S-Act, and in S-Pos we have the following relations exists

$$
\mathcal{P r} \Rightarrow \mathcal{S F}=\mathcal{P}+\mathcal{E}
$$

- Isbell (1971), projective cover;

Motivation

In S-Act, and in S-Pos we have the following relations exists

$$
\mathcal{P r} \Rightarrow \mathcal{S F}=\mathcal{P}+\mathcal{E}
$$

- Isbell (1971), projective cover;
- Fountain (1976), perfect monoids, characterised monoids for which $\operatorname{Pr}=\mathcal{S F}$ in S-Act;

Motivation

In S-Act, and in S-Pos we have the following relations exists

$$
\mathcal{P r} \Rightarrow \mathcal{S F}=\mathcal{P}+\mathcal{E}
$$

- Isbell (1971), projective cover;
- Fountain (1976), perfect monoids, characterised monoids for which $\operatorname{Pr}=\mathcal{S F}$ in S-Act;
- Kilp (1996), a new characterisation of a monoid over which all strongly flat cyclic left S-acts are projective is given;

Motivation

In S-Act, and in S-Pos we have the following relations exists

$$
\mathcal{P r} \Rightarrow \mathcal{S F}=\mathcal{P}+\mathcal{E}
$$

- Isbell (1971), projective cover;
- Fountain (1976), perfect monoids, characterised monoids for which $\operatorname{Pr}=\mathcal{S F}$ in S-Act;
- Kilp (1996), a new characterisation of a monoid over which all strongly flat cyclic left S-acts are projective is given;
- Renshaw (2000), characterised those monoids for which all cyclic left S-acts satisfying Condition (P) are projective;

Motivation

In S-Act, and in S-Pos we have the following relations exists

$$
\mathcal{P r} \Rightarrow \mathcal{S F}=\mathcal{P}+\mathcal{E}
$$

- Isbell (1971), projective cover;
- Fountain (1976), perfect monoids, characterised monoids for which $\operatorname{Pr}=\mathcal{S F}$ in S-Act;
- Kilp (1996), a new characterisation of a monoid over which all strongly flat cyclic left S-acts are projective is given;
- Renshaw (2000), characterised those monoids for which all cyclic left S-acts satisfying Condition (P) are projective;
- Mahmoudi and Renshaw (2008), \mathcal{P}-covers and $\mathcal{S F}$-covers are defined for cyclic S-acts;

Motivation

In S-Act, and in S-Pos we have the following relations exists

$$
\mathcal{P r} \Rightarrow \mathcal{S F}=\mathcal{P}+\mathcal{E}
$$

- Isbell (1971), projective cover;
- Fountain (1976), perfect monoids, characterised monoids for which $\operatorname{Pr}=\mathcal{S F}$ in S-Act;
- Kilp (1996), a new characterisation of a monoid over which all strongly flat cyclic left S-acts are projective is given;
- Renshaw (2000), characterised those monoids for which all cyclic left S-acts satisfying Condition (P) are projective;
- Mahmoudi and Renshaw (2008), \mathcal{P}-covers and $\mathcal{S F}$-covers are defined for cyclic S-acts;
- Roghaieh, Majid and Mojtaba (2009), \mathcal{P}-covers and $\mathcal{S F}$-covers, are defined for S-acts;

Motivation

In S-Act, and in S-Pos we have the following relations exists

$$
\mathcal{P r} \Rightarrow \mathcal{S F}=\mathcal{P}+\mathcal{E}
$$

- Isbell (1971), projective cover;
- Fountain (1976), perfect monoids, characterised monoids for which $\operatorname{Pr}=\mathcal{S F}$ in S-Act;
- Kilp (1996), a new characterisation of a monoid over which all strongly flat cyclic left S-acts are projective is given;
- Renshaw (2000), characterised those monoids for which all cyclic left S-acts satisfying Condition (P) are projective;
- Mahmoudi and Renshaw (2008), \mathcal{P}-covers and $\mathcal{S F}$-covers are defined for cyclic S-acts;
- Roghaieh, Majid and Mojtaba (2009), \mathcal{P}-covers and $\mathcal{S F}$-covers, are defined for S-acts;
- Gould and Shaheen (2009), investigate pomonoids for which $\mathcal{P r}=\mathcal{S F}$ in S-Pos.

Definition A pomonoid S is left po-perfect if every S-poset have a projective cover.

Definition A pomonoid S is left po-perfect if every S-poset have a projective cover.

Theorem: For a pomonoid S the following are equivalent;
(i) S left is po-perfect;
(ii) S satisfies Condition $\left(\mathrm{A}^{\mathrm{O}}\right)$ and $\left(M_{R}\right)$;
(iii) $\mathcal{S F}=\mathcal{P r}$;
(iv) S satisfies Condition $\left(\mathrm{A}^{0}\right)$ and (K);

Definition A pomonoid S is left po-perfect if every S-poset have a projective cover.

Theorem: For a pomonoid S the following are equivalent;
(i) S left is po-perfect;
(ii) S satisfies Condition $\left(\mathrm{A}^{\mathrm{O}}\right)$ and $\left(M_{R}\right)$;
(iii) $\mathcal{S F}=\mathcal{P r}$;
(iv) S satisfies Condition $\left(\mathrm{A}^{\circ}\right)$ and (K);
(A): Ascending chain condition on cyclic S-subacts;

Definition A pomonoid S is left po-perfect if every S-poset have a projective cover.

Theorem: For a pomonoid S the following are equivalent;
(i) S left is po-perfect;
(ii) S satisfies Condition $\left(\mathrm{A}^{\mathrm{O}}\right)$ and $\left(M_{R}\right)$;
(iii) $\mathcal{S F}=\mathcal{P r}$;
(iv) S satisfies Condition $\left(\mathrm{A}^{0}\right)$ and (K);
(A): Ascending chain condition on cyclic S-subacts;
$\left(\mathbf{M}_{\mathbf{R}}\right)$: Descending chain condition on principal right ideals;

Definition A pomonoid S is left po-perfect if every S-poset have a projective cover.

Theorem: For a pomonoid S the following are equivalent;
(i) S left is po-perfect;
(ii) S satisfies Condition $\left(\mathrm{A}^{\mathrm{O}}\right)$ and $\left(M_{R}\right)$;
(iii) $\mathcal{S F}=\mathcal{P r}$;
(iv) S satisfies Condition $\left(\mathrm{A}^{0}\right)$ and (K);
(A): Ascending chain condition on cyclic S-subacts;
$\left(\mathbf{M}_{\mathbf{R}}\right)$: Descending chain condition on principal right ideals;
(K): Every right collapsible subpomonoid contains a right zero;

Definition A pomonoid S is left po-perfect if every S-poset have a projective cover.

Theorem: For a pomonoid S the following are equivalent;
(i) S left is po-perfect;
(ii) S satisfies Condition $\left(\mathrm{A}^{\mathrm{O}}\right)$ and $\left(M_{R}\right)$;
(iii) $\mathcal{S F}=\mathcal{P r}$;
(iv) S satisfies Condition $\left(\mathrm{A}^{0}\right)$ and (K);
(A): Ascending chain condition on cyclic S-subacts;
$\left(\mathbf{M}_{\mathbf{R}}\right)$: Descending chain condition on principal right ideals;
(K): Every right collapsible subpomonoid contains a right zero;
$\left(\mathbf{A}^{\mathbf{0}}\right)$: Ascending chain condition on cyclic S-subposets.

Definitions

A pomonoid is a monoid S partially ordered by \leq, such that \leq is compatible with the semigroup operation.

- A pomonoid S is ordered left reversible if $s S \cap(t S] \neq \emptyset$ for all $s, t \in S$, or for any $s, t \in S$ there exists $u, v \in S$ such that $s u \leq t v$;

Definitions

A pomonoid is a monoid S partially ordered by \leq, such that \leq is compatible with the semigroup operation.

- A pomonoid S is ordered left reversible if $s S \cap(t S] \neq \emptyset$ for all $s, t \in S$, or for any $s, t \in S$ there exists $u, v \in S$ such that $s u \leq t v$;
- We say S is right collapsible if for any $s, t \in S$ there exists $u \in S$ such that $s u=t u$.
We note that notion of ordered right collapsible pomonoid and right collapsible pomonoid coincides.

Definitions

A pomonoid is a monoid S partially ordered by \leq, such that \leq is compatible with the semigroup operation.

- A pomonoid S is ordered left reversible if $s S \cap(t S] \neq \emptyset$ for all $s, t \in S$, or for any $s, t \in S$ there exists $u, v \in S$ such that $s u \leq t v$;
- We say S is right collapsible if for any $s, t \in S$ there exists $u \in S$ such that $s u=t u$.
We note that notion of ordered right collapsible pomonoid and right collapsible pomonoid coincides.
- $\left(F P_{0}\right)$: if every subpomonoid generated by idempotents have a right zero; i.e

$$
M=<e: e \in E(S)>
$$

have a right zero element in M.

S-Acts

- Let S be a monoid and let A be a non-empty set. We say that A is a left S-act if with the following function $S \times A \rightarrow A$, it satisfies the following conditions;
(i) $1 . a=a$ for all $a \in A$;
(ii) $(s t) a=s(t a)$ for all $s, t \in S$ and $a \in A$.

S-Acts

- Let S be a monoid and let A be a non-empty set. We say that A is a left S-act if with the following function $S \times A \rightarrow A$, it satisfies the following conditions;
(i) $1 . a=a$ for all $a \in A$;
(ii) $(s t) a=s(t a)$ for all $s, t \in S$ and $a \in A$.
- A map $\alpha: A \rightarrow B$ from a left S-act A to a left S-act B called an S-morphism if it preserves the action of S, that is $(s a) \psi=s(a \psi)$ for all $a \in A$ and $s \in S$.

S-Acts

- Let S be a monoid and let A be a non-empty set. We say that A is a left S-act if with the following function $S \times A \rightarrow A$, it satisfies the following conditions;
(i) $1 . a=a$ for all $a \in A$;
(ii) $(s t) a=s(t a)$ for all $s, t \in S$ and $a \in A$.
- A map $\alpha: A \rightarrow B$ from a left S-act A to a left S-act B called an S-morphism if it preserves the action of S, that is $(s a) \psi=s(a \psi)$ for all $a \in A$ and $s \in S$.
- We will denote the category of left S-acts and S-morphism by S-Act.

S-Posets

- Let S be a pomonoid and let A be a partially order set. We say that A is left S-poset if it is an S-act and in addition if $s \leq t$ then sa $\leq t a$ and if $a \leq b$ then $s a \leq s b$ for all $s, t \in S$ and $a, b \in A$.

S-Posets

- Let S be a pomonoid and let A be a partially order set. We say that A is left S-poset if it is an S-act and in addition if $s \leq t$ then sa $\leq t a$ and if $a \leq b$ then sa $\leq s b$ for all $s, t \in S$ and $a, b \in A$.
- An order preserving map $\psi: A \rightarrow B$ from a left S-poset A to a left S-poset B called an S-pomorphism if it preserves the action of S, that is $(s a) \psi=s(a \psi)$ for all $a \in A$ and $s \in S$. We will denote the category of left S-posets and S-pomorphisms by S-Pos.

S-Posets

- Let S be a pomonoid and let A be a partially order set. We say that A is left S-poset if it is an S-act and in addition if $s \leq t$ then sa $\leq t a$ and if $a \leq b$ then $s a \leq s b$ for all $s, t \in S$ and $a, b \in A$.
- An order preserving map $\psi: A \rightarrow B$ from a left S-poset A to a left S-poset B called an S-pomorphism if it preserves the action of S, that is $(s a) \psi=s(a \psi)$ for all $a \in A$ and $s \in S$. We will denote the category of left S-posets and S-pomorphisms by S-Pos.
- An S-act congruence ρ on A is called an S-poset congruence on A if A / ρ can be partially ordered such that it becomes an S-poset and the natural map $\nu: A \rightarrow A / \rho$ is a S-pomorphism.

Definitions

- Projective S-Posets: have the standard categorical definition and will be denoted by $\mathcal{P r}$;

Definitions

- Projective S-Posets: have the standard categorical definition and will be denoted by $\mathcal{P r}$;
- Condition (P): A left S-poset satisfies Condition (P) if, for some $s, t \in S$ and $a, b \in A$, if $s a \leq t b$ then there exists $c \in A, u, v \in S$ such that $a=u c, b=v c$ with $s u \leq t v$. We will denote the class of left S-posets satisfy Condition (P) by \mathcal{P}.

Definitions

- Projective S-Posets: have the standard categorical definition and will be denoted by $\mathcal{P r}$;
- Condition (P): A left S-poset satisfies Condition (P) if, for some $s, t \in S$ and $a, b \in A$, if $s a \leq t b$ then there exists $c \in A, u, v \in S$ such that $a=u c, b=v c$ with $s u \leq t v$. We will denote the class of left S-posets satisfy Condition (P) by \mathcal{P}.
- Condition (E): A left S-poset satisfies Condition (E) if, for some $s, t \in S$ and $a \in A$, if $s a \leq t a$ then there exists $c \in A, u \in S$ such that $a=u c$ with $s u \leq t u$. We will denote the class of left S-posets satisfy Condition (E) by \mathcal{E}.

Definitions

- Projective S-Posets: have the standard categorical definition and will be denoted by $\mathcal{P r}$;
- Condition (P): A left S-poset satisfies Condition (P) if, for some $s, t \in S$ and $a, b \in A$, if $s a \leq t b$ then there exists $c \in A, u, v \in S$ such that $a=u c, b=v c$ with $s u \leq t v$. We will denote the class of left S-posets satisfy Condition (P) by \mathcal{P}.
- Condition (E): A left S-poset satisfies Condition (E) if, for some $s, t \in S$ and $a \in A$, if $s a \leq t a$ then there exists $c \in A, u \in S$ such that $a=u c$ with $s u \leq t u$. We will denote the class of left S-posets satisfy Condition (E) by \mathcal{E}.
- Strongly flat S-posets: are those S-posets which satisfy Conditions (P) and (E), and will be denoted by $\mathcal{S F}$.

Cyclic S-posets satisfying Condition (P)

- Let S be a pomonoid and let B be a ordered left reversible subpomonoid of S and let ρ be the relation on S defined by $s \rho t$ if and only if $s \sigma t \sigma s$ where $s \sigma t$ if there exists $n \in \mathbb{N}$ and $p_{1}, q_{1}, \cdots p_{n}, q_{n} \in B$ and $u_{1}, \cdots u_{n} \in S$ such that

$$
s \leq u_{1} p_{1}, u_{1} q_{1} \leq u_{2} p_{2}, \cdots, u_{n} q_{n} \leq t
$$

then
(i) ρ is a left congruence ;
(ii) $B \subseteq[1]_{\rho}$;
(iii) S / ρ satisfies Condition (P).

We note that left congruence relation ρ defined above is the congruence generated by the relation $B \times B$.

Cyclic S-posets satisfying Condition (P)

- Let S be a pomonoid and let B be a ordered left reversible subpomonoid of S and let ρ be the relation on S defined by $s \rho t$ if and only if $s \sigma t \sigma s$ where $s \sigma t$ if there exists $n \in \mathbb{N}$ and $p_{1}, q_{1}, \cdots p_{n}, q_{n} \in B$ and $u_{1}, \cdots u_{n} \in S$ such that

$$
s \leq u_{1} p_{1}, u_{1} q_{1} \leq u_{2} p_{2}, \cdots, u_{n} q_{n} \leq t
$$

then
(i) ρ is a left congruence ;
(ii) $B \subseteq[1]_{\rho}$;
(iii) S / ρ satisfies Condition (P).

We note that left congruence relation ρ defined above is the congruence generated by the relation $B \times B$.

- Let ρ be a congruence on S such that S / ρ satisfies Condition (P) and $R=[1]$. Then R is a ordered left reversible subpomonoid of S.

Cyclic S-posets which are Strongly Flat

- Let $P \subseteq S$ be a right collapsible subpomonoid and let ρ be the relation on S defined by $s \rho t$ if and only if $s \sigma t \sigma s$, where $s \sigma t$ if there exists $n \in \mathbb{N}$ and $p_{1}, q_{1}, \ldots, p_{n}, q_{n} \in P$ and $u_{1}, \ldots, u_{n} \in S$ such that

$$
s \leq u_{1} p_{1}, u_{1} q_{1} \leq u_{2} p_{2}, \ldots, u_{n} q_{n} \leq t
$$

Then
(i) ρ is a left congruence;
(ii) $P \subseteq[1]$
(iii) S / ρ is strongly flat.

Cyclic S-posets which are Strongly Flat

- Let $P \subseteq S$ be a right collapsible subpomonoid and let ρ be the relation on S defined by $s \rho t$ if and only if $s \sigma t \sigma s$, where $s \sigma t$ if there exists $n \in \mathbb{N}$ and $p_{1}, q_{1}, \ldots, p_{n}, q_{n} \in P$ and $u_{1}, \ldots, u_{n} \in S$ such that

$$
s \leq u_{1} p_{1}, u_{1} q_{1} \leq u_{2} p_{2}, \ldots, u_{n} q_{n} \leq t
$$

Then
(i) ρ is a left congruence;
(ii) $P \subseteq[1]$
(iii) S / ρ is strongly flat.

- Let ρ be a left congruence on S such that S / ρ is strongly flat and let $P=[1]$. Then P is a right collapsible subpomonoid.

Covers of cyclic S-posets

A left S-poset A over a pomonoid S is called a cover for a left S-poset B, if there exists an S-poset epimorphism $\beta: A \rightarrow B$, such that any restriction of β to a proper S-subposet of A is not an S-poepimorphism. Such a map β is called coessential (minimal) S-poepimorphism.

- Theorem: Let S be a pomonoid and σ, σ^{\prime} are left congruences on S. Then S / σ^{\prime} is isomorphic to a cyclic S-subposet of S / σ if and only if there exists $u \in S$ such that $\sigma^{\prime}=\{(s, t) \in S \times S:(s u, t u) \in \sigma\}$.

Covers of cyclic S-posets

A left S-poset A over a pomonoid S is called a cover for a left S-poset B, if there exists an S-poset epimorphism $\beta: A \rightarrow B$, such that any restriction of β to a proper S-subposet of A is not an S-poepimorphism. Such a map β is called coessential (minimal) S-poepimorphism.

- Theorem: Let S be a pomonoid and σ, σ^{\prime} are left congruences on S. Then S / σ^{\prime} is isomorphic to a cyclic S-subposet of S / σ if and only if there exists $u \in S$ such that $\sigma^{\prime}=\{(s, t) \in S \times S:(s u, t u) \in \sigma\}$.
- Theorem: Consider the S-pomonomorphism $h: S / \sigma^{\prime} \rightarrow S / \sigma$ for some $u \in S$ as defined above, then h is onto if and only if $S u \cap[1]_{\sigma} \neq \emptyset$.

Covers of cyclic S-posets

- Theorem: Let S be a pomonoid and ρ a left pocongruence on S. If σ is a left pocongruence on S such that $f: S / \sigma \rightarrow S / \rho$ is a coessential S-poset epimorphism then there exists $u \in S$ such that $S / \sigma_{u} \cong S / \sigma$ and $f^{\prime}: S / \sigma_{u} \rightarrow S / \rho$ given by $\left(s \sigma_{u}\right) f^{\prime}=[s]_{\rho}$ is a S-poset coessential epimorphism. In particular $[1]_{\sigma_{\mu}} \subseteq[1]_{\rho}$.

Covers of cyclic S-posets

- Theorem: Let S be a pomonoid and ρ a left pocongruence on S. If σ is a left pocongruence on S such that $f: S / \sigma \rightarrow S / \rho$ is a coessential S-poset epimorphism then there exists $u \in S$ such that $S / \sigma_{u} \cong S / \sigma$ and $f^{\prime}: S / \sigma_{u} \rightarrow S / \rho$ given by $\left(s \sigma_{u}\right) f^{\prime}=[s]_{\rho}$ is a S-poset coessential epimorphism. In particular $[1]_{\sigma_{u}} \subseteq[1]_{\rho}$.
- Theorem: Let S be a pomonoid, then the S-pomorphism $f: S / \sigma \rightarrow S / \rho$ given by $[s]_{\sigma} \mapsto[s]_{\rho}$ is coessential if and only if $\sigma \subseteq \rho$ and for all $u \in[1]_{\rho}, S u \cap[1]_{\sigma} \neq \emptyset$.

Covers of cyclic S-posets

- Theorem: Let S be a pomonoid and ρ a left pocongruence on S. If σ is a left pocongruence on S such that $f: S / \sigma \rightarrow S / \rho$ is a coessential S-poset epimorphism then there exists $u \in S$ such that $S / \sigma_{u} \cong S / \sigma$ and $f^{\prime}: S / \sigma_{u} \rightarrow S / \rho$ given by $\left(s \sigma_{u}\right) f^{\prime}=[s]_{\rho}$ is a S-poset coessential epimorphism. In particular $[1]_{\sigma_{u}} \subseteq[1]_{\rho}$.
- Theorem: Let S be a pomonoid, then the S-pomorphism $f: S / \sigma \rightarrow S / \rho$ given by $[s]_{\sigma} \mapsto[s]_{\rho}$ is coessential if and only if $\sigma \subseteq \rho$ and for all $u \in[1]_{\rho}, S u \cap[1]_{\sigma} \neq \emptyset$.
- Theorem: Let S be a pomonoid, and S / ρ a cyclic S-sposet. If R is a subpomonoid of $[1]_{\rho}$ such that $S u \cap R \neq \emptyset$ then there exists a left pocongruence σ such that $R \subseteq[1]_{\sigma}$ and S / σ is a cover of S / ρ.

Covers of cyclic S-posets

- Theorem: Let S be a pomonoid and ρ a left pocongruence on S. If σ is a left pocongruence on S such that $f: S / \sigma \rightarrow S / \rho$ is a coessential S-poset epimorphism then there exists $u \in S$ such that $S / \sigma_{u} \cong S / \sigma$ and $f^{\prime}: S / \sigma_{u} \rightarrow S / \rho$ given by $\left(s \sigma_{u}\right) f^{\prime}=[s]_{\rho}$ is a S-poset coessential epimorphism. In particular $[1]_{\sigma_{u}} \subseteq[1]_{\rho}$.
- Theorem: Let S be a pomonoid, then the S-pomorphism $f: S / \sigma \rightarrow S / \rho$ given by $[s]_{\sigma} \mapsto[s]_{\rho}$ is coessential if and only if $\sigma \subseteq \rho$ and for all $u \in[1]_{\rho}, S u \cap[1]_{\sigma} \neq \emptyset$.
- Theorem: Let S be a pomonoid, and S / ρ a cyclic S-sposet. If R is a subpomonoid of $[1]_{\rho}$ such that $S u \cap R \neq \emptyset$ then there exists a left pocongruence σ such that $R \subseteq[1]_{\sigma}$ and S / σ is a cover of S / ρ.
- Theorem: Let S be a pomonoid, and S / ρ a cyclic S-sposet, then the natural map $S \rightarrow S / \rho$ is coessential if and only if $[1]_{\rho}$ is a subgroup of S.

Strongly flat Covers

Let S be a pomonoid and A be an S-poset, we say that A has a strongly flat cover if there exists an coessential S-poepimorphism $\beta: C \rightarrow A$ where C is a strongly flat S-poset.

Condition ($\mathbf{L}^{\mathbf{0}}$): every left pounitary subpomonoid B of S contains a right collapsible subpomonoid R such that for all $u \in B$, $S u \cap R \neq \emptyset$.

- Theorem: Let S be a pomonoid then the cyclic S-poset S / ρ has a strongly flat cover if and only if every left pounitary subpomonoid B contains a right collapsible subpomonoid R such that for all $u \in B, S u \cap R \neq \emptyset$.

Strongly flat Covers

Let S be a pomonoid and A be an S-poset, we say that A has a strongly flat cover if there exists an coessential S-poepimorphism $\beta: C \rightarrow A$ where C is a strongly flat S-poset.

Condition ($\mathbf{L}^{\mathbf{0}}$): every left pounitary subpomonoid B of S contains a right collapsible subpomonoid R such that for all $u \in B$, $S u \cap R \neq \emptyset$.

- Theorem: Let S be a pomonoid then the cyclic S-poset S / ρ has a strongly flat cover if and only if every left pounitary subpomonoid B contains a right collapsible subpomonoid R such that for all $u \in B, S u \cap R \neq \emptyset$.
- Corollary: A pomonoid S satisfies Condition (L°) if and only if every cyclic S-poset has a strongly flat cover.

Condition (P) Covers

Let S be a pomonoid and A be an S-poset, we say that A has a (P) cover if there exists an coessential poepimorphism $\beta: C \rightarrow A$ where C is an S-poset satisfying Condition (P).
Condition ($\mathbf{K}^{\mathbf{0}}$): every left pounitary subpomonoid B of S contains a left reversible subpomonoid R such that for all $u \in B$, Su $\cap R \neq \emptyset$.

- Theorem: Let S be a pomonoid, then every cyclic S-poset has a (P)-cover if and only if every left pounitary subpomonoid B of S contains a left reversible subpomonoid R such that for all $u \in B, S u \cap R \neq \emptyset$.

Condition (P) Covers

Let S be a pomonoid and A be an S-poset, we say that A has a (P) cover if there exists an coessential poepimorphism $\beta: C \rightarrow A$ where C is an S-poset satisfying Condition (P).
Condition ($\mathbf{K}^{\mathbf{0}}$): every left pounitary subpomonoid B of S contains a left reversible subpomonoid R such that for all $u \in B$, Su $\cap R \neq \emptyset$.

- Theorem: Let S be a pomonoid, then every cyclic S-poset has a (P)-cover if and only if every left pounitary subpomonoid B of S contains a left reversible subpomonoid R such that for all $u \in B, S u \cap R \neq \emptyset$.
- Corollary: A pomonoid S satisfies Condition $\left(K^{0}\right)$ if and only if every cyclic S-poset has a (P)-cover.
- Theorem: Let A be a left S-poset that satisfies condition (P) and which also satisfies the ascending chain condition for cyclic subposets. If A is indecomposable then A is cyclic.
- Theorem: Let A be a left S-poset that satisfies condition (P) and which also satisfies the ascending chain condition for cyclic subposets. If A is indecomposable then A is cyclic.
- Theorem: If S satisfies condition $\left(\mathrm{A}^{0}\right)$, then every left S-poset satisfies condition (P) is a disjoint union of cyclic left S-posets satisfies condition (P).

$\mathcal{S F}$-perfect, \mathcal{P}-perfect

Definition: A pomonoid S is $\mathcal{S} \mathcal{F}$-perfect (\mathcal{P}-perfect) if every S-poset has a strongly flat cover (P-cover).

Theorem: Let S be a pomonoid. The follwoing conditions are equivalent;

- (i) S is $\mathcal{S F}$-perfect (\mathcal{P}-perfect);

$\mathcal{S F}$-perfect, \mathcal{P}-perfect

Definition: A pomonoid S is $\mathcal{S F}$-perfect (\mathcal{P}-perfect) if every S-poset has a strongly flat cover (P-cover).

Theorem: Let S be a pomonoid. The follwoing conditions are equivalent;

- (i) S is $\mathcal{S F}$-perfect (\mathcal{P}-perfect);
- (ii) S satisfies condition $\left(\mathrm{A}^{0}\right)$, and every cyclic left S-poset has a strongly flat cover (P-cover);

$\mathcal{S F}$-perfect, \mathcal{P}-perfect

Definition: A pomonoid S is $\mathcal{S F}$-perfect (\mathcal{P}-perfect) if every S-poset has a strongly flat cover (P-cover).

Theorem: Let S be a pomonoid. The follwoing conditions are equivalent;

- (i) S is $\mathcal{S F}$-perfect (\mathcal{P}-perfect);
- (ii) S satisfies condition $\left(\mathrm{A}^{0}\right)$, and every cyclic left S-poset has a strongly flat cover (P-cover);
- (iii) S satisfies condition $\left(\mathrm{A}^{0}\right)$, and $\left(\mathrm{L}^{\mathrm{O}}\right)\left(\left(\mathrm{K}^{\mathrm{O}}\right)\right)$

Pomonoids for which condition (P) implies projective

- Theorem: Let S be a pomonoid. All cyclic left S-posets that satisfy condition (P) are projective if and only if S satisfies the condition
($\mathrm{K}^{\prime} \mathbf{0}$): if $P \subseteq S$ is a ordered left reversible and right po-unitary subpomonoid then P contains a right zero.

Pomonoids for which condition (P) implies projective

- Theorem: Let S be a pomonoid. All cyclic left S-posets that satisfy condition (P) are projective if and only if S satisfies the condition
($\mathrm{K}^{\prime} \mathbf{0}$): if $P \subseteq S$ is a ordered left reversible and right po-unitary subpomonoid then P contains a right zero.
- Theorem: Let S be a pomonoid, S satisfies condition (A^{0}) and $\left(\mathrm{K}^{\prime} \mathrm{O}\right)$ if and only if all S-posets that satisfy condition (P) are projective.

Pomonoids for which condition (P) implies projective

- Theorem: Let S be a pomonoid. All cyclic left S-posets that satisfy condition (P) are projective if and only if S satisfies the condition
($\mathbf{K}^{\prime} \mathbf{O}$): if $P \subseteq S$ is a ordered left reversible and right po-unitary subpomonoid then P contains a right zero.
- Theorem: Let S be a pomonoid, S satisfies condition (A^{0}) and $\left(\mathrm{K}^{\prime} \mathrm{O}\right)$ if and only if all S-posets that satisfy condition (P) are projective.
- Theorem: Let S be a pomonoid such that every left S-poset satisfies Condition (P) is projective. Then S satisfies M_{R}.

Pomonoids for which condition (P) implies projective

- Theorem: Let S be a pomonoid. All cyclic left S-posets that satisfy condition (P) are projective if and only if S satisfies the condition
($\mathbf{K}^{\prime} \mathbf{O}$): if $P \subseteq S$ is a ordered left reversible and right po-unitary subpomonoid then P contains a right zero.
- Theorem: Let S be a pomonoid, S satisfies condition (A^{0}) and $\left(\mathrm{K}^{\prime} \mathrm{O}\right)$ if and only if all S-posets that satisfy condition (P) are projective.
- Theorem: Let S be a pomonoid such that every left S-poset satisfies Condition (P) is projective. Then S satisfies M_{R}.
- Corollary: Let S be a pomonoid such that every left S-poset satisfies Condition (P) is projective then S is left po-perfect.

Pomonoids for which condition (P) implies $\mathcal{S F}$

A pomonoid S is called aperiodic if for every element $x \in S$ there exists $n \in \mathbb{N}$ such that $x^{n}=x^{n+1}$.

- Theorem: S be a aperiodic pomonoid if and only if every non-trivial left reversible(ordered left reversible) monogenic subpomonoid of S contains a right zero.

Pomonoids for which condition (P) implies $\mathcal{S F}$

A pomonoid S is called aperiodic if for every element $x \in S$ there exists $n \in \mathbb{N}$ such that $x^{n}=x^{n+1}$.

- Theorem: S be a aperiodic pomonoid if and only if every non-trivial left reversible(ordered left reversible) monogenic subpomonoid of S contains a right zero.
- Theorem: Let S be an idempotent pomonoid then every left S-poset which satisfies condition (P) is strongly flat.

Pomonoids for which condition (P) implies $\mathcal{S F}$

A pomonoid S is called aperiodic if for every element $x \in S$ there exists $n \in \mathbb{N}$ such that $x^{n}=x^{n+1}$.

- Theorem: S be a aperiodic pomonoid if and only if every non-trivial left reversible(ordered left reversible) monogenic subpomonoid of S contains a right zero.
- Theorem: Let S be an idempotent pomonoid then every left S-poset which satisfies condition (P) is strongly flat.
- Theorem: For any pomonoid S if all cyclic left S-posets that satisfy condition (P) are strongly flat then S is aperiodic pomonoid.
- Theorem: Let S be aperiodic pomonoid which satisfies Condition ($F P_{0}$) then every cyclic left S-poset which satisfies condition (P) is strongly flat.
- Theorem: Let S be aperiodic pomonoid which satisfies Condition ($F P_{0}$) then every cyclic left S-poset which satisfies condition (P) is strongly flat.
- Theorem: Let S be aperiodic pomonoid such that S satisfies condition $\left(F P_{0}\right)$ then every left reversible subpomonoid of S is right collapsible.
- Theorem: Let S be aperiodic pomonoid which satisfies Condition ($F P_{0}$) then every cyclic left S-poset which satisfies condition (P) is strongly flat.
- Theorem: Let S be aperiodic pomonoid such that S satisfies condition $\left(F P_{0}\right)$ then every left reversible subpomonoid of S is right collapsible.
- Theorem: Let S be a pomonoid such that every left reversible subpomonoid S is right collapsible then S is aperiodic.
- Theorem: Let S be aperiodic pomonoid which satisfies Condition ($F P_{0}$) then every cyclic left S-poset which satisfies condition (P) is strongly flat.
- Theorem: Let S be aperiodic pomonoid such that S satisfies condition $\left(F P_{0}\right)$ then every left reversible subpomonoid of S is right collapsible.
- Theorem: Let S be a pomonoid such that every left reversible subpomonoid S is right collapsible then S is aperiodic.
- Theorem: Let S be a pomonoid such that every cyclic left S-poset which satisfies condition (P) is projective then S is aperiodic and satisfies ($F P_{0}$).
- Theorem: Let S be a pomonoid which satisfies condition $\left(F P_{0}\right)$, if S satisfies condition (A) and is aperiodic then all left S-poset that satisfy condition (P) are strongly flat.
- Theorem: Let S be a pomonoid which satisfies condition $\left(F P_{0}\right)$, if S satisfies condition (A) and is aperiodic then all left S-poset that satisfy condition (P) are strongly flat.
- Theorem: Any strongly flat cyclic left S-poset which has a projective cover is projective.
- Theorem: Let S be a pomonoid which satisfies condition ($F P_{0}$), if S satisfies condition (A) and is aperiodic then all left S-poset that satisfy condition (P) are strongly flat.
- Theorem: Any strongly flat cyclic left S-poset which has a projective cover is projective.
- Theorem: Any strongly flat left S-poset which has projective cover is projective.
- Theorem: Let S be a pomonoid which satisfies condition ($F P_{0}$), if S satisfies condition (A) and is aperiodic then all left S-poset that satisfy condition (P) are strongly flat.
- Theorem: Any strongly flat cyclic left S-poset which has a projective cover is projective.
- Theorem: Any strongly flat left S-poset which has projective cover is projective.
- Theorem: Let A be a stronglt flat left S-poset then A is a strongly flat as a left S-act.

Locally Cyclic S-posets

We say that a left S-poset A over a pomonoid S is locally cyclic if every finitely generated S-subposet of A is contained in a cyclic S-poset.

- Theorem: Let S be a pomonoid, and let A be a left S-poset that satisfy condition (P). If A is indecomposable then A is locally cyclic.

Locally Cyclic S-posets

We say that a left S-poset A over a pomonoid S is locally cyclic if every finitely generated S-subposet of A is contained in a cyclic S-poset.

- Theorem: Let S be a pomonoid, and let A be a left S-poset that satisfy condition (P). If A is indecomposable then A is locally cyclic.
- Theorem: Every locally cyclic left S-poset is indecomposable.

Locally Cyclic S-posets

We say that a left S-poset A over a pomonoid S is locally cyclic if every finitely generated S-subposet of A is contained in a cyclic S-poset.

- Theorem: Let S be a pomonoid, and let A be a left S-poset that satisfy condition (P). If A is indecomposable then A is locally cyclic.
- Theorem: Every locally cyclic left S-poset is indecomposable.
- Theorem: A left S-poset A that satisfies condition (P) is indecomposable if and only if it is locally cyclic.

Locally Cyclic S-posets

We say that a left S-poset A over a pomonoid S is locally cyclic if every finitely generated S-subposet of A is contained in a cyclic S-poset.

- Theorem: Let S be a pomonoid, and let A be a left S-poset that satisfy condition (P). If A is indecomposable then A is locally cyclic.
- Theorem: Every locally cyclic left S-poset is indecomposable.
- Theorem: A left S-poset A that satisfies condition (P) is indecomposable if and only if it is locally cyclic.
- Theorem: Any cover of a locally cyclic left S-poset is indecomposable.

Locally Cyclic S-posets

We say that a left S-poset A over a pomonoid S is locally cyclic if every finitely generated S-subposet of A is contained in a cyclic S-poset.

- Theorem: Let S be a pomonoid, and let A be a left S-poset that satisfy condition (P). If A is indecomposable then A is locally cyclic.
- Theorem: Every locally cyclic left S-poset is indecomposable.
- Theorem: A left S-poset A that satisfies condition (P) is indecomposable if and only if it is locally cyclic.
- Theorem: Any cover of a locally cyclic left S-poset is indecomposable.
- Corollaries; For a pomonoid S, the following are true; (i) every projective cover of a locally cyclic left S-poset is cyclic;
(ii) every \mathcal{P}-cover of a locally cyclic left S-act is locally cyclic.

Po-Perfect Pomonoids

Theorem: Let S be a pomonoid, then the following are equivalent;

- (i) S is left po-perfect;

Po-Perfect Pomonoids

Theorem: Let S be a pomonoid, then the following are equivalent;

- (i) S is left po-perfect;
- (ii) every strongly flat left S-poset has a projective cover;

Po-Perfect Pomonoids

Theorem: Let S be a pomonoid, then the following are equivalent;

- (i) S is left po-perfect;
- (ii) every strongly flat left S-poset has a projective cover;
- (iii) S satisfies condition (A) and every cyclic strongly flat left S-poset has a projective cover;

Po-Perfect Pomonoids

Theorem: Let S be a pomonoid, then the following are equivalent;

- (i) S is left po-perfect;
- (ii) every strongly flat left S-poset has a projective cover;
- (iii) S satisfies condition (A) and every cyclic strongly flat left S-poset has a projective cover;
- (iv) every locally cyclic strongly flat left S-poset has a projective cover.

$\mathcal{S F}$-perfect, \mathcal{P}-perfect

Theorem: Let S be a pomonoid, then the following are equivalent;

- (i) S is left $\mathcal{S F}$-perfect (\mathcal{P}-perfect);

$\mathcal{S F}$-perfect, \mathcal{P}-perfect

Theorem: Let S be a pomonoid, then the following are equivalent;

- (i) S is left $\mathcal{S F}$-perfect (\mathcal{P}-perfect);
- (ii) S satisfies condition $\left(\mathrm{A}^{0}\right)$ and every locally cyclic left S-poset has a strongly flat cover (condition (P) cover);

$\mathcal{E} \Rightarrow \mathcal{P}$

- Theorem: Let S be a pomonoid, and let A be a locally cyclic left S-poset. Then A is strongly flat if and only if A satisfies condition (E).

$\mathcal{E} \Rightarrow \mathcal{P}$

- Theorem: Let S be a pomonoid, and let A be a locally cyclic left S-poset. Then A is strongly flat if and only if A satisfies condition (E).
- Theorem: Let S be a pomonoid. Then every left S-poset satisfy condition (E) is strongly flat if and only if indecomposable left S-poset satisfy condition (E) is locally cyclic.

$\mathcal{E} \Rightarrow \mathcal{P}$

- Theorem: Let S be a pomonoid, and let A be a locally cyclic left S-poset. Then A is strongly flat if and only if A satisfies condition (E).
- Theorem: Let S be a pomonoid. Then every left S-poset satisfy condition (E) is strongly flat if and only if indecomposable left S-poset satisfy condition (E) is locally cyclic.
- Corollary: every $\mathcal{S F}$-cover of a locally cyclic left S-poset is locally cyclic.

Examples

- Let S be a ordered right cancellative (right cancellative) pomonoid. The cyclic S-poset S / ρ has a strongly flat cover if and only if $[1]_{\rho}$ is a subgroup of S.

Examples

- Let S be a ordered right cancellative (right cancellative) pomonoid. The cyclic S-poset S / ρ has a strongly flat cover if and only if $[1]_{\rho}$ is a subgroup of S.
- Let S be a pomonoid, and S / ρ a cyclic S-poset. If S contains a ordered right zero (right zero) say z such that $z \in[1]_{\rho}$ then S / ρ has a strongly flat cover.

Examples

- Let S be a ordered right cancellative (right cancellative) pomonoid. The cyclic S-poset S / ρ has a strongly flat cover if and only if $[1]_{\rho}$ is a subgroup of S.
- Let S be a pomonoid, and S / ρ a cyclic S-poset. If S contains a ordered right zero (right zero) say z such that $z \in[1]_{\rho}$ then S / ρ has a strongly flat cover.
- Not all cyclic left S-poset need have a strongly flat cover. For example ($\mathbb{N},$.) under usual ordering having only subgroup $\{1\}$. Then all cyclic S-poset having $[1] \neq\{1\}$ do not have a strongly flat cover.

Examples

- Let S be a ordered right cancellative (right cancellative) pomonoid. The cyclic S-poset S / ρ has a strongly flat cover if and only if $[1]_{\rho}$ is a subgroup of S.
- Let S be a pomonoid, and S / ρ a cyclic S-poset. If S contains a ordered right zero (right zero) say z such that $z \in[1]_{\rho}$ then S / ρ has a strongly flat cover.
- Not all cyclic left S-poset need have a strongly flat cover. For example ($\mathbb{N},$.) under usual ordering having only subgroup $\{1\}$. Then all cyclic S-poset having $[1] \neq\{1\}$ do not have a strongly flat cover.
- If S is a group then every cyclic S-poset has S as a cover. Also each cyclic S-poset have a strongly flat cover.

Examples

- Let S be a ordered right cancellative (right cancellative) pomonoid. The cyclic S-poset S / ρ has a strongly flat cover if and only if $[1]_{\rho}$ is a subgroup of S.
- Let S be a pomonoid, and S / ρ a cyclic S-poset. If S contains a ordered right zero (right zero) say z such that $z \in[1]_{\rho}$ then S / ρ has a strongly flat cover.
- Not all cyclic left S-poset need have a strongly flat cover. For example ($\mathbb{N},$.) under usual ordering having only subgroup $\{1\}$. Then all cyclic S-poset having $[1] \neq\{1\}$ do not have a strongly flat cover.
- If S is a group then every cyclic S-poset has S as a cover. Also each cyclic S-poset have a strongly flat cover.
- Let S be a simple pomonoid, then S satisfies condition (A) and each cyclic S-poset have a cover which satisfies condition (P). Thus S is \mathcal{P}-perfect.

Summary

We have following facts relating to covers

- Projective Cover \Rightarrow Strongly flat Cover $\Rightarrow(P)$ - Cover;

Summary

We have following facts relating to covers

- Projective Cover \Rightarrow Strongly flat Cover $\Rightarrow(P)$ - Cover;
- Covers of cyclic S-poset need not be unique;

Open Problems

- We would like to know either $\left(\mathrm{K}^{\mathrm{O}}\right)$ implies $\left(\mathrm{K}^{\prime} \mathrm{O}\right)$ or not.

Open Problems

- We would like to know either $\left(\mathrm{K}^{\circ}\right)$ implies $\left(\mathrm{K}^{\prime} \mathrm{O}\right)$ or not.
- To characterised those pomonoids for which each S-poset has flat cover, po-flat cover, weakly flat cover and principally weakly flat cover.

Open Problems

- We would like to know either $\left(\mathrm{K}^{\circ}\right)$ implies $\left(\mathrm{K}^{\prime} \mathrm{O}\right)$ or not.
- To characterised those pomonoids for which each S-poset has flat cover, po-flat cover, weakly flat cover and principally weakly flat cover.
- To characterise those conditions on S such that $\mathcal{S F}$-cover and \mathcal{P}-cover are unique;

