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Previous versions

Talks is based on:

Talk at AbramskyFest (Oxford, June 2013)

Joint Maths / Computing Seminar (Oxford, March 2013)

Topic of talk:

Foundations of category theory & “MacLane’s Theorem”
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(The ideas behind) category theory

Category Theory is simply

a calculus of mathematical1 structures.

It studies:
Mathematical structures.

Structure-preserving mappings.

Transformations between structures.

1or logical, or computational, or linguistic, or . . .
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History & prehistory

It arose from work by:

Samuel Eilenberg,

Saunders MacLane,

in Algebraic Topology.

Later applied (despite protests) in other subjects:

Theoretical Computing . . .
Linguistics . . .
Logic . . .
Quantum Mechanics . . .
Foundations of Mathematics . . .
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Precursors to category theory

John von Neumann (1925): Axiomatic theory of classes.

A formalism for working with proper classes:

All sets, all monoids, all lattices, &c.

Later became the von Neumann, Gödel, Bernay formalism

von Neumann originated the theory. (proto-cat. theory)

Gödel made it logically consistent.

Bernay rewrote it to look like ZFC set theory ....
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Category Theory textbooks

Applications of category theory in various fields

. . . a large range of texts.

The underlying theory of categories:

“Categories for the Working Mathematician”
— S. MacLane (1971)

... examples & applications taken from algebraic topology.
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The definition ...

A category C consists of

A class of objects, Ob(C).

For all objects A,B ∈ Ob(C), a set of arrows C(A,B).

We will work diagrammatically:

An arrow f ∈ C(A,B) is drawn as

A f // B
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The axioms ...

Matching arrows can be composed

A f //

gf ��

B

g
��

C

Composition is associative

h(gf ) = (hg)f

There is an identity 1A at each object A
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Examples of categories

Monoid

(Objects:) all monoids.

(Arrows:) homomorphisms.

Set

(Objects:) all sets.

(Arrows:) functions.

Poset

(Objects:) all partially ordered sets.

(Arrows:) order-preserving functions.
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Diagrams in categories

Identities and equations are usually expressed graphically.

A diagram in the category Set

Z x 7→x2
//

x 7→abs(x)

��

N

N

n 7→n2

::

A diagram commutes when all paths with the same
source / target describe the same arrow.
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The art of diagram-chasing

Commuting diagrams can be pasted along a common edge.

Z x 7→x2
//

x 7→abs(x)

��

N N

n 7→n (mod 2)

��
N

n 7→n2

::

N
n 7→n (mod 2)

//

n 7→n2

99

{0,1}

Both the above diagrams commute . . .
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The art of diagram-chasing

Edges can be deleted in commuting diagrams.

Z x 7→x2
//

x 7→abs(x)

��

N

n 7→n (mod 2)

��
N

n 7→n (mod 2)
//

n 7→n2

99

{0,1}

. . .
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The art of diagram-chasing

Edges can be deleted in commuting diagrams.

Z x 7→x2
//

x 7→abs(x)

��

N

n 7→n (mod 2)

��
N

n 7→n (mod 2)
// {0,1}

. . . this is still a commuting diagram.
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Maps between categories

A mapping between categories C and D is a functor Γ : C → D.

Objects of C are mapped to objects of D.

Arrows of C are mapped to arrows of D.

A f // B Category C

Γ
��

Γ(A)
Γ(f )

// Γ(B) Category D
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Functors

Functors must preserve composition and identities.

Γ(1X ) = 1Γ(X) , Γ(gf ) = Γ(g)Γ(f )

Functors preserve commutativity of diagrams.

U f //

h

��

V

g

��

k

��

commutes in C

W
j

// X

Coherence in Hilbert’s hotel arXiv[math.CT]:1304.5954 www.peter.hines.net



Functors

Functors must preserve composition and identities.

Γ(1X ) = 1Γ(X) , Γ(gf ) = Γ(g)Γ(f )

Functors preserve commutativity of diagrams.

U f //

h

��

V

g

��

k

��

commutes in C

W
j

// X

Coherence in Hilbert’s hotel arXiv[math.CT]:1304.5954 www.peter.hines.net



Functors

Functors must preserve composition and identities.

Γ(1X ) = 1Γ(X) , Γ(gf ) = Γ(g)Γ(f )

Functors preserve commutativity of diagrams.

Γ(U)
Γ(f ) //

Γ(h)

��

Γ(V )

Γ(g)

��

Γ(k)

~~

commutes in D

Γ(W )
Γ(j)

// Γ(X )
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Examples of functors (I)

A functor from Set to Monoid.

Take a set X .

Form the free monoid X ∗ (All finite words over X).

Every function f : X → Y

induces a homomorphism

map(f ) : X ∗ → Y ∗

This is a functor Free : Set→ Monoid.
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Examples of functors (II)

A functor from Top∗ to Group.

Take a pointed topological space T

Form its fundamental group π1(T )

Every continuous map
c : S → T

induces a homomorphism

π(f ) : π1(S)→ π1(T )

This is a functor π : Top∗ → Group.
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A sweeping generalisation

In general:

finding invariants (e.g. fundamental group, K0 group, &c.)

using constructors (e.g. monoid semi-ring construction)

type re-assignments (e.g. Int→ Real)

forming algebraic models
(e.g. Brouwer-Heyting-Kolmogorov interpretation)

. . .

are all examples of functors.
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Monoidal Categories

and

MacLane’s Theorem
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Categories with additional structure:

Monoidal Categories ≡ Categories with Tensors.

A tensor ⊗ on a category is:

a way of combining two objects / arrows
to make a new object / arrow of the same category.

Objects: Given X ,Y , we can form X ⊗ Y .

Arrows: Given f ,g, we can form f ⊗ g.
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Properties of tensors:

A tensor is a functor:

⊗ : C × C → C

Functoriality implies:

1/ Types match:

A f // B

X h // Y
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Properties of tensors:

A tensor is a functor:

⊗ : C × C → C

Functoriality implies:

1/ Types match:

A⊗ X f⊗h // B ⊗ Y
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Properties of tensors:

A tensor is a functor:

⊗ : C × C → C

Functoriality implies:

2/ Composition is preserved:

A f // B
g // C

X h // Y k // Z
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Properties of tensors:

A tensor is a functor:

⊗ : C × C → C

Functoriality implies:

2/ Composition is preserved:

A⊗ X f⊗h // B ⊗ Y
g⊗k // C ⊗ Z

Coherence in Hilbert’s hotel arXiv[math.CT]:1304.5954 www.peter.hines.net



Properties of tensors:

A tensor is a functor:

⊗ : C × C → C

Functoriality implies:

2/ Composition is preserved:

A⊗ X
(g⊗k)(f⊗h)=gf⊗kh // C ⊗ Z
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Familiar examples

Tensor product of Hilbert spaces / bounded linear maps

Cartesian product (pairing) of Sets / functions

Direct sum of Vector spaces / matrices

Disjoint union of Sets / functions

Combining Binary trees

. . .
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The final conditions

We also require:

Associativity

f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h

A unit object I ∈ Ob(C)

X ⊗ I = X = I ⊗ X for all objects X ∈ Ob(C)
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Trivial objects

Monoidal categories usually2 have a unit object I ∈ Ob(C)

A⊗ I = A = I ⊗ A for all objects A ∈ Ob(C)

These are trivial objects within a category:

The single-element set.

The trivial monoid.

The empty space.

The underlying scalar field.

The trivially true proposition.

2
Part of the original definition. Later shown not to be essential (Saavedra72 / Kock08 / PH13).

Coherence in Hilbert’s hotel arXiv[math.CT]:1304.5954 www.peter.hines.net



A problem, and MacLane’s solution

The problem ...
In real-world examples, the condition

f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h

is almost never satisfied.

... and its solution.
MacLane’s theorem lets us pretend that

f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h

with no harmful side-effects.
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Failure of associativity - an example

Associativity often fails, in a trivial way!

The disjoint union of sets
Given sets A,B,

A ] B = {(a,0)} ∪ {(b,1)}

This is not associative . . . for ridiculous reasons.
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Non-associativity of disjoint union

A ] (B ] C) =

{(a,0)} ∪ {(b,01)} ∪ {(c,11)}

(A ] B) ] C =

{(a,00)} ∪ {(b,10)} ∪ {(c,1)}

These are not the same set – for annoying syntactical reasons.

There is an obvious isomorphism between them ...
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Replacing equality by isomorphism:

Strict associativity:

A⊗ (B ⊗ C)
=

(A⊗ B)⊗ C

Associativity up to isomorphism

A⊗ (B ⊗ C)

τABC //
(A⊗ B)⊗ C

τ−1
ABC

oo
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How to ignore isomorphisms

Provided the associativity isomorphisms satisfy:

1 naturality

2 A coherence condition

we can ignore them completely.

Natural examples generally satisfy these conditions!
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Naturality

We can ‘push arrows through associativity isomorphisms’

A f

⊗

X

⊗

X

Y

⊗B g Y

C h Z Z

τ(f ⊗ (g ⊗ h)) = ((f ⊗ g)⊗ h)τ
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Naturality

We can ‘push arrows through associativity isomorphisms’

A

⊗

A f X

B g

⊗

Y

⊗B

C C h Z

τ(f ⊗ (g ⊗ h)) = ((f ⊗ g)⊗ h)τ
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Coherence

MacLane’s coherence condition

The two ways of re-arranging

A⊗ (B ⊗ (C ⊗ D))

into
((A⊗ B)⊗ C)⊗ D

must be identical.

Also called MacLane’s Pentagon condition

τ τ = (τ ⊗ 1) τ (1⊗ τ)
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Rebracketing four symbols

A⊗ (B ⊗ (C ⊗ D))

A⊗ ((B ⊗ C)⊗ D)

(A⊗ B)⊗ (C ⊗ D)

(A⊗ (B ⊗ C))⊗ D

((A⊗ B)⊗ C)⊗ D
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Yes, there are two paths you can go by, but ...

MacLane’s pentagon

A⊗ (B ⊗ (C ⊗ D))
1 ⊗τ , ,

))τ , ,

zz

A⊗ ((B ⊗ C)⊗ D)

τ , ,

��

(A⊗ B)⊗ (C ⊗ D)

τ , ,

$$

commutes!

(A⊗ (B ⊗ C))⊗ D

τ , , ⊗1uu
((A⊗ B)⊗ C)⊗ D
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MacLane’s coherence theorem:

When we have
1 Naturality
2 Coherence

every canonical diagram – built up using

τ , , , ⊗ and 1

is guaranteed to commute.
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A consequence:

Given a tensor that is associative up to isomorphism,

A⊗ (B ⊗ C)

τABC //
A⊗ (B ⊗ C)

τ−1
ABC

oo

We can ‘pretend it is strictly associative’

A⊗ (B ⊗ C)
= A⊗ (B ⊗ C)

with no “harmful side-effects”.
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The conclusion

The theory of coherence has written

itself out of existence!

By appealing to MacLane’s theorem ...

We can completely ignore questions of coherence,

naturality, pentagons, canonical diagrams, &c.
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Two common descriptions of MacLane’s theorem:

1 Every canonical diagram commutes.

2 We can treat

A⊗ (B ⊗ C)

τA,B,C

++
(A⊗ B)⊗ C

τ−1
A,B,C

kk

as a strict identity

A⊗ B ⊗ C = A⊗ B ⊗ C

with no ‘harmful side-effects’.
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Two inaccurate descriptions of MacLane’s theorem:

1 Every canonical diagram commutes.

2 We can treat

A⊗ (B ⊗ C)

τA,B,C

++
(A⊗ B)⊗ C

τ−1
A,B,C

kk

as a strict identity

A⊗ B ⊗ C = A⊗ B ⊗ C

with no ‘harmful side-effects’.
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Two contrary claims:

Not every canonical diagram commutes.

(Claim 1)

Treating associativity isomorphisms as
strict identities can have major consequences.3

(Claim 2)

3everything collapses to a triviality ...
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A simple example:

The Cantor monoid U (single-object category).
Single object N.
Arrows: all bijections on N.

The tensor

We have a tensor ( ? ) : U × U → U .

(f ? g)(n) =


2.f
(n

2

)
n even,

2.g
(n−1

2

)
+ 1 n odd.
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Properties of the Cantor monoid (I)

The Cantor monoid has only one object —

N ? (N ? N) = N = (N ? N) ? N

( ? ) : U × U → U is associative up to a natural isomorphism

τ(n) =


2n n (mod 2) = 0,
n + 1 n (mod 4) = 1,
n−1

2 n (mod 4) = 3.

that satisfies MacLane’s pentagon condition.

This is not the identity map!
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Properties of the Cantor monoid (II)

Not all canonical diagrams commute:

N

τ

��

N

id?τ
88

τ?id
&&
N

This diagram does not commute.
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Properties of the Cantor monoid (II)

Using an actual number:

1

n 7→n+1

��

1

n 7→2n−1
88

2

On the upper path, 1 7→ 2.
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Properties of the Cantor monoid (II)

Taking the right hand path:

1

n 7→n
&& 1

1 6= 2, so this diagram does not commute.
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What does MacLane’s thm. actually say?
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A recent (May 2013) report

“Hines uses MacLane’s theorem – the fact

that all canonical diagrams commute – to

construct a large class of examples where . . . ”

— Anonymous Referee

(Category Theory / Theoretical Computing journal).
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If in doubt ...

. . . ask the experts:

http://en.wikipedia.org/wiki/Monoidal category

“It follows that any diagram whose
morphisms are built using [canonical
isomorphisms], identities and tensor
product commutes.”
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Tinker, Tailor, Soldier, Sarcasm

Untangling The Web – N.S.A. guide to internet use

Do not as a rule rely on Wikipedia
as your sole source of information.
The best thing about Wikipedia are
the external links from entries.
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MacLane, on MacLane’s theorem

Categories for the working mathematician (1st ed.)

Moreover all diagrams involving [canonical iso.s] must
commute. (p. 158)

These three [coherence] diagrams imply that “all” such
diagrams commute. (p. 159)

We can only prove that every “formal” diagram commutes.
(p. 161)
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What does his theorem say?

MacLane’s coherence theorem for associativity

All diagrams within the image of a certain
functor are guaranteed to commute.

This usually means all canonical diagrams.

In some circumstances, this is not the case.
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Dissecting MacLane’s theorem

— a closer look

A technicality:
In common with MacLane, we study monogenic categories.

Objects are generated by:

Some object S,

The tensor ( ⊗ ).

This is not a restriction — S is thought of as a ‘variable symbol’.
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The source of the functor (Buxus Sempervirens)

This is based on (non-empty) binary trees.

�

x �

� x

x x

Leaves labelled by x ,

Branchings labelled by �.

The rank of a tree is the number of leaves.
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A posetal category of trees

MacLane’s categoryW.

(Objects) All non-empty binary trees.

(Arrows) A unique arrow between any two trees
of the same rank.

— write this as (v ← u) ∈ W(u, v).

Key points:

1 ( � ) is a tensor onW.

2 W is posetal — all diagrams overW commute.
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MacLane’s Substitution Functor

MacLane’s theorem relies on a monoidal
(i.e. tensor-preserving) functor

WSub : (W,�)→ (C,⊗)

This is based on a notion of substitution.

i.e. mapping formal symbols to concrete objects & arrows.
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The functor itself

On objects:

WSub(x) = S,

WSub(u�v) =WSub(u)⊗WSub(v).

An object ofW:

�

x �

� x

x x
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An inductively defined functor (I)

On objects:

WSub(x) = S,

WSub(u�v) =WSub(u)⊗WSub(v).

An object of C:
⊗

S ⊗

⊗ S

S S
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An inductively defined functor (II)

On arrows:

WSub(u ← u) = 1 .

WSub(a�v ← a�u) = 1 ⊗WSub(v ← u).

WSub(v�b ← u�b) =WSub(v ← u)⊗ 1 .

WSub((a�b)�c ← a�(b�c)) = τ , , .

The role of the Pentagon

The Pentagon condition =⇒ WSub is a monoidal functor.
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The story so far ...

We have a functorWSub : (W,�)→ (C,⊗).

Every object of C is the image of an object ofW

Every canonical arrow of C is the image of an arrow ofW

Every diagram overW commutes.

As a corollary:

The image of every diagram in (W ,�) commutes in (C,⊗).

Question: Are all canonical diagrams in the image ofWSub?

– This is only the case whenWSub is an embedding!
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“A beautiful (useful) theory slain by
an ugly counterexample”?

A full theory of coherence for associativity is:

more mathematically elegant,

much more practically useful!
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single-object categories

WSub : (W,�)→ (C,⊗) can never be an

embedding when C has a finite set of objects.

The Cantor monoid has precisely one object

Where did this come from?
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Hilbert’s Hotel

A children’s story about infinity.
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Hilbert’s “Grand Hotel”

An infinite corridor, with rooms numbered 0,1,2,3, . . .

N ↪→ N the successor function.

N ∼= N ] N the Cantor pairing.

N ∼= N× N an exercise!

[N→ {0,1}] is not isomorphic to N
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Self-similarity

The categorical identity S ∼= S ⊗ S

Exhibited by two canonical isomorphisms:

(Code) C : S ⊗ S → S

(Decode) B : S → S ⊗ S

These are unique (up to unique isomorphism).

Examples

The natural numbers N, Separable Hilbert spaces,
Infinite matrices, Cantor set & other fractals, &c.

C-monoids, and other untyped (single-object) categories with
tensors

Any unit object I of a monoidal category . . .
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A tensor on a single object

At a self-similar object S, we may define a tensor by

S ⊗ S t⊗u // S ⊗ S

C
��

S

B

OO

t?u
// S

( ? ) makes C(S,S) a single-object monoidal category!
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Associativity at a single object

The tensor ( ? ) is associative up to isomorphism.

S B //

τ

��

S ⊗ S
1S⊗B // S ⊗ (S ⊗ S)

τS,S,S

��
S S ⊗ S

C
oo (S ⊗ S)⊗ S

C⊗1S

oo

Claim: This is the identity arrow

precisely when

the object S is trivial.
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constructing

categories where all

canonical diagrams commute
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How to Rectify the Anomaly

Given a badly-behaved category (C,⊗), we can

build a well-behaved (non-strict) version.

Think of this as the Platonic Ideal of (C,⊗).

We (still) assume C is monogenic, with objects generated by {S, ⊗ }
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Building the ‘Platonic Ideal’

We will construct PlatC

A version of C for whichWSub is an embedding.
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Constructing PlatC

Objects are free binary trees
�

S �

� S

S S

Leaves labelled by S ∈ Ob(C),

Branchings labelled by �.

There is an instantiation map Inst : Ob(PlatC)→ Ob(C)

S�((S�S)�S) 7→ S ⊗ ((S ⊗ S)⊗ S)

This is not just a matter of syntax!
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Constructing PlatC

What about arrows?

Homsets are copies of homsets of C

Given trees T1,T2,

PlatC(T1,T2) = C(Inst(T1), Inst(T2))

Composition is inherited from C in the obvious way.
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The tensor ( � ) : PlatC × PlatC → PlatC

A f // X

A�X
f�g // B�Y

B g // Y



The tensor of PlatC is

(Objects) A free formal pairing, A�B,

(Arrows) Inherited from (C,⊗), so f�g def .
= f ⊗ g.
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Some properties of the platonic ideal ...

1 The functor

WSub : (W,�)→ (PlatC ,�)

is always monic.

2 As a corollary:

All canonical diagrams of (PlatC ,�) commute.

3 Instantiation defines an epic monoidal functor

Inst : (PlatC ,�)→ (C,⊗)

through which McL’.s substitution functor always factors.
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A monic / epic decomposition

MacLane’s substitution functor always factors
through the platonic ideal:

(W,�)

(monic)
WSub //

WSub

$$

(PlatC ,�)

Inst (epic)

��
(C,⊗)

This gives a monic / epic decomposition of his functor.
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A highly relevant question ...

What does the Platonic Ideal of a single-object category

actually look like?

The simplest possible case:

The trivial monoidal category (I,⊗).

Objects: Ob(I) = {x}.

Arrows: I(x , x) = {1x}.

Tensor:
x ⊗ x = x , 1x ⊗ 1x = 1x
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What is the platonic ideal of I?

(Objects) All non-empty binary trees:

�

x �

� x

x x

(Arrows) For all trees T1,T2,

PlatI(T1,T2) is a single-element set.

There is a unique arrow between any two trees!
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A la recherche du tensors perdu

(PhD Thesis) The prototypical self-similar category (X ,�)

Objects: All non-empty binary trees.

Arrows: A unique arrow between any two objects.

This monoidal category:

1 was introduced to study self-similarity S ∼= S ⊗ S,

2 contains MacLane’s (W,�) as a subcategory.
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Coherence for Self-Similarity

(a special case of a much more general theory)
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A straightforward coherence theorem

We base this on the category (X ,�)

Objects All non-empty binary trees.

Arrows A unique arrow between any two trees.

This category is posetal — all diagrams over X commute.

We will define a monoidal substitution functor:

XSub : (X ,�)→ (C,⊗)
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The self-similarity substitution functor

An inductive definition of XSub : (X ,�)→ (C,⊗)

On objects:

x 7→ S
u�v 7→ XSub(u)⊗XSub(v)

On arrows:

(x ← x) 7→ 1S ∈ C(S,S)

(x ← x�x) 7→ C ∈ C(S ⊗ S,S)
(x�x ← x) 7→ B ∈ C(S,S ⊗ S)

(b�v ← a�u) 7→ XSub(b ← a)⊗XSub(v ← u)
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Interesting properties:

1 XSub : (X ,�)→ (C,⊗) is always functorial.

2 Every arrow built up from

{C , B , 1S , ⊗ }

is the image of an arrow in X .

3 The image of every diagram in X commutes.

Coherence in Hilbert’s hotel arXiv[math.CT]:1304.5954 www.peter.hines.net



Interesting properties:

1 XSub : (X ,�)→ (C,⊗) is always functorial.

2 Every arrow built up from

{C , B , 1S , ⊗ }

is the image of an arrow in X .

3 The image of every diagram in X commutes.

Coherence in Hilbert’s hotel arXiv[math.CT]:1304.5954 www.peter.hines.net



Interesting properties:

1 XSub : (X ,�)→ (C,⊗) is always functorial.

2 Every arrow built up from

{C , B , 1S , ⊗ }

is the image of an arrow in X .

3 The image of every diagram in X commutes.

Coherence in Hilbert’s hotel arXiv[math.CT]:1304.5954 www.peter.hines.net



XSub factors through the Platonic ideal

There is a monic-epic decomposition of XSub.

(X ,�)
XSub //

XSub

$$

(PlatC ,�)

Inst

��
(C,⊗)

Every canonical (for self-similarity) diagram
in (PlatC ,�) commutes.
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Relating associativity and self-similarity
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A tale of two functors

Comparing the associativity and self-similarity categories.

MacLane’s (W,�)

Objects: Binary trees.

Arrows: Unique arrow between

two trees of the same rank.

The category (X ,�)

Objects: Binary trees.

Arrows: Unique arrow between

any two trees.

There is an obvious inclusion (W,�) ↪→ (X ,�)
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Is associativity a restriction of self-similarity?

Does the following diagram commute?

(W,�) �
� //

WSub

��

(X ,�)

XSub

��
(C,⊗)

Does the associativity functor

factor through

the self-similarity functor?
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Proof by contradiction:

Let’s assume this is the case.

Special arrows of (X ,�)

For arbitrary trees u,e, v ,

tuev = ((u�e)�v ← u�(e�v))

lv = (v ← e�v)

ru = (u ← u�e)
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Since all diagrams over X commute:

The following diagram over (X ,�) commutes:

u�(e�v)
tuev //

1u�lv

��

(u�e)�v

ru�1v

��
u�v

Let’s apply XSub to this diagram.

By Assumption: tuev 7→ τU,E ,V (assoc. iso.)

Notation: u 7→ U , v 7→ V , e 7→ E , lv 7→ λV , ru 7→ ρU
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Since all diagrams over X commute:

The following diagram over (C,⊗) commutes:

U ⊗ (E ⊗ V )
τUEV //

1U⊗λU

  

(U ⊗ E)⊗ V

ρU⊗1V

~~
U ⊗ V

This is MacLane’s units triangle
— the defining equation for a unit (trivial) object.

The choice of e was arbitrary — every object is trivial!
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A general result

The following diagram commutes

(W,�) �
� //

WSub

��

(X ,�)

WSub

��
(C,⊗)

exactly when (C,⊗) is degenerate —

i.e. all objects are trivial.
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An important special case:
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What is strict self-similarity?

Can the code / decode maps

C : S ⊗ S → S , B : S → S ⊗ S

be strict identities?

In single-object monoidal categories:

We only have one object, so S ⊗ S = S.

S

Id
**
S ⊗ S

Id

gg

Take the identity as both the code and decode arrows.

Untyped ≡ Strictly Self-Similar.
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Generalising Isbell’s argument

1 Strict associativity: A⊗ (B ⊗ C)=(A⊗ B)⊗ C
All arrows of (W,�) are mapped to
identities of (C,⊗)

2 Strict self-similarity: S ⊗ S=S.
All arrows of (X ,�) are mapped to
the identity of (C,⊗).

WSub trivially factors through XSub.

The conclusion

Strictly associative untyped monoidal categories are degenerate.
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This is seen in various fields ...

We see special cases of this in many areas:

(Monoid Theory)

Congruence-freeness (e.g. the polycyclic monoids).

(Group Theory)

No normal subgroups (e.g. Thompson’s group F).

(λ calculus / Logic)

Hilbert-Post completeness / Girard’s dynamical algebra.

(Linguistics)

Recently (re)discovered ... not yet named!
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Another perspective ...

Another way of looking at things:

The ‘No Simultaneous Strictness’ Theorem

One cannot have both

(I) Associativity A⊗ (B ⊗ C) ∼= (A⊗ B)⊗ C

(II) Self-Similarity S ∼= S ⊗ S

as strict equalities.
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