Reconsidering MacLane (again): algorithms for coherence ...

Peter M. Hines

York - Maths Dept. - Nov. 2013

This is a sequel to the talk of $16 / 10 / 2013$.

What will be assumed:

- The definition of a category.
- The definitions of diagrams \& functors.
- A rough idea about what tensors are.
- A very vague recollection of what I talked about last time.

The story so far

MacLane's theorem is possibly the most relied-upon theorem in category theory.

There is a 'mismatch' between:

(1) The formal statement.
(2) The informal statement.

MacLane's theorem - the general area

The topic is tensors on categories:

$$
\otimes_{-}: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}
$$

The informal version is used to simplify associativity:
Associativity up to isomorphism

$$
A \otimes(B \otimes C) \overbrace{\tau_{A, B, C}^{-1}}^{\tau_{A, B, C}}(A \otimes B) \otimes C
$$

is treated as a strict equality

$$
A \otimes B \otimes C=A \otimes B \otimes C
$$

Formal vs. Informal

- (Correct ...) Every diagram in the image of MacLane's substitution functor commutes.
- (Incorrect ...) Every canonical diagram commutes.

Canonical diagrams have arrows built using:

- Associativity isomorphisms, $\tau: X \otimes(Y \otimes Z) \rightarrow(X \otimes Y) \otimes Z$
- Identity arrows $1_{X}: X \rightarrow X$
- Tensors - \otimes_{-}
- Inverses () ${ }^{-1}$

Where the problem arises:

The informal statement true iff
MacLane's substitution functor

$$
\mathcal{W S u b}:(W, \square) \rightarrow(\mathcal{C}, \otimes)
$$

is an embedding - an epic functor.

This is not always the case!

A simple example

The symmetric group on \mathbb{N} is a single-object category.

A tensor derived from the Cantor pairing:

- The tensor:

$$
(f \star g)(n)= \begin{cases}2 . f\left(\frac{n}{2}\right) & n \text { even } \\ 2 . g\left(\frac{n-1}{2}\right)+1 & n \text { odd }\end{cases}
$$

- The associativity isomorphism:

$$
\tau(n)= \begin{cases}2 n & n(\bmod 2)=0 \\ n+1 & n(\bmod 4)=1 \\ \frac{n-1}{2} & n(\bmod 4)=3\end{cases}
$$

I remember it well, in the Hilbert hotel

A large class of counterexamples
Tensors (_* _) on the natural numbers \mathbb{N}
(- treated as a single-object category).
are equivalent to self-similar structures

derived from 'Hilbert Hotel’ style reasoning.

Fixing a hole, where the strain comes in

What can be done about this?

(1) Build 'equivalent' categories where all canonical diagrams commute.
(2) Provide a coherence theorem \& strictification procedure for self-similarity.
(3) Give a decision procedure for commutativity of canonical diagrams.

These three solutions are very closely related ${ }^{1}$.

[^0]
A reminder: MacLane's theorem

Assume a monoidal category (\mathcal{C}, \otimes), with generating object S
MacLane's theorem relies on a functor

$$
\mathcal{W} \text { Sub : }(\mathcal{W}, \square) \rightarrow(C, \otimes)
$$

MacLane's theorem (formal version)

Every diagram in \mathcal{C}

that is the image of a diagram in \mathcal{W}
may be guaranteed to commute.

A reminder - the source of the functor

The category \mathcal{W} is based on (non-empty) binary trees.

- Leaves labelled by x,
- Branchings labelled by \square.

The rank of a tree is the number of leaves.

A posetal category of trees

MacLane's category \mathcal{W}.

- (Objects) All non-empty binary trees.
- (Arrows) A unique arrow between any two trees of the same rank.
- write this as $(v \leftarrow u) \in \mathcal{W}(u, v)$.

Key points:
(1) (\square) is a tensor on \mathcal{W}.
(2) \mathcal{W} is posetal - all diagrams over \mathcal{W} commute.

MacLane's substitution functor

On objects:

- $\mathcal{W} \operatorname{Sub}(x)=S$,
- $\mathcal{W} \operatorname{Sub}(u \square v)=\mathcal{W} \operatorname{Sub}(u) \otimes \mathcal{W} \operatorname{Sub}(v)$.

An object of \mathcal{W} :

An inductively defined functor (I)

On objects:

- $\mathcal{W} \operatorname{Sub}(x)=S$,
- $\mathcal{W} \operatorname{Sub}(u \square v)=\mathcal{W} \operatorname{Sub}(u) \otimes \mathcal{W} \operatorname{Sub}(v)$.

An object of \mathcal{C} :

An inductively defined functor (II)

On arrows:

- $\mathcal{W} \operatorname{Sub}(u \leftarrow u)=1$.
- $\mathcal{W} \operatorname{Sub}(a \square v \leftarrow a \square u)=1, \otimes \mathcal{W} \operatorname{Sub}(v \leftarrow u)$.
- $\mathcal{W} \operatorname{Sub}(v \square b \leftarrow u \square b)=\mathcal{W} \operatorname{Sub}(v \leftarrow u) \otimes 1_{2}$.
- $\mathcal{W} \operatorname{Sub}((a \square b) \square c \leftarrow a \square(b \square c))=\tau_{-,,,-}$.

The coherence condition

WacLanes Pentagon condition ensures

An inductively defined functor (II)

On arrows:

- $\mathcal{W} \operatorname{Sub}(u \leftarrow u)=1$.
- $\mathcal{W} \operatorname{Sub}(a \square v \leftarrow a \square u)=1, \otimes \mathcal{W} \operatorname{Sub}(v \leftarrow u)$.
- $\mathcal{W} \operatorname{Sub}(v \square b \leftarrow u \square b)=\mathcal{W} \operatorname{Sub}(v \leftarrow u) \otimes 1_{2}$.
- $\mathcal{W} \operatorname{Sub}((a \square b) \square c \leftarrow a \square(b \square c))=\tau_{-,,,-}$.

The coherence condition ...

MacLane's Pentagon condition ensures \mathcal{W} Sub is a functor.

The root of the problem:

We have a functor \mathcal{W} Sub : $(\mathcal{W}, \square) \rightarrow(\mathcal{C}, \otimes)$.

- Every object of \mathcal{C} is the image of an object of $)$
- Every canonical arrow of \mathcal{C} is the image of an arrow of \mathcal{W}
- Every diagram over in commutes.

The image of every diagram in (W, \square) commutes

- Every canonical diagram is of this form precisely when WSub is an embedding

The root of the problem:

We have a functor \mathcal{W} Sub : $(\mathcal{W}, \square) \rightarrow(\mathcal{C}, \otimes)$.

- Every object of \mathcal{C} is the image of an object of \mathcal{W}
- Every canonical arrow of \mathcal{C} is the image of an arrow of \mathcal{W}
- Every diagram over \mathcal{W} commutes.
- The image of every diagram in (W, \square) commutes
- Every canonical diagram is of this form nrecisely when M)Suh is an emhedding

The root of the problem:

We have a functor \mathcal{W} Sub : $(\mathcal{W}, \square) \rightarrow(\mathcal{C}, \otimes)$.

- Every object of \mathcal{C} is the image of an object of \mathcal{W}
- Every canonical arrow of \mathcal{C} is the image of an arrow of \mathcal{W}
- Every diagram over \mathcal{W} commutes.
- The image of every diagram in (W, \square) commutes
- Every canonical diagram is of this form precisely when \mathcal{W} Sub is an embedding.

Approach I

Building categories where all canonical diagrams commute.

Given a badly-behaved category, we will build a well-behaved version.

Building the 'Platonic Ideal'

Given a (monogenic) monoidal category (\mathcal{C}, \otimes) :
We will construct a 'closely related' category for which MacLane's functor is an embedding.

Constructing Plat $c_{\mathcal{C}}$

Objects are free binary trees

Leaves labelled by $S \in O b(\mathcal{C})$,
Branchings labelled by \square.

There is an instantiation map Inst : $\mathrm{Ob}\left(\right.$ Plat $\left._{\mathcal{C}}\right) \rightarrow \mathrm{Ob}(\mathcal{C})$

$$
S \square((S \square S) \square S) \mapsto S \otimes((S \otimes S) \otimes S)
$$

Constructing Plat $c_{\mathcal{C}}$

What about arrows?

Homsets are copies of homsets of \mathcal{C}
Given trees T_{1}, T_{2},

$$
\operatorname{Plat}_{\mathcal{C}}\left(T_{1}, T_{2}\right)=\mathcal{C}\left(\operatorname{Inst}\left(T_{1}\right), \operatorname{Inst}\left(T_{2}\right)\right)
$$

Composition is inherited from \mathcal{C} in the obvious way.

The tensor $(\square):$ Plat $_{\mathcal{C}} \times$ Plat $_{\mathcal{C}} \rightarrow$ Plat $_{\mathcal{C}}$

The tensor of Platc is

- (Objects) A free formal pairing, $A \square B$,
- (Arrows) Inherited from (\mathcal{C}, \otimes), so $f \square g \stackrel{\text { def. }}{=} f \otimes g$.

Some properties of the platonic ideal ...

(1) The functor

$$
\mathcal{W} \text { Sub : }(\mathcal{W}, \square) \rightarrow\left(\text { Plat }_{\mathcal{C}}, \square\right)
$$

is always monic.
(2) As a corollary:
All canonical diagrams of (Plate, \square) com
(3) Instantiation defines an epic monoidal functor
insi: (Plaic
through which McL'.s substitution functor always factors.

Some properties of the platonic ideal ...

(1) The functor

$$
\mathcal{W} \text { Sub : }(\mathcal{W}, \square) \rightarrow\left(\text { Plat }_{\mathcal{C}}, \square\right)
$$

is always monic.
(2) As a corollary:

All canonical diagrams of $\left(P l a t_{\mathcal{C}}, \square\right)$ commute.
(3) Instantiation defines an epic monoidal functor
through which McL'.s substitution functor always factors.

Some properties of the platonic ideal ...

(1) The functor

$$
\mathcal{W} \text { Sub : }(\mathcal{W}, \square) \rightarrow\left(\text { Plat }_{\mathcal{C}}, \square\right)
$$

is always monic.
(2) As a corollary:

All canonical diagrams of $\left(P / a t_{\mathcal{C}}, \square\right)$ commute.
(3) Instantiation defines an epic monoidal functor

$$
\text { Inst }:\left(\text { Plat }{ }_{\mathcal{C}}, \square\right) \rightarrow(\mathcal{C}, \otimes)
$$

through which McL'.s substitution functor always factors.

A monic / epic decomposition

MacLane's substitution functor always factors through the platonic ideal:

This gives a monic / epic decomposition of his functor.

How to Rectify the Anomaly (II)

Approach II

Give a 'strictification procedure' for self-similarity $S \cong S \otimes S$.

To be compared \& contrasted with
MacLane's 'strictification procedure' for associativity.

What is strictification?

Given a structural property of a category:

Associativity	$A \otimes(B \otimes C)$	$\cong(A \otimes B) \otimes C$
Symmetry	$A \otimes B$	$\cong B \otimes A$
Distributivity	$A \otimes(B \oplus C)$	$\cong(A \otimes B) \oplus(A \otimes C)$
Self-similarity	S	$\cong S \otimes S$
Interchange	$(A \otimes B) \star(C \otimes D)$	$\cong(A \star C) \otimes(B \star D)$

We (attempt to) form a strict version of the same category.

What is strictification?

Strictification gives an "equivalent" category

| Associativity | $A \otimes(B \otimes C)$ | $=(A \otimes B) \otimes C$ |
| :--- | ---: | :--- | :--- |
| Symmetry | $A \otimes B$ | $=B \otimes A$ |
| Distributivity | $A \otimes(B \oplus C)$ | $=(A \otimes B) \oplus(A \otimes C)$ |
| Self-similarity | S | $=S \otimes S$ |
| Interchange | $(A \otimes B) \star(C \otimes D)$ | $=(A \star C) \otimes(B \star D)$ |

where isomorphisms are replaced by equalities identities.

Let me tell you what I want

What would we like from strictification?
(1) All canonical isomorphisms to be replaced by identities.
(2) This process should be functorial.
(3) There should be no 'side-effects'

The commutaility of a diagram in the strict category

The commutativity of 'equivalent' diagram(s) in the non-strict version.

Let me tell you what I want

What would we like from strictification?
(1) All canonical isomorphisms to be replaced by identities.
(2) This process should be functorial.
(3) There should be no 'side-effects'

The commutativity of a diagram in the strict category

The commutativity of 'equivalent' diagram(s) in the non-strict version.

Let me tell you what I want

What would we like from strictification?
(1) All canonical isomorphisms to be replaced by identities.
(2) This process should be functorial.
(3) There should be no 'side-effects'.

The commutativity of a diagram in the strict category

The commutativity of 'equivalent' diagram(s) in the non-strict version.

You can't always get what you want

The definition of equivalent is very subtle!

Strictification often has 'side effects'

Strictifying Distributivity

$$
A \otimes(B \oplus C)=(A \otimes B) \oplus(A \otimes C)
$$

forces strict symmetry for $\left({ }_{-} \oplus_{-}\right)$.

You can't always get what you want

The definition of equivalent is very subtle!

Strictification often has 'side effects'
Strictifying symmetry

$$
A \otimes B=B \otimes A
$$

brings on many changes.

You can't always get what you want

The definition of equivalent is very subtle!

Strictification often has 'side effects'
Strictifying associativity

$$
A \otimes(B \otimes C)=(A \otimes B) \otimes C
$$

maps single-object categories to multi-object categories.

You can't always get what you want

The definition of equivalent is very subtle!

Strictification often has 'side effects'
Strictifying self-similarity

$$
S=S \otimes S
$$

forces associativity up to isomorphism.

Not everything can be strict ...

Not all these procedures are compatible.

The 'No Simultaneous Strictness' Theorem

One cannot have both
(I) Associativity $\quad A \otimes(B \otimes C) \cong(A \otimes B) \otimes C$
(II) Self-Similarity $\quad S \cong S \otimes S$
as strict equalities.

There are no strict tensors on non-trivial monoids!

How to strictify self-similarity

A simple, almost painless, procedure (I)

- Start with a monogenic category (\mathcal{C}, \otimes), generated by a self-similar object

Construct its platonic ideal $\left(P / a t_{C}, \square\right)$
For every object A, define a pair of isomorphisms:

A simple, almost painless, procedure (I)

- Start with a monogenic category (\mathcal{C}, \otimes), generated by a self-similar object

- Construct its platonic ideal (Plate,$\square)$

For every object A, define a pair of isomorphisms

The generalised code / decode arrows.

A simple, almost painless, procedure (I)

- Start with a monogenic category (\mathcal{C}, \otimes), generated by a self-similar object

- Construct its platonic ideal (Plate,$\square)$
- For every object A, define a pair of isomorphisms:

The generalised code / decode arrows.

Generalised code / decode arrows

An inductive definition:

- For the generating object,

$$
\triangleleft_{s}=1_{s}=\triangleright_{s}
$$

- For arbitrary objects A, B, we define $\triangleleft_{A \square B}$ in terms of \triangleleft_{A} and \triangleleft_{B}.

A simple,almost painless, procedure (II)

- This gives, for all objects A, a unique pair of inverse arrows

A simple,almost painless, procedure (II)

- This gives, for all objects A, a unique pair of inverse arrows

- Use these to define an endofunctor Φ : Platc \rightarrow Platc.
- Objects

$$
\Phi(A)=S, \text { for all objects } A
$$

- Arrows

- Functoriality is trivial ...

A natural tensor on $\mathcal{C}(S, S)$

As a final step:
Define a tensor (_*_) on $\mathcal{C}(S, S)$ by

$\left(C(S, S),{ }_{-}{ }_{-}\right)$is a single-object monoidal category!

Type-erasing as a monoidal functor

- Recall, $\operatorname{Plat}_{\mathcal{C}}(S, S) \cong \mathcal{C}(S, S)$.
- Up to this obvious isomorphism,

$$
\Phi:(\text { Plate }, \square) \rightarrow(\mathcal{C}(S, S), \star)
$$

is a monoidal functor.

What we have

Type-erasing as a monoidal functor

- Recall, $\operatorname{Plat}_{\mathcal{C}}(S, S) \cong \mathcal{C}(S, S)$.
- Up to this obvious isomorphism,

$$
\Phi:(\text { Plate }, \square) \rightarrow(\mathcal{C}(S, S), \star)
$$

is a monoidal functor.

What we have ...

A monoidal functor from Plat $_{C}$ to a strictly self-similar monoidal category.

- every canonical (for self-similarity) arrow is mapped to 1 s .

A useful property

Basic Category Theory

diagram \mathfrak{D} commutes \Rightarrow diagram $\Phi(\mathfrak{D})$ commutes.
\mathfrak{D}

$\Phi(\mathfrak{D})$

As above, so below

In this case ...

diagram \mathfrak{D} commutes \Leftrightarrow diagram $\Phi(\mathfrak{D})$ commutes.

An application:

Simplifying proofs in published papers.

(P.H. 2013) Types and forgetfulness in categorical linguistics and quantum mechanics, in Sadrzadeh, Heunen, Greffenstette (ed.s), Categorical Information Flow in Physics and Linguistics, O.U.P.

The theorem:

Any self-similar structure $(S, \triangleleft, \triangleright)$ in a symmetric monoidal category defines a (unitless) Frobenius algebra.

[^1]
An application (cont.)

The key step:
Proving this diagram commutes:

An application (cont.)

The key step:

Applying Φ gives:

An application (cont.)

The key step:

Simplifying slightly:

An application (cont.)

The key step:

One more time:

This commutes(!), hence the original diagram also commutes.

This is simpler than the published proof.

Approach (III)

A decision procedure for commutativity of canonical diagrams

Deciding whether a canonical diagram commutes

("They all do" is not a valid answer!)

We do this for single-object categories

- the general case follows -

The Platonic ideal of an untyped category

the platonic ideal of a single-object category \mathcal{C}

- is monogenic.
- has infinitely many objects.
- has a self-similar generating object $S \cong S \otimes S$.

We have defined two functors

In this case, these are equal.

When do untyped diagrams commute?

For any canonical diagram \mathfrak{U} over (\mathcal{C}, \star)

- All nodes are the single object S.
- All arrows are built from (-*_), $1_{S}, \tau,()^{-1}$.

The key fact:

The diagram \mathfrak{U} commutes precisely when it is the image under Φ of some diagram in Platc.

Question: Can we decide when such a diagram exists?

The key fact!

Recall that the functors

are equal in this setting.

It is much easier to ask:
"Is diagram \mathfrak{U} of the form $\operatorname{Inst}(\mathfrak{T})$, for some \mathfrak{T} over Platc ? "

Key question: Is \mathfrak{U} type-able?

Can we consistently replace:

Diagram \mathfrak{U}	Diagram \mathfrak{T}
Every object S	by binary tree of variable symbols
Every identity 1_{S}	by some identity on such trees.
Each untyped tensor (- $\left.\star_{-}\right)$	by the typed tensor (_-_)
Each untyped assoc. iso. τ	by some typed assoc. iso. $\tau_{X, Y, Z}$

to give a new well-formed diagram \mathfrak{T} ?

A useful fact:

In the category Plat $t_{\mathcal{C}}$, there is at most one
canonical arrow, between any two objects.

In a connected commuting diagram

The 'typing' at a single object determines the 'typing' of the whole diagram.

An example: the untyped pentagon

An example: the untyped pentagon

Typing the untyped:

Where A, B, C, D are variable symbols over binary trees.

Typing the untyped:

Where A, B, C, D are variable symbols over binary trees.

Typing the untyped:

Where A, B, C, D are variable symbols over binary trees.

Typing the untyped:

Where A, B, C, D are variable symbols over binary trees.

Typing the untyped:

Where A, B, C, D are variable symbols over binary trees.

Not all diagrams are typeable

We cannot type:

This is a fatal disagreement, in the sense of Robinson's unification alaorithm.

Not all diagrams are typeable

We cannot type:

Using variable symbols X, Y, Z, A, B, C, D :

This is a fatal disagreement, in the sense of Robinson's unification algorithm.

The general case

Let \mathfrak{U} be an arbitrary (canonical, untyped) diagram:

The general case

Choose an arbitrary node:

Covering a diagram with loops

By replacing various isomorphisms by their inverses,
we may 'cover' \mathfrak{U} with a finite set of distinct closed loops,
all starting / finishing at our distinguished node.

Covering a diagram with loops

Our diagram:

Covering a diagram with loops

Loop L_{1}

Covering a diagram with loops

Loop L_{2}

Covering a diagram with loops

Loop L_{3}

Unifying typings

Together, these loops L_{1}, L_{2}, L_{3} 'cover' the diagram \mathfrak{U}.
Provided the diagram commutes, each of these closed loops is the identity.

Each closed loop

determines a binary tree of variable symbols at the distinguished node.

Call these trees T_{1}, T_{2}, T_{3} respectively.

Unifying typings

Typings T_{1}, T_{2}, T_{3} are binary trees built up using:

- The operation (\square_{-}),
- Variable symbols over objects of Platc.

Taking care with variable names ...

We try to find T, the most general unifier of $\left\{T_{1}, T_{2}, T_{3}\right\}$ using Robinson's Unification Algorithm.

This exists if and only if the diagram commutes.

Let's compare this with the alternative ...

- Robinson (1965)

Exponentially complex $O\left(2^{n}\right)$ (in both time \& space).
Paterson \& Wegman (1978)
A 'lnear O^{\prime}, ágor ${ }^{\prime \prime}$ inn for unlication
Ružička \& Prívara (1982)
Dehineon's original aleorithm is made 'almost linear

Let's compare this with the alternative ...

How complex is this algorithm?

- Robinson (1965)

Exponentially complex $O\left(2^{n}\right)$ (in both time \& space).

- Paterson \& Wegman (1978)

A linear $O(n)$ algorithm for unification.
Ružička \& Prívara (1982)
Robinson's original algorithm is made 'almost linear'
complexity, where

Let's compare this with the alternative ...

How complex is this algorithm?

- Robinson (1965)

Exponentially complex $O\left(2^{n}\right)$ (in both time \& space).

- Paterson \& Wegman (1978)

A linear $O(n)$ algorithm for unification.

- Ružička \& Prívara (1982)

Robinson's original algorithm is made 'almost linear'
i.e. $O\left(n^{1+\epsilon}\right)$ complexity, where $\epsilon=\frac{1}{\operatorname{Ack}(n, n)}$.

Let's compare this with the alternative ...

Back to playing with toys ...

Recall our 'toy example'

- Single object \mathbb{N}.
- Arrows: all bijections on \mathbb{N}.

The 'Cantor tensor'

We have a tensor $\left(__{-} \star_{-}\right): \mathcal{U} \times \mathcal{U} \rightarrow \mathcal{U}$.

$$
(f \star g)(n)=\left\{\begin{array}{lr}
2 . f\left(\frac{n}{2}\right) & n \text { even, } \\
2 . g\left(\frac{n-1}{2}\right)+1 & n \text { odd. }
\end{array}\right.
$$

Associativity in the toy example

The associativity isomorphism is:

$$
\tau(n)= \begin{cases}2 n & n(\bmod 2)=0 \\ n+1 & n(\bmod 4)=1 \\ \frac{n-1}{2} & n(\bmod 4)=3\end{cases}
$$

In general:
Canonical arrows describe
case-by-case operations on modulo classes.

Making things unnecessarily complicated

Question: Does this diagram commute?

- Category Theory: Yes ... it's trivial (5 simple steps).
- Direct Calculation: Yes ... after a case-by-case analysis of 2^{5} modulo classes

$$
\{n(\bmod 32)=k\} k=0 \ldots 31
$$

Making things unnecessarily complicated

Question: Does this diagram commute?

- Category Theory: Yes ... it’s trivial (5 simple steps).
- Direct Calculation: Yes ... after a case-by-case analysis of 2^{5} modulo classes

$$
\{n(\bmod 32)=k\} k=0 \ldots 31
$$

Making things unnecessarily complicated

Question: Does this diagram commute?

- Category Theory: Yes ... it's trivial (5 simple steps).
- Direct Calculation: Yes ... after a case-by-case analysis of 2^{5} modulo classes

$$
\{n(\bmod 32)=k\}_{k=0 \ldots 31}
$$

A couple of (semi-open) questions:

(1) Is this telling us something concrete about complexity classes?
(2) Where do we find such arithmetic operations used 'in the wild'?

$$
\tau(n)= \begin{cases}2 n & n(\bmod 2)=0 \\ n+1 & n(\bmod 4)=1 \\ \frac{n-1}{2} & n(\bmod 4)=3\end{cases}
$$

A closely related question

What is the complexity of the word problem for Thompson's group \mathcal{F} ?

$$
\left.\mathcal{F}=\left\langle x_{0}, x_{1}, x_{2}, \ldots\right| x_{n-a}^{-1} x_{n} x_{n-a}=x_{n+1} \text { for } a>0\right\rangle
$$

Gersten (1991) The Dehn function is at most exponential
Gersten (1991) (Coniecture) It is nrecisely exnonentiall
(Guba 2002) The Dehn function is quadratic,

A closely related question

What is the complexity of the word problem for Thompson's group \mathcal{F} ?

$$
\left.\mathcal{F}=\left\langle x_{0}, x_{1}, x_{2}, \ldots\right| x_{n-a}^{-1} x_{n} x_{n-a}=x_{n+1} \text { for } a>0\right\rangle
$$

Gersten (1991) The Dehn function is at most exponential.
Gersten (1991) (Conjecture) It is precisely exponential!
Various (1991-2002) The bound slowly drops: $O\left(n^{5}\right), O\left(n^{2.746}\right)$
(Guha 2nn2) The Dehn function is cuadratic

A closely related question

What is the complexity of the word problem for Thompson's group \mathcal{F} ?

$$
\left.\mathcal{F}=\left\langle x_{0}, x_{1}, x_{2}, \ldots\right| x_{n-a}^{-1} x_{n} x_{n-a}=x_{n+1} \text { for } a>0\right\rangle
$$

Gersten (1991) The Dehn function is at most exponential.
Gersten (1991) (Conjecture) It is precisely exponential!
Various (1991-2002) The bound slowly drops
(Guba 2002) The Dehn function is quadratic, $O\left(n^{2}\right)$

A closely related question

What is the complexity of the word problem for Thompson's group \mathcal{F} ?

$$
\left.\mathcal{F}=\left\langle x_{0}, x_{1}, x_{2}, \ldots\right| x_{n-a}^{-1} x_{n} x_{n-a}=x_{n+1} \text { for } a>0\right\rangle
$$

Gersten (1991) The Dehn function is at most exponential.
Gersten (1991) (Conjecture) It is precisely exponential!
Various (1991-2002) The bound slowly drops: $O\left(n^{5}\right), O\left(n^{2.746}\right), \ldots$
(Guba 2002) The Dehn function is quadratic, $O\left(n^{2}\right)$

A closely related question

What is the complexity of the word problem for Thompson's group \mathcal{F} ?

$$
\left.\mathcal{F}=\left\langle x_{0}, x_{1}, x_{2}, \ldots\right| x_{n-a}^{-1} x_{n} x_{n-a}=x_{n+1} \text { for } a>0\right\rangle
$$

Gersten (1991) The Dehn function is at most exponential.
Gersten (1991) (Conjecture) It is precisely exponential!
Various (1991-2002) The bound slowly drops: $O\left(n^{5}\right), O\left(n^{2.746}\right), \ldots$
(Guba 2002) The Dehn function is quadratic, $O\left(n^{2}\right)$.

A relevant result

From a group theory textbook ...

Thompson's group is generated by rearrangements of the form:

A relevant result

From a group theory textbook ...

Thompson's group is generated by rearrangements of the form:

Mark V. Lawson (2006)

In any single-object monoidal category $(\mathcal{C}, \star, \tau)$,
The arrows $\tau,(1 \star \tau)$ generate a copy of \mathcal{F}.

A relevant result

From a group theory textbook ...

Thompson's group is generated by rearrangements of the form:

Mark V. Lawson (2006)

In any single-object monoidal category $(\mathcal{C}, \star, \tau)$,
The arrows $\tau,(1 \star \tau)$ generate a copy of \mathcal{F}.

The group of canonical isomorphisms contains \mathcal{F} as a proper subgroup.

Using the 'Cantor tensor'

The following two bijections generate a copy of Thompson's \mathcal{F}.

$$
\begin{aligned}
& A(n)= \begin{cases}2 n & n(\bmod 2)=0 \\
n+1 & n(\bmod 4)=1 \\
\frac{n-1}{2} & n(\bmod 4)=3\end{cases} \\
& B(n)= \begin{cases}n & n(\bmod 2)=0 \\
2 n-1 & n(\bmod 4)=1 \\
n+2 & n(\bmod 8)=3 \\
\frac{n-1}{2} & n(\bmod 8)=7\end{cases}
\end{aligned}
$$

Arithmetic as category theory

Order-preserving bijections $\mathbb{N} \uplus \mathbb{N} \cong \mathbb{N}$

- are in $1: 1$ correspondence with points of the Cantor set ${ }^{2}$.
- each determine a distinct tensor \& associativity iso. on \mathbb{N}

In each case:

We derive a distinct representation of Thompson's group.

This is a good way of confusing group theorists!
${ }^{2}$ excluding a subset of measure zero.

Just give us time to work it out!

Every division of \mathbb{N} into two infinite subsets determines such a bijection $\mathbb{N} \uplus \mathbb{N} \cong \mathbb{N}$.

N odd.	N even	Trivial!
$N(\bmod k)=0$	$N(\bmod k) \neq 0$	simple \ldots
$N=p^{n}$	$N \neq p^{n}$	interesting \ldots
N prime	N non-prime	complicated \ldots
Statement with Gödel number N is provable.	Statement with Gödel number N	Subtle!

Where else do we see associativity isomorphisms?

In which other settings might we find:

For $n \in \mathbb{N}$,

$$
\tau(n)= \begin{cases}2 n & n \in 2 \mathbb{N} \\ n+1 & n \in 4 \mathbb{N}+1 \\ \frac{n-1}{2} & n \in 4 \mathbb{N}+3\end{cases}
$$

or similar untyped associativity isomorphisms?

Going round in circles

At least one interesting setting:
For $n \in \mathbb{Z}_{p}$,

$$
\tau(n)= \begin{cases}2 n & n \in A \\ n+1 & n \in B \\ \frac{1}{2}(n-1) & n \in C\end{cases}
$$

where $\mathbb{Z}_{p}=A \uplus B \uplus C$.

That's all, folks (!)

Coming up next time ...

What all this has to do with:

- The Cantor space.
- Shuffling decks of cards.
- Young tableaux.
- Inverse semigroup theory.
- Linear logic \& state machines.
- Some more modular arithmetic.

[^0]: ${ }^{1}$ after a little bit of work ...

[^1]: The interpretation: Semantic models of conjunction, in computational linguistics, satisfy the same formal axioms as categorical models of measurement in quantum mechanics.

