Reconsidering MacLane: the foundations of categorical coherence

Peter M. Hines

York - Maths Dept. - Oct. 2013

Previous versions

Talks is based on:

- Talk at AbramskyFest (Oxford, June 2013)
- Joint Maths / Computing Seminar (Oxford, March 2013)

Topic of talk:

Foundations of category theory \& "MacLane's Theorem"

(The ideas behind) category theory

Category Theory is simply

a calculus of mathematical ${ }^{1}$ structures.

It studies:

- Mathematical structures.
- Structure-preserving mappings.
- Transformations between structures.
${ }^{1}$ or logical, or computational, or linguistic, or

History \& prehistory

It arose from work by:

- Samuel Eilenberg,
- Saunders MacLane,
in Algebraic Topology.

It arose from work by:

- Samuel Eilenberg,
- Saunders MacLane,
in Algebraic Topology.

Later applied (despite protests) in other subjects:

> Theoretical Computing Linguistics
> Logic
> Quantum Mechanics
> Foundations of Mathematics

Precursors to category theory

John von Neumann (1925): Axiomatic theory of classes.
A formalism for working with proper classes:
All sets, all monoids, all lattices, \&c.

Later became the von Neumann, Gödel, Bernay formalism

- von Neumann originated the theory. (proto-cat. theory)
- Gödel made it logically consistent.
- Bernay rewrote it to look like ZFC set theory

Category Theory textbooks

Applications of category theory in various fields
... a large range of texts.

The underlying theory of categories:
"Catenories for the Whorking N/athematician'

Category Theory textbooks

Applications of category theory in various fields
... a large range of texts.

The underlying theory of categories:

"Categories for the Working Mathematician"
 - S. MacLane (1971)

... examples \& applications taken from algebraic topology.

A category \mathcal{C} consists of

- A class of objects, $\mathrm{Ob}(\mathcal{C})$.
- For all objects $A, B \in O b(\mathcal{C})$, a set of arrows $\mathcal{C}(A, B)$.

We will work diagrammatically:
An arrow $f \in \mathcal{C}(A, B)$ is drawn as

$$
A \xrightarrow{f} B
$$

- Matching arrows can be composed

- Composition is associative

$$
h(g f)=(h g) f
$$

- There is an identity 1_{A} at each object A

Examples of categories

- Monoid
- (Objects:) all monoids.
- (Arrows:) homomorphisms.
- Set
- (Objects:) all sets.
- (Arrows:) functions.
- Poset
- (Objects:) all partially ordered sets.
- (Arrows:) order-preserving functions.

Diagrams in categories

Identities and equations are usually expressed graphically.
A diagram in the category Set

A diagram commutes when all paths with the same source / target describe the same arrow.

The art of diagram-chasing

Commuting diagrams can be pasted along a common edge.

Both the above diagrams commute ...

The art of diagram-chasing

Commuting diagrams can be pasted along a common edge.

... this diagram also commutes!

The art of diagram-chasing

Edges can be deleted in commuting diagrams.

The art of diagram-chasing

Edges can be deleted in commuting diagrams.

...this is still a commuting diagram.

Maps between categories

A mapping between categories \mathcal{C} and \mathcal{D} is a functor $\Gamma: \mathcal{C} \rightarrow \mathcal{D}$.

- Objects of \mathcal{C} are mapped to objects of \mathcal{D}.
- Arrows of \mathcal{C} are mapped to arrows of D.

$$
\begin{gathered}
A \xrightarrow{f} B \\
\Gamma(A) \xrightarrow[\Gamma(f)]{ } \Gamma(B)
\end{gathered}
$$

Category \mathcal{C}
「 \downarrow
Category \mathcal{D}

Functors

Functors must preserve composition and identities.

$$
\Gamma\left(1_{x}\right)=1_{\Gamma(x)}, \quad \Gamma(g f)=\Gamma(g) \Gamma(f)
$$

Functors must preserve composition and identities.

$$
\Gamma\left(1_{X}\right)=1_{\Gamma(x)} \quad, \quad \Gamma(g f)=\Gamma(g) \Gamma(f)
$$

Functors preserve commutativity of diagrams.

commutes in \mathcal{C}

Functors must preserve composition and identities.

$$
\Gamma\left(1_{X}\right)=1_{\Gamma(X)} \quad, \quad \Gamma(g f)=\Gamma(g) \Gamma(f)
$$

Functors preserve commutativity of diagrams.

commutes in \mathcal{D}

Examples of functors (I)

A functor from Set to Monoid.

- Take a set X.
- Form the free monoid $X^{*} \quad$ (All finite words over X).

Every function $f: X \rightarrow Y$ induces a homomorphism

$$
\operatorname{map}(f): X^{*} \rightarrow Y^{*}
$$

This is a functor Free : Set \rightarrow Monoid.

Examples of functors (II)

A functor from Top ${ }_{*}$ to Group.

- Take a pointed topological space T
- Form its fundamental group $\pi_{1}(T)$

Every continuous map

$$
c: S \rightarrow T
$$

induces a homomorphism

$$
\pi(f): \pi_{1}(S) \rightarrow \pi_{1}(T)
$$

This is a functor π : Top $_{*} \rightarrow$ Group.

A sweeping generalisation

In general:

- finding invariants (e.g. fundamental group, K_{0} group, \&c.)
- using constructors (e.g. monoid semi-ring construction)
- type re-assignments (e.g. Int \rightarrow Real)
- forming algebraic models
(e.g. Brouwer-Heyting-Kolmogorov interpretation)
- ...
are all examples of functors.

Monoidal Categories

and
MacLane's Theorem

Categories with additional structure:

Monoidal Categories \equiv Categories with Tensors.

A tensor _ $\otimes_{\text {_ }}$ on a category is:
a way of combining two objects / arrows to make a new object / arrow of the same category.

- Objects: Given X, Y, we can form $X \otimes Y$.
- Arrows: Given f, g, we can form $f \otimes g$.

Properties of tensors:

A tensor is a functor:

$$
\otimes_{-}: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}
$$

Functoriality implies:
1/ Types match:

$$
\begin{aligned}
& A \xrightarrow{f} B \\
& X \longrightarrow \quad h
\end{aligned}
$$

Properties of tensors:

A tensor is a functor:

$$
__{-} \otimes_{-}: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}
$$

Functoriality implies:
1/ Types match:

$$
A \otimes X \xrightarrow{f \otimes h} B \otimes Y
$$

Properties of tensors:

A tensor is a functor:

$$
__{-}^{\otimes} \quad: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}
$$

Functoriality implies:
2/ Composition is preserved:

$$
\begin{aligned}
& A \longrightarrow \xrightarrow{f} B \xrightarrow{g} C \\
& X \xrightarrow{h} Y \xrightarrow{k} Z
\end{aligned}
$$

Properties of tensors:

A tensor is a functor:

$$
__{-} \otimes_{_}: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}
$$

Functoriality implies:
2/ Composition is preserved:

Properties of tensors:

A tensor is a functor:

$$
__{-}{ }_{-}: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}
$$

Functoriality implies:
2/ Composition is preserved:

$$
A \otimes X \xrightarrow{g f \otimes k h} C \otimes Z
$$

Properties of tensors:

A tensor is a functor:

$$
__{-}^{\otimes} \quad: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}
$$

Functoriality implies:
2/ Composition is preserved:

$$
\begin{aligned}
& A \longrightarrow \xrightarrow{f} B \xrightarrow{g} C \\
& X \xrightarrow{h} Y \xrightarrow{k} Z
\end{aligned}
$$

Properties of tensors:

A tensor is a functor:

$$
__{-}{ }_{-}: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}
$$

Functoriality implies:
2/ Composition is preserved:

$$
A \otimes X \xrightarrow{f \otimes h} B \otimes Y \xrightarrow{g \otimes k} C \otimes Z
$$

Properties of tensors:

A tensor is a functor:

$$
__{-}: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}
$$

Functoriality implies:
2/ Composition is preserved:

$$
A \otimes X \xrightarrow{(g \otimes k)(f \otimes h)=g f \otimes k h} C \otimes Z
$$

- Tensor product of Hilbert spaces / bounded linear maps
- Cartesian product (pairing) of Sets / functions
- Direct sum of Vector spaces / matrices
- Disjoint union of Sets / functions
- Combining Binary trees
- ...

We also require:

- Associativity

$$
f \otimes(g \otimes h)=(f \otimes g) \otimes h
$$

- A unit object $I \in O b(\mathcal{C})$

$$
X \otimes I=X=I \otimes X \text { for all objects } X \in O b(\mathcal{C})
$$

Trivial objects

Monoidal categories usually ${ }^{2}$ have a unit object $I \in O b(\mathcal{C})$

$$
A \otimes I=A=I \otimes A \quad \text { for all objects } A \in O b(\mathcal{C})
$$

These are trivial objects within a category:

- The single-element set.
- The trivial monoid.
- The empty space.
- The underlying scalar field.
- The trivially true proposition.

[^0]
A problem, and MacLane's solution

The problem ...
In real-world examples, the condition

$$
f \otimes(g \otimes h)=(f \otimes g) \otimes h
$$

is almost never satisfied.

$$
\begin{aligned}
& \text { and its solution. } \\
& \text { MacLane's theorem lets us pretend that }
\end{aligned}
$$

with no harmful side-effects.

A problem, and MacLane's solution

The problem ...
In real-world examples, the condition

$$
\begin{aligned}
& f \otimes(g \otimes h)=(f \otimes g) \otimes h \\
& \text { is almost never satisfied. }
\end{aligned}
$$

... and its solution.
MacLane's theorem lets us pretend that

$$
f \otimes(g \otimes h)=(f \otimes g) \otimes h
$$

with no harmful side-effects.

Failure of associativity - an example

Associativity often fails, in a trivial way!

The disjoint union of sets

Given sets A, B,

$$
A \uplus B=\{(a, 0)\} \cup\{(b, 1)\}
$$

This is not associative . . . for ridiculous reasons.

Non-associativity of disjoint union

- $A \uplus(B \uplus C)=$

$$
\{(a, 0)\} \cup\{(b, 01)\} \cup\{(c, 11)\}
$$

- $(A \uplus B) \uplus C=$

$$
\{(a, 00)\} \cup\{(b, 10)\} \cup\{(c, 1)\}
$$

These are not the same set - for annoying syntactical reasons.

There is an obvious isomorphism between them

Non-associativity of disjoint union

- $A \uplus(B \uplus C)=$

$$
\{(a, 0)\} \cup\{(b, 01)\} \cup\{(c, 11)\}
$$

- $(A \uplus B) \uplus C=$

$$
\{(a, 00)\} \cup\{(b, 10)\} \cup\{(c, 1)\}
$$

These are not the same set - for annoying syntactical reasons.

There is an obvious isomorphism between them ...

- Strict associativity:

$$
A \otimes(B \otimes C)=C
$$

- Associativity up to isomorphism

$$
A \otimes(B \otimes C) \xrightarrow{\tau_{A B C}^{-1}} \stackrel{\tau_{A B C}}{<}(A \otimes B) \otimes C
$$

Provided the associativity isomorphisms satisfy:
(1) naturality
(2) A coherence condition
we can ignore them completely.

Natural examples generally satisfy these conditions!

Naturality

We can 'push arrows through associativity isomorphisms'

Naturality

We can 'push arrows through associativity isomorphisms'

Coherence

MacLane's coherence condition

The two ways of re-arranging

$$
A \otimes(B \otimes(C \otimes D))
$$

into

$$
((A \otimes B) \otimes C) \otimes D
$$

must be identical.

Also called MacLane's Pentagon condition

Coherence

MacLane's coherence condition
The two ways of re-arranging

$$
A \otimes(B \otimes(C \otimes D))
$$

into

$$
((A \otimes B) \otimes C) \otimes D
$$

must be identical.

Also called MacLane's Pentagon condition

$$
\tau \tau=(\tau \otimes 1) \tau(1 \otimes \tau)
$$

$$
A \otimes(B \otimes(C \otimes D))
$$

$$
A \otimes((B \otimes C) \otimes D)
$$

$(A \otimes B) \otimes(C \otimes D)$

$$
((A \otimes B) \otimes C) \otimes D
$$

Yes, there are two paths you can go by, but

MacLane's pentagon

MacLane's coherence theorem:

When we have
(1) Naturality
(2) Coherence
every canonical diagram - built up using

$$
\tau_{-,-,-}, \otimes_{-} \text {and } 1_{-}
$$

is guaranteed to commute.

A consequence:

Given a tensor that is associative up to isomorphism,

$$
A \otimes(B \otimes C) \underset{\tau_{A B C}^{-1}}{\stackrel{\tau_{A B C}}{\rightleftarrows}} A \otimes(B \otimes C)
$$

We can 'pretend it is strictly associative'

$$
A \otimes(B \otimes C)=A \otimes(B \otimes C)
$$

with no "harmful side-effects".

The theory of coherence has written itself out of existence!

By appealing to MacLane's theorem ...
We can completely ignore questions of coherence, naturality, pentagons, canonical diagrams, \&c.

Two common descriptions of MacLane's theorem:

(1) Every canonical diagram commutes.
(2) We can treat

as a strict identity

$$
A \otimes B \otimes C=A \otimes B \otimes C
$$

with no 'harmful side-effects'.

Two inaccurate descriptions of MacLane's theorem:

(1) Every canonical diagram commutes.
(2) We can treat

as a strict identity

$$
A \otimes B \otimes C=A \otimes B \otimes C
$$

With no 'harmful side-effects'.

Two contrary claims:

- Not every canonical diagram commutes.
(Claim 1)
- Treating associativity isomorphisms as strict identities can have major consequences. ${ }^{3}$
(Claim 2)
${ }^{3}$ everything collapses to a triviality ...

A simple example:

The Cantor monoid \mathcal{U} (single-object category).

- Single object \mathbb{N}.
- Arrows: all bijections on \mathbb{N}.

The tensor

We have a tensor (-*_) : $\mathcal{U} \times \mathcal{U} \rightarrow \mathcal{U}$.

$$
(f \star g)(n)=\left\{\begin{array}{lc}
2 . f\left(\frac{n}{2}\right) & n \text { even } \\
2 . g\left(\frac{n-1}{2}\right)+1 & n \text { odd }
\end{array}\right.
$$

Properties of the Cantor monoid (I)

The Cantor monoid has only one object -

$$
\mathbb{N} \star(\mathbb{N} \star \mathbb{N})=\mathbb{N}=(\mathbb{N} \star \mathbb{N}) \star \mathbb{N}
$$

(_*_) : $\mathcal{U} \times \mathcal{U} \rightarrow \mathcal{U}$ is associative up to a natural isomorphism

$$
\tau(n)= \begin{cases}2 n & n(\bmod 2)=0 \\ n+1 & n(\bmod 4)=1 \\ \frac{n-1}{2} & n(\bmod 4)=3\end{cases}
$$

that satisfies MacLane's pentagon condition.

This is not the identity map!

Not all canonical diagrams commute:

This diagram does not commute.

Using an actual number:

On the upper path, $1 \mapsto 2$.

Taking the right hand path:

$1 \neq 2$, so this diagram does not commute.

What does MacLane's thm. actually say?

A recent (May 2013) report

"Hines uses MacLane's theorem - the fact that all canonical diagrams commute - to construct a large class of examples where ... "

- Anonymous Referee
(Category Theory / Theoretical Computing journal).

If in doubt ...

... ask the experts:

http://en.wikipedia.org/wiki/Monoidal_category

"It follows that any diagram whose morphisms are built using [canonical isomorphisms], identities and tensor product commutes."

Tinker, Tailor, Soldier, Sarcasm

Untangling The Web - N.S.A. guide to internet use

- Do not as a rule rely on Wikipedia as your sole source of information.
- The best thing about Wikipedia are the external links from entries.

MacLane, on MacLane's theorem

Categories for the working mathematician ($1^{s t} \mathrm{ed}$.)

$$
\begin{aligned}
& \text { Moreover all diagrams involving [canonical iso.s] must } \\
& \text { commute. (p. 158) } \\
& \text { These three [coherence] diagrams imply that "all" such } \\
& \text { diagrams commute. (p. 159) }
\end{aligned}
$$

MacLane, on MacLane's theorem

Categories for the working mathematician ($1^{s t} \mathrm{ed}$.)

- Moreover all diagrams involving [canonical iso.s] must commute. (p. 158)

MacLane, on MacLane's theorem

Categories for the working mathematician ($1^{s t} \mathrm{ed}$.)

- Moreover all diagrams involving [canonical iso.s] must commute. (p. 158)
- These three [coherence] diagrams imply that "all" such diagrams commute. (p. 159)

MacLane, on MacLane's theorem

Categories for the working mathematician ($1^{s t} \mathrm{ed}$.)

- Moreover all diagrams involving [canonical iso.s] must commute. (p. 158)
- These three [coherence] diagrams imply that "all" such diagrams commute. (p. 159)
- We can only prove that every "formal" diagram commutes. (p. 161)

What does his theorem say?

MacLane's coherence theorem for associativity

All diagrams within the image of a certain functor are guaranteed to commute.

This usually means all canonical diagrams.
In some circumstances, this is not the case.

Dissecting MacLane's theorem

- a closer look

Dissecting MacLane's theorem

- a closer look

A technicality:

In common with MacLane, we study monogenic categories.
Objects are generated by:

- Some object S,
- The tensor (\otimes_{-}).

This is based on (non-empty) binary trees.

- Leaves labelled by x,
- Branchings labelled by \square.

The rank of a tree is the number of leaves.

A posetal category of trees

MacLane's category \mathcal{W}.

- (Objects) All non-empty binary trees.
- (Arrows) A unique arrow between any two trees of the same rank.
- write this as $(v \leftarrow u) \in \mathcal{W}(u, v)$.

Key points:
(1) (\square) is a tensor on \mathcal{W}.
(2) \mathcal{W} is posetal - all diagrams over \mathcal{W} commute.

MacLane's Substitution Functor

MacLane's theorem relies on a monoidal (i.e. tensor-preserving) functor

$$
\mathcal{W} \text { Sub : }(\mathcal{W}, \square) \rightarrow(\mathcal{C}, \otimes)
$$

This is based on a notion of substitution.
i.e. mapping formal symbols to concrete objects \& arrows.

The functor itself

On objects:

- $\mathcal{W} \operatorname{Sub}(x)=S$,
- $\mathcal{W} \operatorname{Sub}(u \square v)=\mathcal{W} \operatorname{Sub}(u) \otimes \mathcal{W} \operatorname{Sub}(v)$.

An object of \mathcal{W} :

An inductively defined functor (I)

On objects:

- $\mathcal{W} \operatorname{Sub}(x)=S$,
- $\mathcal{W} \operatorname{Sub}(u \square v)=\mathcal{W} \operatorname{Sub}(u) \otimes \mathcal{W} \operatorname{Sub}(v)$.

An object of \mathcal{C} :

An inductively defined functor (II)

On arrows:

- $\mathcal{W} \operatorname{Sub}(u \leftarrow u)=1$.

An inductively defined functor (II)

On arrows:

- $\mathcal{W} \operatorname{Sub}(u \leftarrow u)=1$.
- $\mathcal{W} \operatorname{Sub}(a \square v \leftarrow a \square u)=1, \otimes \mathcal{W} \operatorname{Sub}(v \leftarrow u)$.
- $\mathcal{W} \operatorname{Sub}(v \square b \leftarrow u \square b)=\mathcal{W} \operatorname{Sub}(v \leftarrow u) \otimes 1$.

The role of the Pentagon

Tho Pantanan nondition

An inductively defined functor (II)

On arrows:

- $\mathcal{W} \operatorname{Sub}(u \leftarrow u)=1$.
- $\mathcal{W} \operatorname{Sub}(a \square v \leftarrow a \square u)=1, \otimes \mathcal{W} \operatorname{Sub}(v \leftarrow u)$.
- $\mathcal{W} \operatorname{Sub}(v \square b \leftarrow u \square b)=\mathcal{W} \operatorname{Sub}(v \leftarrow u) \otimes 1$.
- $\mathcal{W} \operatorname{Sub}((a \square b) \square c \leftarrow a \square(b \square c))=\tau_{-, \ldots,}$.

The role of the Pentagon

> The Pantanan nonditinn - Whb is a monoidal functor.

An inductively defined functor (II)

On arrows:

- $\mathcal{W} \operatorname{Sub}(u \leftarrow u)=1$.
- $\mathcal{W} \operatorname{Sub}(a \square v \leftarrow a \square u)=1, \otimes \mathcal{W} \operatorname{Sub}(v \leftarrow u)$.
- $\mathcal{W} \operatorname{Sub}(v \square b \leftarrow u \square b)=\mathcal{W} \operatorname{Sub}(v \leftarrow u) \otimes 1$.
- $\mathcal{W} \operatorname{Sub}((a \square b) \square c \leftarrow a \square(b \square c))=\tau_{-, \ldots, \ldots}$.

The role of the Pentagon

The Pentagon condition $\Longrightarrow \mathcal{W}$ Sub is a monoidal functor.

The story so far ...

We have a functor \mathcal{W} Sub : $(\mathcal{W}, \square) \rightarrow(\mathcal{C}, \otimes)$.

The story so far ...

We have a functor \mathcal{W} Sub : $(\mathcal{W}, \square) \rightarrow(\mathcal{C}, \otimes)$.

- Every object of \mathcal{C} is the image of an object of \mathcal{W}
- Every diagram over \mathcal{W} commutes.

The story so far ...

We have a functor \mathcal{W} Sub : $(\mathcal{W}, \square) \rightarrow(\mathcal{C}, \otimes)$.

- Every object of \mathcal{C} is the image of an object of \mathcal{W}
- Every canonical arrow of \mathcal{C} is the image of an arrow of \mathcal{W}
- Every diagram over \mathcal{W} commutes
\qquad
The image of every diagram in commutes in

The story so far ...

We have a functor \mathcal{W} Sub : $(\mathcal{W}, \square) \rightarrow(\mathcal{C}, \otimes)$.

- Every object of \mathcal{C} is the image of an object of \mathcal{W}
- Every canonical arrow of \mathcal{C} is the image of an arrow of \mathcal{W}
- Every diagram over \mathcal{W} commutes.

The story so far ...

We have a functor \mathcal{W} Sub : $(\mathcal{W}, \square) \rightarrow(\mathcal{C}, \otimes)$.

- Every object of \mathcal{C} is the image of an object of \mathcal{W}
- Every canonical arrow of \mathcal{C} is the image of an arrow of \mathcal{W}
- Every diagram over \mathcal{W} commutes.

As a corollary:

The image of every diagram in (W, \square) commutes in (\mathcal{C}, \otimes).

Question: Are all canonical diagrams in the image of \mathcal{W} Sub? - This is onty the case when wsub is an embedaling!

The story so far ...

We have a functor \mathcal{W} Sub : $(\mathcal{W}, \square) \rightarrow(\mathcal{C}, \otimes)$.

- Every object of \mathcal{C} is the image of an object of \mathcal{W}
- Every canonical arrow of \mathcal{C} is the image of an arrow of \mathcal{W}
- Every diagram over \mathcal{W} commutes.

As a corollary:

The image of every diagram in (W, \square) commutes in (\mathcal{C}, \otimes).

Question: Are all canonical diagrams in the image of \mathcal{W} Sub?

- This is only the case when \mathcal{W} Sub is an embedding!

"A beautiful (useful) theory slain by an ugly counterexample"?

A full theory of coherence for associativity is:

- more mathematically elegant,
- much more practically useful!

single-object categories

\mathcal{W} Sub : $(\mathcal{W}, \square) \rightarrow(\mathcal{C}, \otimes)$ can never be an
embedding when \mathcal{C} has a finite set of objects.

The Cantor monoid has precisely one object

Where did this come from?

Hilbert's Hotel

A children's story about infinity.

An infinite corridor, with rooms numbered $0,1,2,3, \ldots$

Hilbert's "Grand Hotel"

An infinite corridor, with rooms numbered $0,1,2,3, \ldots$
$\mathbb{N} \hookrightarrow \mathbb{N} \quad$ the successor function.

Hilbert's "Grand Hotel"

An infinite corridor, with rooms numbered $0,1,2,3, \ldots$

$\mathbb{N} \hookrightarrow \mathbb{N} \quad$ the successor function.
$\mathbb{N} \cong \mathbb{N} \uplus \mathbb{N} \quad$ the Cantor pairing.

Hilbert's "Grand Hotel"

An infinite corridor, with rooms numbered $0,1,2,3, \ldots$

$$
\begin{array}{lr}
\mathbb{N} \hookrightarrow \mathbb{N} & \text { the successor function. } \\
\mathbb{N} \cong \mathbb{N} \uplus \mathbb{N} & \text { the Cantor pairing. } \\
\mathbb{N} \cong \mathbb{N} \times \mathbb{N} & \text { an exercise! }
\end{array}
$$

An infinite corridor, with rooms numbered $0,1,2,3, \ldots$

$$
\begin{array}{lr}
\mathbb{N} \hookrightarrow \mathbb{N} & \text { the successor function. } \\
\mathbb{N} \cong \mathbb{N} \uplus \mathbb{N} & \text { the Cantor pairing. } \\
\mathbb{N} \cong \mathbb{N} \times \mathbb{N} & \text { an exercise! } \\
{[\mathbb{N} \rightarrow\{0,1\}]} & \text { is not isomorphic to } \mathbb{N}
\end{array}
$$

Self-similarity

The categorical identity $S \cong S \otimes S$
Exhibited by two canonical isomorphisms:

- (Code) $\quad \checkmark: S \otimes S \rightarrow S$
- (Decode) $\triangleright: S \rightarrow S \otimes S$

These are unique (up to unique isomorphism).
\square The natur: numbers N. Separable Hilbert spaces. Infinite matrices, Canto monoids, and other untyped - Any unit object I of a monoidal category

Self-similarity

The categorical identity $S \cong S \otimes S$

Exhibited by two canonical isomorphisms:

- (Code) $\triangleleft: S \otimes S \rightarrow S$
- (Decode) $\triangleright: S \rightarrow S \otimes S$

These are unique (up to unique isomorphism).

Examples

- The natural numbers \mathbb{N}, Separable Hilbert spaces, Infinite matrices, Cantor set \& other fractals, \&c.
- C-monoids, and other untyped (single-object) categories with tensors
- Any unit object I of a monoidal category ...

A tensor on a single object

At a self-similar object S, we may define a tensor by

(-* _) makes $C(S, S)$ a single-object monoidal category!

Associativity at a single object

The tensor (-* $)$ is associative up to isomorphism.

Claim: This is the identity arrow

Associativity at a single object

The tensor (-* -) is associative up to isomorphism.

Claim: This is the identity arrow precisely when
the object S is trivial.

constructing

categories where all

canonical diagrams commute

Given a badly-behaved category (\mathcal{C}, \otimes), we can build a well-behaved (non-strict) version.

Think of this as the Platonic Ideal of (\mathcal{C}, \otimes).

We (still) assume \mathcal{C} is monogenic, with objects generated by $\left\{S,{ }_{-} \otimes_{-}\right\}$

Building the 'Platonic Ideal'

We will construct Plat $_{C}$
A version of \mathcal{C} for which \mathcal{W} Sub is an embedding.

Constructing Plat $c_{\mathcal{C}}$

Objects are free binary trees

Leaves labelled by $S \in O b(\mathcal{C})$,
Branchings labelled by \square.

There is an instantiation map Inst : $\mathrm{Ob}\left(\right.$ Plat $\left._{\mathcal{C}}\right) \rightarrow \mathrm{Ob}(\mathcal{C})$

$$
S \square((S \square S) \square S) \mapsto S \otimes((S \otimes S) \otimes S)
$$

Constructing Plat $c_{\mathcal{C}}$

What about arrows?

Homsets are copies of homsets of \mathcal{C}
Given trees T_{1}, T_{2},

$$
\operatorname{Plat}_{\mathcal{C}}\left(T_{1}, T_{2}\right)=\mathcal{C}\left(\operatorname{Inst}\left(T_{1}\right), \operatorname{Inst}\left(T_{2}\right)\right)
$$

Composition is inherited from \mathcal{C} in the obvious way.

The tensor $(\square):$ Plat $_{\mathcal{C}} \times$ Plat $_{\mathcal{C}} \rightarrow$ Plat $_{\mathcal{C}}$

The tensor of Platc is

- (Objects) A free formal pairing, $A \square B$,
- (Arrows) Inherited from (\mathcal{C}, \otimes), so $f \square g \stackrel{\text { def. }}{=} f \otimes g$.

Some properties of the platonic ideal ...

(1) The functor

$$
\mathcal{W} \text { Sub : }(\mathcal{W}, \square) \rightarrow\left(\text { Plat }_{\mathcal{C}}, \square\right)
$$

is always monic.
(2) As a corollary:
All canonical diagrams of (Plate, \square) com
(3) Instantiation defines an epic monoidal functor
insi: (Plaic
through which McL'.s substitution functor always factors.

Some properties of the platonic ideal ...

(1) The functor

$$
\mathcal{W} \text { Sub : }(\mathcal{W}, \square) \rightarrow\left(\text { Plat }_{\mathcal{C}}, \square\right)
$$

is always monic.
(2) As a corollary:

All canonical diagrams of $\left(P l a t_{\mathcal{C}}, \square\right)$ commute.
(3) Instantiation defines an epic monoidal functor
through which McL'.s substitution functor always factors.

Some properties of the platonic ideal ...

(1) The functor

$$
\mathcal{W} \text { Sub : }(\mathcal{W}, \square) \rightarrow\left(\text { Plat }_{\mathcal{C}}, \square\right)
$$

is always monic.
(2) As a corollary:

All canonical diagrams of $\left(P / a t_{\mathcal{C}}, \square\right)$ commute.
(3) Instantiation defines an epic monoidal functor

$$
\text { Inst }:\left(\text { Plat }{ }_{\mathcal{C}}, \square\right) \rightarrow(\mathcal{C}, \otimes)
$$

through which McL'.s substitution functor always factors.

A monic / epic decomposition

MacLane's substitution functor always factors through the platonic ideal:

This gives a monic / epic decomposition of his functor.

A highly relevant question ...

What does the Platonic Ideal of a single-object category actually look like?

The simplest possible case:
The trivial monoidal category (\mathcal{I}, \otimes).

- Objects: $O b(\mathcal{I})=\{x\}$.
- Arrows: $\mathcal{I}(x, x)=\{1 x\}$.
- Tensor:

$$
x \otimes x=x, \quad 1_{x} \otimes 1_{x}=1_{x}
$$

What is the platonic ideal of \mathcal{I} ?

(Objects) All non-empty binary trees:

(Arrows) For all trees T_{1}, T_{2},
$\operatorname{Plat}_{\mathcal{I}}\left(T_{1}, T_{2}\right)$ is a single-element set.

There is a unique arrow between any two trees!

A la recherche du tensors perdu

(PhD Thesis) The prototypical self-similar category (\mathcal{X}, \square)

- Objects: All non-empty binary trees.
- Arrows: A unique arrow between any two objects.

This monoidal category:
(1) was introduced to study self-similarity $S \cong S \otimes S$,
(2) contains MacLane's (\mathcal{W}, \square) as a subcategory.

Coherence for Self-Similarity

(a special case of a much more general theory)

A straightforward coherence theorem

We base this on the category (\mathcal{X}, \square)

- Objects All non-empty binary trees.
- Arrows A unique arrow between any two trees.

This category is posetal - all diagrams over \mathcal{X} commute.

We will define a monoidal substitution functor:

$$
\mathcal{X} \text { Sub : }(\mathcal{X}, \square) \rightarrow(\mathcal{C}, \otimes)
$$

The self-similarity substitution functor

An inductive definition of \mathcal{X} Sub : $(\mathcal{X}, \square) \rightarrow(\mathcal{C}, \otimes)$

On objects:

$$
\begin{aligned}
x & \mapsto S \\
u \square v & \mapsto \mathcal{X} \operatorname{Sub}(u) \otimes \mathcal{X} \operatorname{Sub}(v)
\end{aligned}
$$

On arrows:

$$
\begin{aligned}
(x \leftarrow x) & \mapsto 1_{S} \in \mathcal{C}(S, S) \\
(x \leftarrow x \square x) & \mapsto \triangleleft \in \mathcal{C}(S \otimes S, S) \\
(x \square x \leftarrow x) & \mapsto \triangleright \in \mathcal{C}(S, S \otimes S) \\
(b \square v \leftarrow a \square u) & \mapsto \mathcal{X} \operatorname{Sub}(b \leftarrow a) \otimes \mathcal{X} \operatorname{Sub}(v \leftarrow u)
\end{aligned}
$$

Interesting properties:

(1) \mathcal{X} Sub : $(\mathcal{X}, \square) \rightarrow(\mathcal{C}, \otimes)$ is always functorial.
(3) The image of every diagram in \mathcal{X} commutes.

Interesting properties:

(1) \mathcal{X} Sub : $(\mathcal{X}, \square) \rightarrow(\mathcal{C}, \otimes)$ is always functorial.
(2) Every arrow built up from

$$
\left\{\triangleleft, \triangleright, 1_{S},-\otimes_{-}\right\}
$$

is the image of an arrow in \mathcal{X}.
(3) The image of every diagram in \mathcal{X} commutes.

Interesting properties:

(1) \mathcal{X} Sub : $(\mathcal{X}, \square) \rightarrow(\mathcal{C}, \otimes)$ is always functorial.
(2) Every arrow built up from

$$
\left\{\triangleleft, \triangleright, 1_{S},-\otimes_{-}\right\}
$$

is the image of an arrow in \mathcal{X}.
(3) The image of every diagram in \mathcal{X} commutes.

\mathcal{X} Sub factors through the Platonic ideal

There is a monic-epic decomposition of \mathcal{X} Sub.

Every canonical (for self-similarity) diagram in (Plate,\square) commutes.

Relating associativity and self-similarity

A tale of two functors

Comparing the associativity and self-similarity categories.

MacLane's (\mathcal{W}, \square)

Objects: Binary trees.
Arrows: Unique arrow between two trees of the same rank.

The category (\mathcal{X}, \square)

Objects: Binary trees.
Arrows: Unique arrow between any two trees.

There is an obvious inclusion $(\mathcal{W}, \square) \hookrightarrow(\mathcal{X}, \square)$

Is associativity a restriction of self-similarity?

Does the following diagram commute?

Does the associativity functor factor through
the self-similarity functor?

Proof by contradiction:

Let's assume this is the case.

Special arrows of (\mathcal{X}, \square)
For arbitrary trees u, e, v,

$$
\begin{aligned}
t_{u e v} & =((u \square e) \square v \leftarrow u \square(e \square v)) \\
I_{v} & =(v \leftarrow e \square v) \\
r_{u} & =(u \leftarrow u \square e)
\end{aligned}
$$

Since all diagrams over X commute:

The following diagram over (\mathcal{X}, \square) commutes:

Let's apply \mathcal{X} Sub to this diagram.

D., Ascumntion:

Notation:

Since all diagrams over X commute:

The following diagram over (\mathcal{X}, \square) commutes:

Let's apply \mathcal{X} Sub to this diagram.
By Assumption: $t_{u e v} \mapsto \tau_{U, E, V}$ (assoc. iso.)
Notation: $u \mapsto U, v \mapsto V, e \mapsto E, I_{V} \mapsto \lambda_{V}, r_{u} \mapsto \rho_{U}$

Since all diagrams over X commute:

The following diagram over (\mathcal{C}, \otimes) commutes:

This is MacLane's units triangle

- the defining equation for a unit (trivial) object.
The choice of e was arbitrary - every object is trivial!

Since all diagrams over X commute:

The following diagram over (\mathcal{C}, \otimes) commutes:

This is MacLane's units triangle - the defining equation for a unit (trivial) object.

The choice of e was arbitrary - every object is trivial!

A general result

The following diagram commutes

exactly when (\mathcal{C}, \otimes) is degenerate -
i.e. all objects are trivial.

An important special case:

What is strict self-similarity?

Can the code / decode maps

$$
\triangleleft: S \otimes S \rightarrow S, \triangleright: S \rightarrow S \otimes S
$$

be strict identities?
In single-object monoidal categories:

Take the identity as both the code and decode arrows

Untyped \equiv Strictly Self-Similar

What is strict self-similarity?

Can the code / decode maps

$$
\triangleleft: S \otimes S \rightarrow S, \triangleright: S \rightarrow S \otimes S
$$

be strict identities?
In single-object monoidal categories:
We only have one object, so $S \otimes S=S$.

Take the identity as both the code and decode arrows.

Untyped \equiv Strictly Self-Similar.

Generalising Isbell's argument

(1) Strict associativity: $A \otimes(B \otimes C)=(A \otimes B) \otimes C$ All arrows of (\mathcal{W}, \square) are mapped to identities of (\mathcal{C}, \otimes)
(2) Strict self-similarity: $S \otimes S=S$.

All arrows of (\mathcal{X}, \square) are mapped to the identity of (\mathcal{C}, \otimes).
\mathcal{W} Sub trivially factors through \mathcal{X} Sub.

The conclusion
Strictly associative untyped monoidal categories are degenerate.

This is seen in various fields

We see special cases of this in many areas:

- (Monoid Theory)

Congruence-freeness (e.g. the polycyclic monoids).

- (Group Theory)

No normal subgroups (e.g. Thompson's group \mathcal{F}).

- (λ calculus / Logic)

Hilbert-Post completeness / Girard's dynamical algebra.

- (Linguistics)

Recently (re)discovered ... not yet named!

Another perspective ...

Another way of looking at things:

The 'No Simultaneous Strictness' Theorem

One cannot have both
(I) Associativity $\quad A \otimes(B \otimes C) \cong(A \otimes B) \otimes C$
(II) Self-Similarity $S \cong S \otimes S$
as strict equalities.

[^0]: ${ }^{2}$ Part of the original definition. Later shown not to be essential (Saavedra72/Kock08/ PH13)

