Reconsidering MacLane: the foundations of categorical coherence

Peter M. Hines

York - Maths Dept. - Oct. 2013

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

E

Talks is based on:

- Talk at AbramskyFest (Oxford, June 2013)
- Joint Maths / Computing Seminar (Oxford, March 2013)

Topic of talk:

Foundations of category theory & "MacLane's Theorem"

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

< 同 > < 回 > < 回 > ·

Category Theory is simply a calculus of mathematical¹ structures.

It studies:

- Mathematical structures.
- Structure-preserving mappings.
- Transformations between structures.

¹or logical, or computational, or linguistic, or ... < □ > < ♂ > < ≥ > < ≥ > ≥ → へ ?

History & prehistory

It arose from work by:

- Samuel Eilenberg,
- Saunders MacLane,
- in Algebraic Topology.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

크

History & prehistory

It arose from work by:

- Samuel Eilenberg,
- Saunders MacLane,
- in Algebraic Topology.

Later applied (despite protests) in other subjects:	
Theoretical Computing	
Linguistics	
Logic	
Quantum Mechanics	
Foundations of Mathematics	

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ □

크

Precursors to category theory

John von Neumann (1925): Axiomatic theory of *classes*.

A formalism for working with proper classes:

All sets, all monoids, all lattices, &c.

Later became the von Neumann, Gödel, Bernay formalism

- von Neumann originated the theory. (proto-cat. theory)
- Gödel made it logically consistent.
- Bernay rewrote it to look like ZFC set theory

Applications of category theory in various fields

... a large range of texts.

The underlying theory of categories:

"Categories for the Working Mathematician" — S. MacLane (1971)

... examples & applications taken from algebraic topology.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Applications of category theory in various fields

... a large range of texts.

The underlying theory of categories:

"Categories for the Working Mathematician" — S. MacLane (1971)

... examples & applications taken from algebraic topology.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

(日)

A category \mathcal{C} consists of

- A class of objects, *Ob*(*C*).
- For all objects $A, B \in Ob(\mathcal{C})$, a set of arrows $\mathcal{C}(A, B)$.

We will work diagrammatically:

An arrow $f \in C(A, B)$ is drawn as

$$A \xrightarrow{f} B$$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

A (10) + A (10) +

Matching arrows can be composed

Composition is associative

h(gf) = (hg)f

There is an identity 1_A at each object A

(1日) (日) (日) 日

Examples of categories

Monoid

- (Objects:) all monoids.
- (Arrows:) homomorphisms.

Set

- (Objects:) all sets.
- (Arrows:) functions.

Poset

- (Objects:) all partially ordered sets.
- (Arrows:) order-preserving functions.

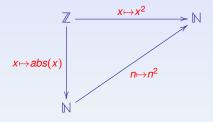
▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

200

臣

Identities and equations are usually expressed graphically.

A diagram in the category Set



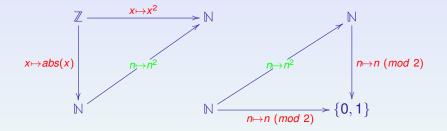
A diagram **commutes** when all paths with the same source / target describe the same arrow.

www.peter.hines.net

< 同 > < 回 > < 回 > -

The art of diagram-chasing

Commuting diagrams can be **pasted** along a common edge.

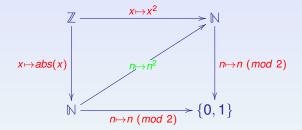


Both the above diagrams commute ...

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Commuting diagrams can be pasted along a common edge.



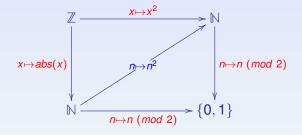
... this diagram also commutes!

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

The art of diagram-chasing

Edges can be **deleted** in commuting diagrams.



. . .

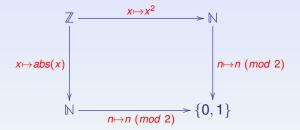
Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ □

크

Edges can be deleted in commuting diagrams.



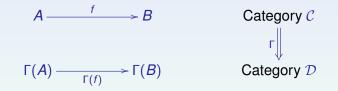
... this is still a commuting diagram.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

A mapping between categories C and D is a **functor** $\Gamma : C \to D$.

- Objects of C are mapped to objects of D.
- Arrows of C are mapped to arrows of D.



www.peter.hines.net

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Functors

Functors must preserve composition and identities.

 $\Gamma(1_X) = 1_{\Gamma(X)}$, $\Gamma(gf) = \Gamma(g)\Gamma(f)$

Functors preserve commutativity of diagrams.

commutes in C

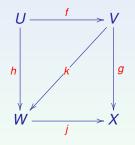
Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Functors must preserve composition and identities.

 $\Gamma(1_X) = 1_{\Gamma(X)}$, $\Gamma(gf) = \Gamma(g)\Gamma(f)$

Functors preserve commutativity of diagrams.



commutes in C

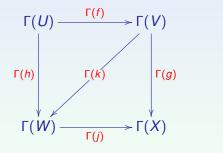
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Functors

Functors must preserve composition and identities.

 $\Gamma(1_X) = 1_{\Gamma(X)}$, $\Gamma(gf) = \Gamma(g)\Gamma(f)$

Functors preserve commutativity of diagrams.



commutes in \mathcal{D}

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q @

Examples of functors (I)

A functor from Set to Monoid.

- Take a set X.
- Form the free monoid X*

(All finite words over X).

Every function $f : X \rightarrow Y$ induces a homomorphism $map(f) : X^* \rightarrow Y^*$

This is a functor $Free : Set \rightarrow Monoid$.

크

Examples of functors (II)

A functor from **Top**_{*} to **Group**.

- Take a pointed topological space T
- Form its fundamental group $\pi_1(T)$

Every continuous map $c: S \rightarrow T$ induces a homomorphism $\pi(f): \pi_1(S) \rightarrow \pi_1(T)$

This is a functor π : **Top** $_* \rightarrow$ **Group**.

・ロト ・四ト ・ヨト ・ヨト

In general:

- finding invariants (e.g. fundamental group, K₀ group, &c.)
- using constructors (e.g. monoid semi-ring construction)
- type re-assignments (e.g. Int \rightarrow Real)
- forming algebraic models

 (e.g. Brouwer-Heyting-Kolmogorov interpretation)

• . . .

are all examples of functors.

• Image: A image:

Monoidal Categories

and

MacLane's Theorem

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Categories with additional structure:

Monoidal Categories \equiv Categories with Tensors.

A **tensor** $_ \otimes _$ on a category is:

a way of combining two objects / arrows to make a new object / arrow of the same category.

- **Objects:** Given X, Y, we can form $X \otimes Y$.
- Arrows: Given f, g, we can form $f \otimes g$.

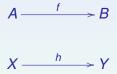
Properties of tensors:

A tensor is a functor:

$$_\otimes_:\mathcal{C}\times\mathcal{C}\to\mathcal{C}$$

Functoriality implies:

1/ Types match:



www.peter.hines.net

(日) (圖) (E) (E) (E)

 $_\otimes_:\mathcal{C}\times\mathcal{C}\to\mathcal{C}$

Functoriality implies:

1/ Types match:

 $A \otimes X \xrightarrow{f \otimes h} B \otimes Y$

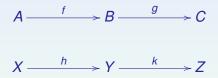
Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

 $_\otimes_:\mathcal{C}\times\mathcal{C}\to\mathcal{C}$

Functoriality implies:

2/ Composition is preserved:



www.peter.hines.net

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 りへで

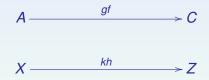
Properties of tensors:

A tensor is a functor:

 $_\otimes_:\mathcal{C}\times\mathcal{C}\to\mathcal{C}$

Functoriality implies:

2/ Composition is preserved:



・ロト ・四ト ・ヨト ・ヨト

臣

 $_\otimes_:\mathcal{C}\times\mathcal{C}\to\mathcal{C}$

Functoriality implies:

2/ Composition is preserved:

 $A \otimes X \xrightarrow{gf \otimes kh} C \otimes Z$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

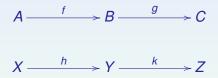
・ロト ・四ト ・ヨト ・ヨト

臣

 $_\otimes_:\mathcal{C}\times\mathcal{C}\to\mathcal{C}$

Functoriality implies:

2/ Composition is preserved:



www.peter.hines.net

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 りへで

 $_\otimes_:\mathcal{C}\times\mathcal{C}\to\mathcal{C}$

Functoriality implies:

2/ Composition is preserved:

$$A \otimes X \xrightarrow{f \otimes h} B \otimes Y \xrightarrow{g \otimes k} C \otimes Z$$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

크

 $_\otimes_:\mathcal{C}\times\mathcal{C}\to\mathcal{C}$

Functoriality implies:

2/ Composition is preserved:

$$A \otimes X \xrightarrow{(g \otimes k)(f \otimes h) = gf \otimes kh} C \otimes Z$$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

크

- Tensor product of Hilbert spaces / bounded linear maps
- Cartesian product (pairing) of Sets / functions
- Direct sum of Vector spaces / matrices
- Disjoint union of Sets / functions
- Combining Binary trees

• ...

<日

<</p>

We also require:

Associativity

 $f \otimes (g \otimes h) = (f \otimes g) \otimes h$

• A unit object $I \in Ob(\mathcal{C})$

 $X \otimes I = X = I \otimes X$ for all objects $X \in Ob(\mathcal{C})$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Monoidal categories <u>usually</u>² have a **unit object** $I \in Ob(C)$ $A \otimes I = A = I \otimes A$ for all objects $A \in Ob(C)$

These are *trivial* objects within a category:

- The single-element set.
- The trivial monoid.
- The empty space.
- The underlying scalar field.
- The trivially true proposition.

A problem, and MacLane's solution

The problem ...

In real-world examples, the condition

$$f \otimes (g \otimes h) = (f \otimes g) \otimes h$$

is almost never satisfied.

... and its solution.

MacLane's theorem lets us pretend that

 $f\otimes (g\otimes h) = (f\otimes g)\otimes h$

with no harmful side-effects.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

A problem, and MacLane's solution

In real-world examples, the condition

$$f \otimes (g \otimes h) = (f \otimes g) \otimes h$$

is almost never satisfied.

MacLane's theorem lets us pretend that

 $f \otimes (g \otimes h) = (f \otimes g) \otimes h$

with no harmful side-effects.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Failure of associativity - an example

Associativity often fails, in a trivial way!

The disjoint union of sets

Given sets A, B,

$$A \uplus B = \{(a,0)\} \cup \{(b,1)\}$$

This is not associative ... for ridiculous reasons.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Non-associativity of disjoint union

• $A \uplus (B \uplus C) =$

$\{(a, \mathbf{0})\} \ \cup \ \{(b, \mathbf{01})\} \ \cup \ \{(c, \mathbf{11})\}$

• $(A \uplus B) \uplus C =$

 $\{(a, 00)\} \cup \{(b, 10)\} \cup \{(c, 1)\}$

These are not the same set - for annoying syntactical reasons.

There is an obvious isomorphism between them ...

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Non-associativity of disjoint union

• $A \uplus (B \uplus C) =$

$\{(a,0)\} \cup \{(b,01)\} \cup \{(c,11)\}$

• $(A \uplus B) \uplus C =$

 $\{(a, 00)\} \cup \{(b, 10)\} \cup \{(c, 1)\}$

These are not the same set - for annoying syntactical reasons.

There is an obvious isomorphism between them ...

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

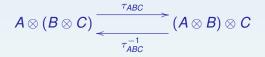
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Replacing equality by isomorphism:

Strict associativity:

$$A \otimes (B \otimes C) \stackrel{=}{\longrightarrow} (A \otimes B) \otimes C$$

Associativity up to isomorphism



Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Provided the associativity isomorphisms satisfy:

naturality

A coherence condition

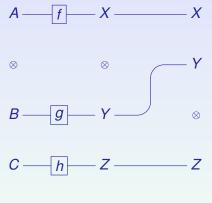
we can ignore them completely.

Natural examples generally satisfy these conditions!

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

We can 'push arrows through associativity isomorphisms'

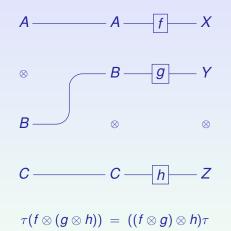


 $\tau(f\otimes (g\otimes h)) \;=\; ((f\otimes g)\otimes h)\tau$

www.peter.hines.net

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ?

We can 'push arrows through associativity isomorphisms'



www.peter.hines.net

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ?

MacLane's coherence condition

The two ways of re-arranging

 $A \otimes (B \otimes (C \otimes D))$

into

 $((A \otimes B) \otimes C) \otimes D$

must be identical.

Also called MacLane's Pentagon condition

 $au \ au \ = \ (au \otimes 1) \ au \ (1 \otimes au)$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

MacLane's coherence condition

The two ways of re-arranging

 $A \otimes (B \otimes (C \otimes D))$

into

 $((A \otimes B) \otimes C) \otimes D$

must be *identical*.

Also called MacLane's Pentagon condition

 $\tau \tau = (\tau \otimes 1) \tau (1 \otimes \tau)$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Rebracketing four symbols

 $A\otimes (B\otimes (C\otimes D))$

 $A \otimes ((B \otimes C) \otimes D)$

 $(A \otimes B) \otimes (C \otimes D)$

 $(A \otimes (B \otimes C)) \otimes D$

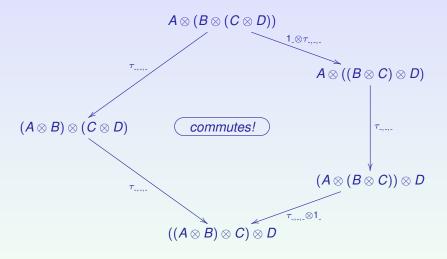
$((A \otimes B) \otimes C) \otimes D$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Yes, there are two paths you can go by, but ...

MacLane's pentagon



Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

- 17

A B K A B K

When we have

- Naturality
- 2 Coherence

every canonical diagram - built up using

 $au_{,,-,-}$, $_\otimes_$ and 1_

is guaranteed to commute.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

<回>< E> < E> < E> = E

590

Given a tensor that is associative up to isomorphism,

$$A \otimes (B \otimes C) \xrightarrow[\tau_{ABC}]{\tau_{ABC}} A \otimes (B \otimes C)$$

We can 'pretend it is strictly associative'

$$A \otimes (B \otimes C) \stackrel{=}{\longrightarrow} A \otimes (B \otimes C)$$

with no "harmful side-effects".

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

The theory of coherence has written itself out of existence!

By appealing to MacLane's theorem ...

We can completely ignore questions of coherence,

naturality, pentagons, canonical diagrams, &c.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

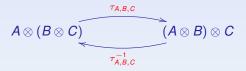
www.peter.hines.net

• 同 • • 三 • • 三 •

Two common descriptions of MacLane's theorem:

Every canonical diagram commutes.

2 We can treat



as a strict identity

$$A \otimes B \otimes C$$
 — $=$ $A \otimes B \otimes C$

with no 'harmful side-effects'.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

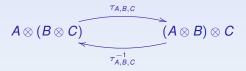
< 47 ▶

A B F A B F

Two inaccurate descriptions of MacLane's theorem:

Every canonical diagram commutes.

We can treat



as a strict identity

$$A \otimes B \otimes C$$
 — $=$ $A \otimes B \otimes C$

with no 'harmful side-effects'.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

• (日本)

• Not every canonical diagram commutes.

```
(Claim 1)
```

 Treating associativity isomorphisms as strict identities can have major consequences.³

(Claim 2)

³everything collapses to a triviality ...

・ロト ・雪 ・ ・ ヨ ・

A simple example:

The **Cantor monoid** \mathcal{U} (single-object category).

- Single object N.
- Arrows: all bijections on N.

The tensor

We have a tensor
$$(_\star_) : \mathcal{U} \times \mathcal{U} \to \mathcal{U}$$
.

$$(f \star g)(n) = \begin{cases} 2.f\left(\frac{n}{2}\right) & n \text{ even,} \\ 2.g\left(\frac{n-1}{2}\right) + 1 & n \text{ odd.} \end{cases}$$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Properties of the Cantor monoid (I)

The Cantor monoid has only one object ----

 $\mathbb{N} \star (\mathbb{N} \star \mathbb{N}) = \mathbb{N} = (\mathbb{N} \star \mathbb{N}) \star \mathbb{N}$

 $(-\star _{-}): \mathcal{U} \times \mathcal{U} \to \mathcal{U}$ is associative up to a natural isomorphism

$$\tau(n) = \begin{cases} 2n & n \pmod{2} = 0, \\ n+1 & n \pmod{4} = 1, \\ \frac{n-1}{2} & n \pmod{4} = 3. \end{cases}$$

that satisfies MacLane's pentagon condition.

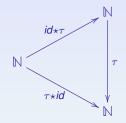
This is not the identity map!

www.peter.hines.net

(ロ) (部) (E) (E) (E)

Properties of the Cantor monoid (II)

Not all canonical diagrams commute:



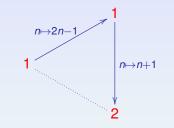
This diagram does not commute.

www.peter.hines.net

(B) (A) (B) (A)

Properties of the Cantor monoid (II)

Using an actual number:



On the upper path, $1 \mapsto 2$.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

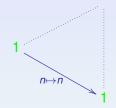
www.peter.hines.net

個 とく ヨ とく ヨ とう

臣

Properties of the Cantor monoid (II)

Taking the right hand path:



 $1 \neq 2$, so this diagram does *not* commute.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

글 🕨 🗉 🖻

What does MacLane's thm. actually say?

oherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲@ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

990

"Hines uses MacLane's theorem – **the fact that all canonical diagrams commute** – to construct a large class of examples where"

— Anonymous Referee

(Category Theory / Theoretical Computing journal).

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

... ask the experts:

http://en.wikipedia.org/wiki/Monoidal_category

"It follows that **any diagram** whose morphisms are built using [canonical isomorphisms], identities and tensor product commutes."

・ロ・・ 日・ ・ 日・ ・ 日・

Untangling The Web – N.S.A. guide to internet use

- Do not as a rule rely on Wikipedia as your sole source of information.
- The best thing about Wikipedia are the <u>external links</u> from entries.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Categories for the working mathematician (1^{st} ed.)

- Moreover all diagrams involving [canonical iso.s] must commute. (p. 158)
- These three [coherence] diagrams imply that "all" such diagrams commute. (p. 159)
- We can only prove that every "formal" diagram commutes. (p. 161)

・ロト ・四ト ・ヨト ・ヨト

Categories for the working mathematician (1st ed.)

- Moreover all diagrams involving [canonical iso.s] must commute. (p. 158)
- These three [coherence] diagrams imply that "all" such diagrams commute. (p. 159)
- We can only prove that every "formal" diagram commutes.
 (p. 161)

・ロト ・四ト ・ヨト ・ヨト

Categories for the working mathematician (1^{st} ed.)

- Moreover all diagrams involving [canonical iso.s] must commute. (p. 158)
- These three [coherence] diagrams imply that "all" such diagrams commute. (p. 159)

• We can only prove that every "formal" diagram commutes. (p. 161)

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Categories for the working mathematician (1^{st} ed.)

- Moreover all diagrams involving [canonical iso.s] must commute. (p. 158)
- These three [coherence] diagrams imply that "all" such diagrams commute. (p. 159)
- We can only prove that every "formal" diagram commutes. (p. 161)

MacLane's coherence theorem for associativity

All diagrams *within the image of a certain functor* are guaranteed to commute.

This **usually** means all canonical diagrams.

In some circumstances, this is **not** the case.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Dissecting MacLane's theorem

- a closer look

A technicality:

In common with MacLane, we study monogenic categories.

Objects are generated by:

- Some object S,
- The tensor $(_ \otimes _)$.

This is not a restriction — S is thought of as a 'variable symbol'

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

900

Dissecting MacLane's theorem

- a closer look

A technicality:

In common with MacLane, we study monogenic categories.

Objects are generated by:

- Some object S,
- The tensor $(_ \otimes _)$.

This is not a restriction — S is thought of as a 'variable symbol'.

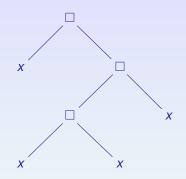
Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

The source of the functor

(Buxus Sempervirens)

This is based on (non-empty) binary trees.



- Leaves labelled by *x*,
- Branchings labelled by \Box .

The **rank** of a tree is the number of leaves.

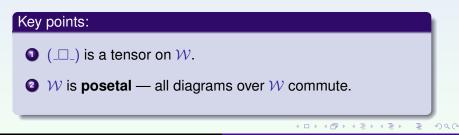
A posetal category of trees

MacLane's category \mathcal{W} .

• (Objects) All non-empty binary trees.

• (Arrows) A unique arrow between any two trees of the same rank.

— write this as $(v \leftarrow u) \in W(u, v)$.



MacLane's theorem relies on a monoidal (i.e. tensor-preserving) functor

 $\mathcal{W}\textit{Sub}:(\mathcal{W},\Box) \to (\mathcal{C},\otimes)$

This is based on a notion of *substitution*.

i.e. mapping formal symbols to concrete objects & arrows.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

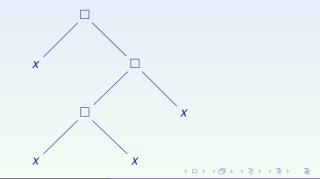
www.peter.hines.net

The functor itself

On objects:

- WSub(x) = S,
- $WSub(u \Box v) = WSub(u) \otimes WSub(v).$

An object of \mathcal{W} :



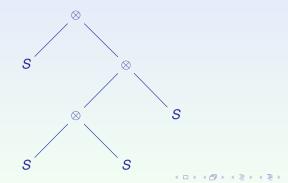
Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

On objects:

- WSub(x) = S,
- $WSub(u \Box v) = WSub(u) \otimes WSub(v).$

An object of C:



크

On arrows:

- $WSub(u \leftarrow u) = 1_.$
- $WSub(a\Box v \leftarrow a\Box u) = 1 \otimes WSub(v \leftarrow u).$
- $WSub(v \Box b \leftarrow u \Box b) = WSub(v \leftarrow u) \otimes 1$.
- $WSub((a \Box b) \Box c \leftarrow a \Box (b \Box c)) = \tau_{-,-,-}$

The role of the Pentagon

The Pentagon condition $\implies WSub$ is a monoidal functor.

www.peter.hines.net

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆

On arrows:

- $WSub(u \leftarrow u) = 1_.$
- $WSub(a\Box v \leftarrow a\Box u) = 1 \otimes WSub(v \leftarrow u).$
- $WSub(v \Box b \leftarrow u \Box b) = WSub(v \leftarrow u) \otimes 1_.$
- $WSub((a \Box b) \Box c \leftarrow a \Box (b \Box c)) = \tau_{-,-,-}$.

The role of the Pentagon

The Pentagon condition $\implies WSub$ is a monoidal functor.

DQC

On arrows:

- $WSub(u \leftarrow u) = 1_.$
- $WSub(a\Box v \leftarrow a\Box u) = 1 \otimes WSub(v \leftarrow u).$
- $WSub(v \Box b \leftarrow u \Box b) = WSub(v \leftarrow u) \otimes 1_.$
- $WSub((a\Box b)\Box c \leftarrow a\Box(b\Box c)) = \tau_{-,-,-}$.

The role of the Pentagon

The Pentagon condition $\implies WSub$ is a monoidal functor.

www.peter.hines.net

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

On arrows:

- $WSub(u \leftarrow u) = 1_.$
- $WSub(a\Box v \leftarrow a\Box u) = 1 \otimes WSub(v \leftarrow u).$
- $WSub(v \Box b \leftarrow u \Box b) = WSub(v \leftarrow u) \otimes 1_.$
- $WSub((a\Box b)\Box c \leftarrow a\Box(b\Box c)) = \tau_{,.,.}$.

The role of the Pentagon

The Pentagon condition $\implies WSub$ is a monoidal functor.

We have a functor $\mathcal{W}Sub$: $(\mathcal{W}, \Box) \to (\mathcal{C}, \otimes)$.

- Every **object** of C is the image of an object of W
- Every canonical arrow of C is the image of an arrow of W
- Every diagram over W commutes.

As a corollary:

The image of every diagram in (W, \Box) commutes in (C, \otimes) .

Question: Are all canonical diagrams in the image of *WSub*? - This is only the case when *WSub* is an *embedding*!

We have a functor $WSub : (W, \Box) \to (\mathcal{C}, \otimes)$.

- Every **object** of \mathcal{C} is the image of an object of \mathcal{W}
- Every canonical arrow of C is the image of an arrow of W
- Every **diagram** over \mathcal{W} commutes.

As a corollary:

The image of every diagram in (W, \Box) commutes in (\mathcal{C}, \otimes) .

Question: Are all canonical diagrams in the image of *WSub*? – This is only the case when *WSub* is an *embedding*!

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

We have a functor $WSub : (W, \Box) \to (\mathcal{C}, \otimes)$.

- Every **object** of C is the image of an object of W
- Every canonical arrow of $\mathcal C$ is the image of an arrow of $\mathcal W$
- Every **diagram** over \mathcal{W} commutes.

As a corollary:

The image of every diagram in (W, \Box) commutes in (\mathcal{C}, \otimes) .

Question: Are all canonical diagrams in the image of *WSub*? - This is only the case when *WSub* is an *embedding*!

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

We have a functor $WSub : (W, \Box) \to (\mathcal{C}, \otimes)$.

- Every **object** of \mathcal{C} is the image of an object of \mathcal{W}
- Every canonical arrow of $\mathcal C$ is the image of an arrow of $\mathcal W$
- Every **diagram** over \mathcal{W} commutes.

As a corollary:

The image of every diagram in (W, \Box) commutes in (\mathcal{C}, \otimes) .

Question: Are all canonical diagrams in the image of WSub? — This is only the case when WSub is an *embedding*!

<<p>・

We have a functor $WSub : (W, \Box) \to (\mathcal{C}, \otimes)$.

- Every **object** of \mathcal{C} is the image of an object of \mathcal{W}
- Every canonical arrow of $\mathcal C$ is the image of an arrow of $\mathcal W$
- Every **diagram** over \mathcal{W} commutes.

As a corollary:

The image of every diagram in (W, \Box) commutes in (C, \otimes) .

Question: Are all canonical diagrams in the image of *WSub*? – This is only the case when *WSub* is an *embedding*!

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲御▶ ▲理▶ ▲理▶

We have a functor $WSub : (W, \Box) \to (\mathcal{C}, \otimes)$.

- Every **object** of \mathcal{C} is the image of an object of \mathcal{W}
- Every canonical arrow of $\mathcal C$ is the image of an arrow of $\mathcal W$
- Every **diagram** over \mathcal{W} commutes.

As a corollary:

The image of every diagram in (W, \Box) commutes in (C, \otimes) .

Question: Are all canonical diagrams in the image of WSub?

- This is only the case when *WSub* is an *embedding*!

▲□ → ▲ □ → ▲ □ → □

"A beautiful (useful) theory slain by an ugly counterexample"?

A full theory of coherence for associativity is:

- more mathematically elegant,
- much more practically useful!

$\mathcal{WSub}: (\mathcal{W}, \Box) \to (\mathcal{C}, \otimes)$ can **never** be an

embedding when \mathcal{C} has a **finite** set of objects.

The Cantor monoid has precisely one object

Where did this come from?

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

크

Hilbert's Hotel

A children's story about infinity.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

(日)

Hilbert's "Grand Hotel"

An infinite corridor, with rooms numbered 0, 1, 2, 3, ...

 $\mathbb{N} \hookrightarrow \mathbb{N}$ the successor function. $\mathbb{N} \cong \mathbb{N} \boxplus \mathbb{N}$ the Cantor pairing. $\mathbb{N} \cong \mathbb{N} \times \mathbb{N}$ an exercise! $[\mathbb{N} \to \{0,1\}]$ is not isomorphic to \mathbb{N}

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$\mathbb{N} \hookrightarrow \mathbb{N}$	the successor function.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

$\mathbb{N} \hookrightarrow \mathbb{N}$	the successor function.
$\mathbb{N}\cong \mathbb{N} \uplus \mathbb{N}$	the Cantor pairing.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

$\mathbb{N} \hookrightarrow \mathbb{N}$	the successor function.
$\mathbb{N}\cong \mathbb{N} \uplus \mathbb{N}$	the Cantor pairing.
$\mathbb{N}\cong\mathbb{N}\times\mathbb{N}$	an exercise!

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

$\mathbb{N} \hookrightarrow \mathbb{N}$	the successor function.
$\mathbb{N}\cong \mathbb{N} \uplus \mathbb{N}$	the Cantor pairing.
$\mathbb{N}\cong\mathbb{N}\times\mathbb{N}$	an exercise!
$[\mathbb{N} \to \{0,1\}]$	is not isomorphic to $\ensuremath{\mathbb{N}}$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

The categorical identity $S \cong S \otimes S$

Exhibited by two canonical isomorphisms:

- (Code) $\lhd : S \otimes S \rightarrow S$
- (Decode) $\rhd: S \to S \otimes S$

These are *unique* (up to *unique isomorphism*).

Examples

● The natural numbers N, Separable Hilbert spaces, Infinite matrices, Cantor set & other fractals, &c.

- *C-monoids, and other untyped (single-object) categories with tensors*
- Any unit object I of a monoidal category ...

The categorical identity $S \cong S \otimes S$

Exhibited by two canonical isomorphisms:

- (Code) $\lhd : S \otimes S \rightarrow S$
- (Decode) $\rhd : S \to S \otimes S$

These are *unique* (up to *unique isomorphism*).

Examples

- The natural numbers ℕ, Separable Hilbert spaces, Infinite matrices, Cantor set & other fractals, &c.
- C-monoids, and other untyped (single-object) categories with tensors
- Any unit object I of a monoidal category ...

A tensor on a single object

At a self-similar object S, we may define a tensor by

 $(-\star -)$ makes C(S, S) a single-object monoidal category!

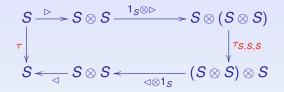
Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

< 同 ▶ < 臣 ▶ < 臣 ▶ ... 臣

Associativity at a single object

The tensor $(_ \star _)$ is associative up to isomorphism.



Claim: This is the identity arrow *precisely when* the object *S* is trivial.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Associativity at a single object

The tensor $(_ \star _)$ is associative up to isomorphism.

Claim: This is the identity arrow *precisely when* the object *S* is trivial.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

constructing

categories where all

canonical diagrams commute

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲帰▶ ▲臣▶ ★臣▶ ─ 臣

Given a **badly-behaved** category (\mathcal{C}, \otimes) , we can build a **well-behaved** (non-strict) version.

Think of this as the **Platonic Ideal** of (\mathcal{C}, \otimes) .

We (still) assume C is *monogenic*, with objects generated by $\{S, _ \otimes _\}$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

<日

<</p>

We will construct Plat_C

A version of C for which W*Sub* is an *embedding*.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

크

Constructing Plat_C

Objects are free binary trees

There is an instantiation map $Inst : Ob(Plat_{\mathcal{C}}) \rightarrow Ob(\mathcal{C})$

$S \Box ((S \Box S) \Box S) \mapsto S \otimes ((S \otimes S) \otimes S)$

This is not just a matter of syntax!

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

크

What about arrows?

Homsets are copies of homsets of $\ensuremath{\mathcal{C}}$

Given trees T_1 , T_2 ,

 $Plat_{\mathcal{C}}(T_1, T_2) = \mathcal{C}(Inst(T_1), Inst(T_2))$

Composition is inherited from C in the obvious way.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

The tensor (\Box) : $Plat_{\mathcal{C}} \times Plat_{\mathcal{C}} \rightarrow Plat_{\mathcal{C}}$

The tensor of $Plat_{\mathcal{C}}$ is

- (Objects) A free formal pairing, A□B,
- (Arrows) Inherited from (\mathcal{C}, \otimes) , so $f \Box g \stackrel{\text{def.}}{=} f \otimes g$.

www.peter.hines.net

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - の Q @

Some properties of the platonic ideal ...

The functor

$\mathcal{W}Sub: (\mathcal{W}, \Box) \rightarrow (\mathit{Plat}_{\mathcal{C}}, \Box)$

is always monic.

As a corollary: All canonical diagrams of $(Plat_{\mathcal{C}}, \Box)$ commute

Instantiation defines an epic monoidal functor

 $\mathit{Inst}:(\mathit{Plat}_{\mathcal{C}},\Box)\to(\mathcal{C},\otimes)$

through which McL'.s substitution functor always factors.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Some properties of the platonic ideal ...

The functor

$$\mathcal{W}$$
Sub : $(\mathcal{W}, \Box) \rightarrow (Plat_{\mathcal{C}}, \Box)$

is always monic.

As a corollary:

All canonical diagrams of $(Plat_{\mathcal{C}}, \Box)$ commute.

Instantiation defines an epic monoidal functor

 $\mathit{Inst}:(\mathit{Plat}_{\mathcal{C}},\Box)\to(\mathcal{C},\otimes)$

through which McL'.s substitution functor always factors.

Some properties of the platonic ideal ...

The functor

$$\mathcal{W}$$
Sub : $(\mathcal{W}, \Box) \rightarrow (Plat_{\mathcal{C}}, \Box)$

is always monic.

As a corollary:

All canonical diagrams of $(Plat_{\mathcal{C}}, \Box)$ commute.

Instantiation defines an epic monoidal functor

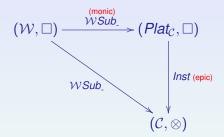
 $\mathit{Inst}:(\mathit{Plat}_{\mathcal{C}},\Box)\to(\mathcal{C},\otimes)$

through which McL'.s substitution functor always factors.

(日本) (日本) (日本)

A monic / epic decomposition

MacLane's substitution functor always factors through the platonic ideal:



This gives a monic / epic decomposition of his functor.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

A highly relevant question ...

What does the Platonic Ideal of a **single-object** category actually look like?

The simplest possible case:

The trivial monoidal category (\mathcal{I}, \otimes) .

- Objects: $Ob(\mathcal{I}) = \{x\}.$
- Arrows: $I(x, x) = \{1_x\}.$

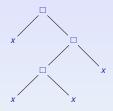
Tensor:

$$x \otimes x = x$$
, $\mathbf{1}_x \otimes \mathbf{1}_x = \mathbf{1}_x$

A (10) + A (10) +

What is the platonic ideal of \mathcal{I} ?

(Objects) All non-empty binary trees:



(Arrows) For all trees T_1 , T_2 ,

 $Plat_{\mathcal{I}}(T_1, T_2)$ is a single-element set.

There is a unique arrow between any two trees!

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

(PhD Thesis) The prototypical self-similar category (\mathcal{X}, \Box)

- Objects: All non-empty binary trees.
- Arrows: A unique arrow between any two objects.

This monoidal category:

- **(**) was introduced to study **self-similarity** $S \cong S \otimes S$,
- **②** contains MacLane's (W, □) as a subcategory.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Coherence for Self-Similarity

(a special case of a much more general theory)

e in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

590

臣

A straightforward coherence theorem

We base this on the category (\mathcal{X}, \Box)

- Objects All non-empty binary trees.
- Arrows A unique arrow between any two trees.

This category is posetal — all diagrams over \mathcal{X} commute.

We will define a monoidal substitution functor:

$\mathcal{X}\textit{Sub}: (\mathcal{X}, \Box) \to (\mathcal{C}, \otimes)$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

The self-similarity substitution functor

An inductive definition of \mathcal{X} Sub : $(\mathcal{X}, \Box) \to (\mathcal{C}, \otimes)$

On objects:

$$\begin{array}{rccc} x & \mapsto & S \\ u \Box v & \mapsto & \mathcal{X} Sub(u) \otimes \mathcal{X} Sub(v) \end{array}$$

On arrows:

$$(x \leftarrow x) \quad \mapsto \quad \mathbf{1}_{S} \in \mathcal{C}(S, S)$$

$$(x \leftarrow x \Box x) \quad \mapsto \quad \lhd \in \mathcal{C}(S \otimes S, S)$$

 $(x \Box x \leftarrow x) \quad \mapsto \quad \rhd \in \mathcal{C}(S, S \otimes S)$

 $(b \Box v \leftarrow a \Box u) \mapsto \mathcal{X} Sub(b \leftarrow a) \otimes \mathcal{X} Sub(v \leftarrow u)$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

$\textcircled{O} \ \mathcal{X}Sub: (\mathcal{X}, \Box) \to (\mathcal{C}, \otimes) \text{ is always functorial.}$

Every arrow built up from

 $\{\triangleleft\,,\,\triangleright\,,\,\mathbf{1}_{\mathcal{S}}\,,\,_{-}\otimes\,_{-}\}$

is the image of an arrow in \mathcal{X} .

(1) The image of every diagram in $\mathcal X$ commutes.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶

$\textcircled{O} \ \mathcal{X}Sub: (\mathcal{X}, \Box) \to (\mathcal{C}, \otimes) \text{ is always functorial.}$

2 Every arrow built up from

$$\{\triangleleft\,,\,\vartriangleright\,,\,\textbf{1}_{\mathcal{S}}\,,\,_\otimes\,_\}$$

is the image of an arrow in \mathcal{X} .

(1) The image of every diagram in ${\mathcal X}$ commutes.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

- $\textcircled{O} \ \mathcal{X}Sub: (\mathcal{X}, \Box) \to (\mathcal{C}, \otimes) \text{ is always functorial.}$
- 2 Every arrow built up from

$$\{\triangleleft\,,\,\vartriangleright\,,\,\mathbf{1}_{\mathcal{S}}\,,\,_\otimes\,_\}$$

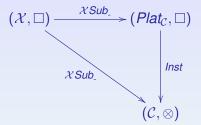
is the image of an arrow in \mathcal{X} .

③ The image of every diagram in \mathcal{X} commutes.

(ロ) (部) (E) (E) (E)

\mathcal{X} Sub factors through the Platonic ideal

There is a monic-epic decomposition of \mathcal{X} Sub.



Every canonical (for self-similarity) diagram in $(Plat_{\mathcal{C}}, \Box)$ commutes.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

< □→ < □→ < □→ □ □

Relating associativity and self-similarity

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

Comparing the associativity and self-similarity categories.

Objects: Binary trees.

Arrows: Unique arrow between two trees *of the same rank*.

The category (\mathcal{X}, \Box)

Objects: Binary trees.

Arrows: Unique arrow between

any two trees.

There is an obvious inclusion $(\mathcal{W}, \Box) \hookrightarrow (\mathcal{X}, \Box)$

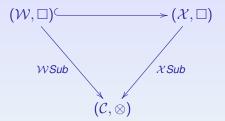
Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

(ロ) (部) (E) (E) (E)

Is associativity a restriction of self-similarity?

Does the following diagram commute?



Does the associativity functor

factor through

the self-similarity functor?

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

• Image: A image:

Proof by contradiction:

Let's assume this is the case.

Special arrows of (\mathcal{X}, \Box)

For arbitrary trees *u*, *e*, *v*,

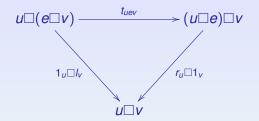
$$t_{uev} = ((u \Box e) \Box v \leftarrow u \Box (e \Box v)$$
$$l_v = (v \leftarrow e \Box v)$$
$$r_u = (u \leftarrow u \Box e)$$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

・ロト ・四ト ・ヨト ・ヨト

The following diagram over (\mathcal{X}, \Box) commutes:



Let's apply $\mathcal{X}Sub$ to this diagram.

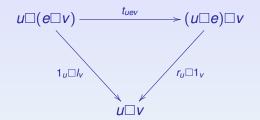
By Assumption: $t_{uev} \mapsto \tau_{U,E,V}$ (assoc. iso.)

Notation: $u \mapsto U$, $v \mapsto V$, $e \mapsto E$, $l_v \mapsto \lambda_V$, $r_u \mapsto \rho_U$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

The following diagram over (\mathcal{X}, \Box) commutes:



Let's apply \mathcal{X} Sub to this diagram.

By Assumption: $t_{uev} \mapsto \tau_{U,E,V}$ (assoc. iso.)

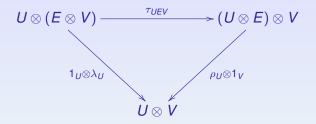
Notation: $u \mapsto U$, $v \mapsto V$, $e \mapsto E$, $l_v \mapsto \lambda_V$, $r_u \mapsto \rho_U$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

・ロト ・四ト ・ヨト ・ヨト

The following diagram over (\mathcal{C}, \otimes) commutes:



This is MacLane's **units triangle** — the defining equation for a unit (trivial) object.

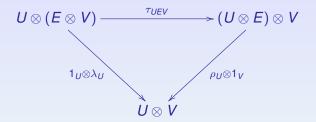
The choice of e was arbitrary — every object is trivial!

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

• # • • = • • = •

The following diagram over (\mathcal{C}, \otimes) commutes:

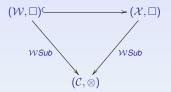


This is MacLane's **units triangle** — the defining equation for a unit (trivial) object.

The choice of e was arbitrary - every object is trivial!

A general result

The following diagram commutes



exactly when (\mathcal{C}, \otimes) is degenerate —

i.e. all objects are trivial.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

□▶★■▶★■▶

臣

An important special case:

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

What is strict self-similarity?

Can the code / decode maps

$$\lhd: S \otimes S \rightarrow S \ , \ arprop : S \rightarrow S \otimes S$$

be strict identities?

We only have one object, so $S \otimes S = S$.

Take the identity as both the code and decode arrows.

Untyped = Strictly Self-Similar.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

What is strict self-similarity?

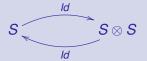
Can the code / decode maps

$$\lhd: S \otimes S \rightarrow S \ , \ arprop : S \rightarrow S \otimes S$$

be strict identities?

In single-object monoidal categories:

We only have one object, so $S \otimes S = S$.



Take the identity as both the code and decode arrows.

Untyped \equiv Strictly Self-Similar.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Generalising Isbell's argument

Strict associativity: A ⊗ (B ⊗ C)=(A ⊗ B) ⊗ C All arrows of (W, □) are mapped to identities of (C, ⊗)

Strict self-similarity: S ⊗ S=S. All arrows of (X, □) are mapped to the identity of (C, ⊗).

W*Sub* trivially factors through X*Sub*.

The conclusion

Strictly associative untyped monoidal categories are degenerate.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

This is seen in various fields ...

We see special cases of this in many areas:

• (Monoid Theory)

Congruence-freeness (e.g. the polycyclic monoids).

• (Group Theory)

No normal subgroups (e.g. Thompson's group \mathcal{F}).

(λ calculus / Logic)

Hilbert-Post completeness / Girard's dynamical algebra.

(Linguistics)

Recently (re)discovered ... not yet named!

Another way of looking at things:

The 'No Simultaneous Strictness' Theorem

One cannot have both

- (I) Associativity $A \otimes (B \otimes C) \cong (A \otimes B) \otimes C$
- (II) Self-Similarity $S \cong S \otimes S$

as strict equalities.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net