Reconsidering MacLane (again): algorithms for coherence ...

Peter M. Hines

York - Maths Dept. - Nov. 2013

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

This is a sequel to the talk of 16/10/2013.

What will be assumed:

- The definition of a category.
- The definitions of diagrams & functors.
- A rough idea about what tensors are.
- A very vague recollection of what I talked about last time.

The story so far ...

MacLane's theorem is possibly the most

relied-upon theorem in category theory.

There is a 'mismatch' between:

- The formal statement.
- 2 The informal statement.

Some areas are aware of this ... others less so.

This confusion seems to be due to MacLane himself.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

(日)

MacLane's theorem - the general area

The topic is tensors on categories:

 $_{-}\otimes _{-}:\mathcal{C}\times \mathcal{C}\rightarrow \mathcal{C}$

The informal version is used to simplify associativity:

Associativity up to isomorphism

is treated as a strict equality

 $A \otimes B \otimes C \longrightarrow A \otimes B \otimes C$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

Formal vs. Informal

• (Correct ...) Every diagram in the image of MacLane's substitution functor commutes.

• (Incorrect ...) Every canonical diagram commutes.

Canonical diagrams have arrows built using:

- Associativity isomorphisms, *τ* : *X* ⊗ (*Y* ⊗ *Z*) → (*X* ⊗ *Y*) ⊗ *Z*
- Identity arrows $1_X : X \to X$
- Tensors _ ⊗ _
- Inverses ()⁻¹

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

The **informal statement** true iff MacLane's **substitution functor** $\mathcal{W}Sub : (\mathcal{W}, \Box) \rightarrow (\mathcal{C}, \otimes)$ is an embedding – an **epic functor**.

This is not always the case!

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

A simple example ...

The symmetric group on \mathbb{N} is a **single-object category**.

A tensor derived from the Cantor pairing:

• The tensor:

$$(f \star g)(n) = \left\{ egin{array}{ll} 2.f\left(rac{n}{2}
ight) & n ext{ even,} \\ 2.g\left(rac{n-1}{2}
ight) + 1 & n ext{ odd.} \end{array}
ight.$$

The associativity isomorphism:

$$\tau(n) = \begin{cases} 2n & n \pmod{2} = 0, \\ n+1 & n \pmod{4} = 1, \\ \frac{n-1}{2} & n \pmod{4} = 3. \end{cases}$$

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > <

I remember it well, in the Hilbert hotel

A large class of counterexamples

Tensors $(_\star_)$ on the natural numbers \mathbb{N}

(- treated as a single-object category).

are equivalent to self-similar structures

derived from 'Hilbert Hotel' style reasoning.

Fixing a hole, where the strain comes in

What can be done about this?

- Build 'equivalent' categories where all canonical diagrams commute.
- Provide a coherence theorem & strictification procedure for self-similarity.
- Give a decision procedure for commutativity of canonical diagrams.

These three solutions are very closely related¹.

¹after a little bit of work ...

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

A reminder: MacLane's theorem

Assume a monoidal category (\mathcal{C}, \otimes) , with *generating object* S

MacLane's theorem relies on a functor

 $\mathcal{W}\textit{Sub}:(\mathcal{W},\Box) \to (\textit{C},\otimes)$

MacLane's theorem (formal version)

Every diagram in \mathcal{C}

that is the image of a diagram in $\ensuremath{\mathcal{W}}$

may be guaranteed to commute.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

A reminder - the source of the functor

The category \mathcal{W} is based on (non-empty) binary trees.

- Leaves labelled by x,
- Branchings labelled by \Box .

The rank of a tree is the number of leaves.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

A posetal category of trees

MacLane's category \mathcal{W} .

• (Objects) All non-empty binary trees.

• (Arrows) A unique arrow between any two trees of the same rank.

— write this as $(v \leftarrow u) \in W(u, v)$.

MacLane's substitution functor

On objects:

- WSub(x) = S,
- $WSub(u \Box v) = WSub(u) \otimes WSub(v).$

An object of \mathcal{W} :

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

An inductively defined functor (I)

On objects:

- WSub(x) = S,
- $WSub(u \Box v) = WSub(u) \otimes WSub(v).$

An object of C:

크

An inductively defined functor (II)

On arrows:

- $WSub(u \leftarrow u) = 1_.$
- $WSub(a\Box v \leftarrow a\Box u) = 1 \otimes WSub(v \leftarrow u).$
- $WSub(v \Box b \leftarrow u \Box b) = WSub(v \leftarrow u) \otimes 1_.$
- $WSub((a\Box b)\Box c \leftarrow a\Box(b\Box c)) = \tau_{,.,.}$.

The coherence condition ..

MacLane's Pentagon condition ensures *WSub* is a functor.

An inductively defined functor (II)

On arrows:

- $WSub(u \leftarrow u) = 1_.$
- $WSub(a\Box v \leftarrow a\Box u) = 1 \otimes WSub(v \leftarrow u).$
- $WSub(v \Box b \leftarrow u \Box b) = WSub(v \leftarrow u) \otimes 1_.$
- $WSub((a\Box b)\Box c \leftarrow a\Box(b\Box c)) = \tau_{,.,.}$.

The coherence condition ...

MacLane's Pentagon condition ensures W*Sub* is a functor.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

The root of the problem:

We have a functor $WSub : (W, \Box) \to (\mathcal{C}, \otimes)$.

- Every **object** of C is the image of an object of W
- Every canonical arrow of C is the image of an arrow of W
- Every **diagram** over *W* commutes.
- The image of every diagram in (W, \Box) commutes
- Every canonical diagram is of this form precisely when *WSub* is an embedding.

We have a functor $WSub : (W, \Box) \to (\mathcal{C}, \otimes)$.

- Every **object** of C is the image of an object of W
- Every canonical arrow of $\mathcal C$ is the image of an arrow of $\mathcal W$
- Every diagram over \mathcal{W} commutes.
- The image of every diagram in (W, \Box) commutes
- Every canonical diagram is of this form precisely when *WSub* is an embedding.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ...

We have a functor $WSub : (W, \Box) \to (\mathcal{C}, \otimes)$.

- Every **object** of C is the image of an object of W
- Every canonical arrow of ${\mathcal C}$ is the image of an arrow of ${\mathcal W}$
- Every **diagram** over \mathcal{W} commutes.
- The image of every diagram in (W, \Box) commutes
- Every canonical diagram is of this form precisely when *WSub* is an embedding.

・ 戸 ト ・ 三 ト ・ 三 ト

Approach I

Building categories where all canonical diagrams commute.

Given a **badly-behaved** category, we will build a *well-behaved* version.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

• Image: A image:

Given a (monogenic) monoidal category (\mathcal{C}, \otimes) :

We will construct a 'closely related' category for which MacLane's functor is an *embedding*.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Constructing Plat_C

Objects are free binary trees

There is an instantiation map $Inst : Ob(Plat_{\mathcal{C}}) \rightarrow Ob(\mathcal{C})$

$S \Box ((S \Box S) \Box S) \mapsto S \otimes ((S \otimes S) \otimes S)$

This is not just a matter of syntax!

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

크

What about arrows?

Homsets are copies of homsets of $\ensuremath{\mathcal{C}}$

Given trees T_1 , T_2 ,

 $Plat_{\mathcal{C}}(T_1, T_2) = \mathcal{C}(Inst(T_1), Inst(T_2))$

Composition is inherited from C in the obvious way.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

The tensor (\Box) : $Plat_{\mathcal{C}} \times Plat_{\mathcal{C}} \rightarrow Plat_{\mathcal{C}}$

The tensor of $Plat_{\mathcal{C}}$ is

- (Objects) A free formal pairing, A□B,
- (Arrows) Inherited from (\mathcal{C}, \otimes) , so $f \Box g \stackrel{\text{def.}}{=} f \otimes g$.

www.peter.hines.net

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - の Q @

Some properties of the platonic ideal ...

The functor

$\mathcal{W}Sub: (\mathcal{W}, \Box) \rightarrow (\mathit{Plat}_{\mathcal{C}}, \Box)$

is always monic.

As a corollary: All canonical diagrams of ($Plat_{\mathcal{C}}, \Box$) commute

Instantiation defines an epic monoidal functor

 $\mathit{Inst}:(\mathit{Plat}_{\mathcal{C}},\Box)\to(\mathcal{C},\otimes)$

through which McL'.s substitution functor always factors.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Some properties of the platonic ideal ...

The functor

$$\mathcal{W}$$
Sub : $(\mathcal{W}, \Box) \rightarrow (Plat_{\mathcal{C}}, \Box)$

is always monic.

As a corollary:

All canonical diagrams of $(Plat_{\mathcal{C}}, \Box)$ commute.

Instantiation defines an epic monoidal functor

 $\mathit{Inst}:(\mathit{Plat}_{\mathcal{C}},\Box)\to(\mathcal{C},\otimes)$

through which McL'.s substitution functor always factors.

Some properties of the platonic ideal ...

The functor

$$\mathcal{W}$$
Sub : $(\mathcal{W}, \Box) \rightarrow (Plat_{\mathcal{C}}, \Box)$

is always monic.

As a corollary:

All canonical diagrams of $(Plat_{\mathcal{C}}, \Box)$ commute.

Instantiation defines an epic monoidal functor

 $\mathit{Inst}:(\mathit{Plat}_{\mathcal{C}},\Box)\to(\mathcal{C},\otimes)$

through which McL'.s substitution functor always factors.

・ 同 ト ・ ヨ ト ・ ヨ ト

A monic / epic decomposition

MacLane's substitution functor always factors through the platonic ideal:

This gives a monic / epic decomposition of his functor.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Approach II

Give a 'strictification procedure' for self-similarity $S \cong S \otimes S$.

To be compared & contrasted with

MacLane's 'strictification procedure' for associativity.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Given a structural property of a category:

Associativity	$A \otimes (B \otimes C)$	\cong	$(A \otimes B) \otimes C$
Symmetry	$A \otimes B$	\cong	$B \otimes A$
Distributivity	$A \otimes (B \oplus C)$	\cong	$(A \otimes B) \oplus (A \otimes C)$
Self-similarity	S	\cong	$S \otimes S$
Interchange	$(A \otimes B) \star (C \otimes D)$	\cong	$(A \star C) \otimes (B \star D)$

We (attempt to) form a strict version of the same category.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

- 17

Strictification gives an "equivalent" category

Associativity	$A \otimes (B \otimes C)$	=	$(A \otimes B) \otimes C$
Symmetry	$A \otimes B$	=	$B\otimes A$
Distributivity	$A\otimes (B\oplus C)$	=	$(A \otimes B) \oplus (A \otimes C)$
Self-similarity	S	=	$S \otimes S$
Interchange	$(A \otimes B) \star (C \otimes D)$	=	$(A \star C) \otimes (B \star D)$

where isomorphisms are replaced by equalities identities.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲□ → ▲ □ → ▲ □ → …

크

Let me tell you what I want

What would we like from strictification?

- All canonical isomorphisms to be replaced by identities.
- 2 This process should be *functorial*.
- There should be no 'side-effects'.

The commutativity of a diagram in the strict category

• 同 • • 三 • • 三 •

Let me tell you what I want

What would we like from strictification?

- All canonical isomorphisms to be replaced by identities.
- 2 This process should be *functorial*.
- There should be no 'side-effects'.

The commutativity of a diagram in the strict category

The commutativity of 'equivalent' diagram(s) in the *non-strict version*.

• 同 • • 三 • • 三 •

What would we like from strictification?

- All canonical isomorphisms to be replaced by identities.
- 2 This process should be *functorial*.
- There should be no 'side-effects'.

The commutativity of a diagram in the strict category

The commutativity of 'equivalent' diagram(s) in the *non-strict version*.

• Image: A image:

You can't always get what you want

The definition of equivalent is very subtle!

Strictification often has 'side effects'

Strictifying Distributivity

 $A \otimes (B \oplus C) = (A \otimes B) \oplus (A \otimes C)$

forces strict **symmetry** for $(_ \oplus _)$.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

(ロ) (部) (E) (E) (E)

You can't always get what you want

The definition of equivalent is very subtle!

Strictification often has 'side effects'

Strictifying symmetry

 $A \otimes B = B \otimes A$

brings on many changes.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

크
You can't always get what you want

The definition of equivalent is very subtle!

Strictification often has 'side effects'

Strictifying associativity

 $A \otimes (B \otimes C) = (A \otimes B) \otimes C$

maps single-object categories to multi-object categories.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

You can't always get what you want

The definition of equivalent is very subtle!

Strictification often has 'side effects'

Strictifying self-similarity

 $S = S \otimes S$

forces associativity up to isomorphism.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Not everything can be strict ...

Not all these procedures are compatible.

The 'No Simultaneous Strictness' Theorem

One cannot have both

(I) Associativity $A \otimes (B \otimes C) \cong (A \otimes B) \otimes C$

(II) Self-Similarity

as strict equalities.

 $S \cong S \otimes S$

There are no strict tensors on non-trivial monoids!

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

(ロ) (部) (E) (E) (E)

How to strictify self-similarity

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

(口)

A simple, almost painless, procedure (I)

 Start with a monogenic category (C, ⊗), generated by a self-similar object

- Construct its platonic ideal (*Plat*_C, □)
- For every object A, define a pair of isomorphisms:

The generalised code / decode arrows.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

A simple, almost painless, procedure (I)

 Start with a monogenic category (C, ⊗), generated by a self-similar object

- Construct its platonic ideal (*Plat*_C, □)
- For every object A, define a pair of isomorphisms:

The generalised code / decode arrows.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

A simple, almost painless, procedure (I)

 Start with a monogenic category (C, ⊗), generated by a self-similar object

- Construct its platonic ideal (*Plat*_C, □)
- For every object A, define a pair of isomorphisms:

The generalised code / decode arrows.

Generalised code / decode arrows

An inductive definition:

• For the generating object,

 $\triangleleft_S = \mathbf{1}_S = \rhd_S$

• For arbitrary objects A, B, we

define $\triangleleft_{A \square B}$ in terms of \triangleleft_A and \triangleleft_B .

★ E ► ★ E ►

크

A simple, almost painless, procedure (II)

• This gives, for all objects *A*, a unique pair of inverse arrows

• Use these to define an **endofunctor** Φ : $Plat_{\mathcal{C}} \rightarrow Plat_{\mathcal{C}}$.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

A simple, almost painless, procedure (II)

• This gives, for all objects *A*, a unique pair of inverse arrows

• Use these to define an **endofunctor** Φ : $Plat_{\mathcal{C}} \rightarrow Plat_{\mathcal{C}}$.

The type-erasing endofunctor

Objects

 $\Phi(A) = S$, for all objects A

• Functoriality is trivial ...

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

<回>< E> < E> < E> = E

A natural tensor on C(S, S)

As a final step:

Define a tensor $(_ \star _)$ on C(S, S) by

 $(C(S, S), _ \star _)$ is a single-object monoidal category!

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Type-erasing as a monoidal functor

- Recall, $Plat_{\mathcal{C}}(S, S) \cong \mathcal{C}(S, S)$.
- Up to this obvious isomorphism,

 $\Phi:(\textit{Plat}_{\mathcal{C}},\Box)\to(\mathcal{C}(\textit{S},\textit{S}),\star)$

is a monoidal functor.

What we have ...

A monoidal functor from $Plat_{\mathcal{C}}$ to a strictly self-similar monoidal category.

— every canonical (for self-similarity) arrow is mapped to 1_S .

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Type-erasing as a monoidal functor

- Recall, $Plat_{\mathcal{C}}(S, S) \cong \mathcal{C}(S, S)$.
- Up to this obvious isomorphism,

 $\Phi:(\mathit{Plat}_{\mathcal{C}},\Box)\to(\mathcal{C}(\mathcal{S},\mathcal{S}),\star)$

is a monoidal functor.

What we have ...

A monoidal functor from $Plat_{\mathcal{C}}$ to a strictly self-similar monoidal category.

— every canonical (for self-similarity) arrow is mapped to 1_S .

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

A useful property

Basic Category Theory

diagram \mathfrak{D} commutes \Rightarrow diagram $\Phi(\mathfrak{D})$ commutes.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

크

As above, so below

In this case ...

diagram \mathfrak{D} commutes \Leftrightarrow diagram $\Phi(\mathfrak{D})$ commutes.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

æ

Simplifying proofs in published papers.

(P.H. 2013) *Types and forgetfulness in categorical linguistics and quantum mechanics*, in Sadrzadeh, Heunen, Greffenstette (ed.s), **Categorical Information Flow in Physics and Linguistics**, O.U.P.

The theorem:

Any self-similar structure $(S, \lhd, \triangleright)$ in a symmetric monoidal category defines a (unitless) Frobenius algebra.

The interpretation: Semantic models of conjunction, in computational linguistics, satisfy the same formal axioms as categorical models of measurement in quantum mechanics.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

The key step:

Proving this diagram commutes:

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

日本・モト・モト

크

The key step:

Applying Φ gives:

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

- 47 ▶

★ E → ★ E →

æ

An application (cont.)

The key step:

Simplifying slightly:

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

★ E → ★ E →

æ

An application (cont.)

The key step:

One more time:

This commutes(!), hence the original diagram also commutes.

This is simpler than the published proof.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

< 17 ×

★ 문 ► ★ 문 ► ...

크

Approach (III)

A decision procedure for commutativity of canonical diagrams

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Deciding whether a canonical diagram commutes

("They all do" is not a valid answer!)

We do this for single-object categories

- the general case follows -

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

臣

The Platonic ideal of an untyped category

the platonic ideal of a single-object category $\ensuremath{\mathcal{C}}$

- is monogenic.
- has infinitely many objects.
- has a **self-similar** generating object $S \cong S \otimes S$.

In this case, these are equal.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

When do untyped diagrams commute?

For any canonical diagram \mathfrak{U} over (\mathcal{C}, \star)

- All nodes are the single object S.
- All arrows are built from $(-\star_{-})$, 1_{S} , τ , $()^{-1}$.

The key fact:

The diagram I commutes precisely when

it is the image under Φ of some diagram in $Plat_{\mathcal{C}}$.

Question: Can we decide when such a diagram exists?

• 同 • • 三 • • 三 •

Recall that the functors

are equal in this setting.

It is *much* easier to ask: "Is diagram \mathfrak{U} of the form $Inst(\mathfrak{T})$, for some \mathfrak{T} over $Plat_{\mathcal{C}}$? "

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

크

From 'untyped' to 'typed'

Key question: Is \mathfrak{U} type-able?

Can we consistently replace:

Diagram	Diagram \mathfrak{T}
Every object S	by binary tree of variable symbols
Every identity 1 _S	by some identity on such trees.
Each untyped tensor (_ \star _)	by the typed tensor (_ \Box)
Each untyped assoc. iso. $ au$	by some typed assoc. iso. $\tau_{X,Y,Z}$

to give a new well-formed diagram \mathfrak{T} ?

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

E 990

In the category $Plat_{\mathcal{C}}$, there is **at most one** canonical arrow, between any two objects.

In a connected commuting diagram

The 'typing' at a single object determines

the 'typing' of the whole diagram.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

An example: the untyped pentagon

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

□▶★□▶★□▶

590

臣

An example: the untyped pentagon

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

□▶★□▶★□▶

590

臣

Where A, B, C, D are variable symbols over binary trees.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

글 🕨 🗉 🖻

Where A, B, C, D are variable symbols over binary trees.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

日本・モト・モト

크

Where A, B, C, D are variable symbols over binary trees.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲□ → ▲ □ → ▲ □ → …

臣

Where A, B, C, D are variable symbols over binary trees.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

레이 에트이 에트이 트

Where A, B, C, D are variable symbols over binary trees.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

□ > < 三 > < 三 > < 三 > < □

Not all diagrams are typeable

This is a fatal disagreement, in the sense of Robinson's unification algorithm.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

æ
Not all diagrams are typeable

We <u>cannot</u> type: S = S

Using variable symbols $X, Y, Z, \overline{A, B, C, D}$:

This is a fatal disagreement, in the sense of Robinson's unification algorithm.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

(1日) (日) (日) (日) 日

Let \mathfrak{U} be an arbitrary (canonical, untyped) diagram:

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Choose an arbitrary node:

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

크

By replacing various isomorphisms by their inverses, we may 'cover' £1 with a finite set of distinct closed loops, all starting / finishing at our distinguished node.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Our diagram:

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

E

★ E → < E →</p>

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

★ E → ★ E →

臣

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

臣

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

A.

臣

★ 문 ► ★ 문 ► ...

Unifying typings

Together, these loops L_1, L_2, L_3 'cover' the diagram \mathfrak{U} .

Provided the diagram commutes, each of these closed loops is the identity.

Each closed loop

determines a binary tree of variable symbols at the distinguished node.

Call these trees T_1 , T_2 , T_3 respectively.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

• □ > < 同 > < 回 > < 回 > <</p>

Unifying typings

Typings T_1 , T_2 , T_3 are binary trees built up using:

- The operation $(_\Box_)$,
- Variable symbols over objects of *Plat*_C.

Taking care with variable names ...

We try to find *T*, the most general unifier of $\{T_1, T_2, T_3\}$

using Robinson's Unification Algorithm.

This exists if and only if the diagram commutes.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

- Robinson (1965)
 - Exponentially complex $O(2^n)$ (in both time & space).
- Paterson & Wegman (1978)
 - A linear O(n) algorithm for unification.
- Ružička & Prívara (1982)
 - Robinson's original algorithm is made 'almost linear'
 - i.e. $O(n^{1+\epsilon})$ complexity, where $\epsilon = \frac{1}{Ack(n,n)}$.

Let's compare this with the alternative ...

▲御▶ ▲理▶ ★理≯

Robinson (1965)

Exponentially complex $O(2^n)$ (in both time & space).

Paterson & Wegman (1978)
 A linear O(n) algorithm for unification.

• Ružička & Prívara (1982)

Robinson's original algorithm is made 'almost linear'

i.e. $O(n^{1+\epsilon})$ complexity, where $\epsilon = \frac{1}{Ack(n,n)}$.

Let's compare this with the alternative ...

Robinson (1965)

Exponentially complex $O(2^n)$ (in both time & space).

• Paterson & Wegman (1978)

A linear O(n) algorithm for unification.

Ružička & Prívara (1982)

Robinson's original algorithm is made 'almost linear'

i.e. $O(n^{1+\epsilon})$ complexity, where $\epsilon = \frac{1}{Ack(n,n)}$.

Let's compare this with the alternative ...

Robinson (1965)

Exponentially complex $O(2^n)$ (in both time & space).

Paterson & Wegman (1978)

A linear O(n) algorithm for unification.

Ružička & Prívara (1982)

Robinson's original algorithm is made 'almost linear'

i.e. $O(n^{1+\epsilon})$ complexity, where $\epsilon = \frac{1}{Ack(n,n)}$.

Let's compare this with the alternative ...

Back to playing with toys ...

Recall our 'toy example'

- Single object N.
- Arrows: all bijections on ℕ.

The 'Cantor tensor'

We have a tensor $(_\star_) : \mathcal{U} \times \mathcal{U} \to \mathcal{U}$.

$$(f \star g)(n) = \begin{cases} 2.f\left(\frac{n}{2}\right) & n \text{ even,} \\ 2.g\left(\frac{n-1}{2}\right) + 1 & n \text{ odd.} \end{cases}$$

www.peter.hines.net

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

크

Associativity in the toy example

The associativity isomorphism is:

$$\tau(n) = \begin{cases} 2n & n \pmod{2} = 0, \\ n+1 & n \pmod{4} = 1, \\ \frac{n-1}{2} & n \pmod{4} = 3. \end{cases}$$

In general:

Canonical arrows describe

case-by-case operations on modulo classes.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Making things unnecessarily complicated

Question: Does this diagram commute?

• Category Theory: Yes ... it's trivial (5 simple steps).

 Direct Calculation: Yes ... after a case-by-case analysis of 2⁵ modulo classes

 ${n \pmod{32} = k}_{k=0...31}$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

Making things unnecessarily complicated

Question: Does this diagram commute?

• Category Theory: Yes ... it's trivial (5 simple steps).

 Direct Calculation: Yes ... after a case-by-case analysis of 2⁵ modulo classes

 ${n \pmod{32} = k}_{k=0...31}$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼

Making things unnecessarily complicated

Question: Does this diagram commute?

- Category Theory: Yes ... it's trivial (5 simple steps).
- Direct Calculation: Yes ... after a case-by-case analysis of 2⁵ modulo classes

 ${n \pmod{32} = k}_{k=0...31}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼

A couple of (semi-open) questions:

- Is this telling us something concrete about complexity classes?
- Where do we find such arithmetic operations used 'in the wild' ?

$$\tau(n) = \begin{cases} 2n & n \pmod{2} = 0, \\ n+1 & n \pmod{4} = 1, \\ \frac{n-1}{2} & n \pmod{4} = 3. \end{cases}$$

www.peter.hines.net

 $\mathcal{F} = \langle x_0, x_1, x_2, \dots | x_{n-a}^{-1} x_n x_{n-a} = x_{n+1} \text{ for } a > 0 \rangle$

Gersten (1991) The Dehn function is at most exponential. **Gersten (1991)** (Conjecture) It is precisely exponential! **Various (1991-2002)** The bound slowly drops: $O(n^5)$, $O(n^{2.746})$, ... (**Guba 2002)** The Dehn function is **quadratic**, $O(n^2)$.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

 $\mathcal{F} = \langle x_0, x_1, x_2, \dots | x_{n-a}^{-1} x_n x_{n-a} = x_{n+1} \text{ for } a > 0 \rangle$

Gersten (1991) The Dehn function is at most exponential.

Gersten (1991) (Conjecture) It is precisely exponential! **Various (1991-2002)** The bound slowly drops: $O(n^5)$, $O(n^{2.746})$, ... **(Guba 2002)** The Dehn function is **quadratic**, $O(n^2)$.

(日)

 $\mathcal{F} = \langle x_0, x_1, x_2, \dots | x_{n-a}^{-1} x_n x_{n-a} = x_{n+1} \text{ for } a > 0 \rangle$

Gersten (1991) The Dehn function is at most exponential. **Gersten (1991)** (Conjecture) It is precisely exponential! **Various (1991-2002)** The bound slowly drops: $O(n^5)$, $O(n^{2.746})$, (**Guba 2002)** The Dehn function is **quadratic**, $O(n^2)$.

www.peter.hines.net

 $\mathcal{F} = \langle x_0, x_1, x_2, \dots | x_{n-a}^{-1} x_n x_{n-a} = x_{n+1} \text{ for } a > 0 \rangle$

Gersten (1991) The Dehn function is at most exponential. **Gersten (1991)** (Conjecture) It is precisely exponential! **Various (1991-2002)** The bound slowly drops: $O(n^5)$, $O(n^{2.746})$, ...

(Guba 2002) The Dehn function is quadratic, $O(n^2)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\mathcal{F} = \langle x_0, x_1, x_2, \dots | x_{n-a}^{-1} x_n x_{n-a} = x_{n+1} \text{ for } a > 0 \rangle$$

Gersten (1991) The Dehn function is at most exponential. **Gersten (1991)** (Conjecture) It is precisely exponential! **Various (1991-2002)** The bound slowly drops: $O(n^5)$, $O(n^{2.746})$, ... **(Guba 2002)** The Dehn function is **quadratic**, $O(n^2)$.

▲掃▶ ▲注▶ ▲注▶ 二注

A relevant result

From a group theory textbook ...

Thompson's group is generated by rearrangements of the form:

Mark V. Lawson (2006)

In any single-object monoidal category (C, \star, τ) . The arrows τ . $(1 \star \tau)$ generate a copy of \mathcal{F} .

The group of canonical isomorphisms contains $\mathcal F$ as a proper subgroup.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

A relevant result

From a group theory textbook ...

Thompson's group is generated by rearrangements of the form:

Mark V. Lawson (2006)

In any single-object monoidal category $(\mathcal{C}, \star, \tau)$,

The arrows τ , $(1 \star \tau)$ generate a copy of \mathcal{F} .

The group of canonical isomorphisms contains $\mathcal F$ as a proper subgroup.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

A relevant result

From a group theory textbook ...

Thompson's group is generated by rearrangements of the form:

Mark V. Lawson (2006)

In any single-object monoidal category $(\mathcal{C}, \star, \tau)$,

The arrows τ , $(1 \star \tau)$ generate a copy of \mathcal{F} .

The group of canonical isomorphisms contains $\mathcal F$ as a proper subgroup.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Using the 'Cantor tensor'

The following two bijections generate a copy of Thompson's \mathcal{F} .

$$A(n) = \begin{cases} 2n & n \pmod{2} = 0, \\ n+1 & n \pmod{4} = 1, \\ \frac{n-1}{2} & n \pmod{4} = 3. \end{cases}$$
$$B(n) = \begin{cases} n & n \pmod{4} = 3, \\ 2n-1 & n \pmod{4} = 3, \\ n+2 & n \pmod{4} = 1, \\ n+2 & n \pmod{8} = 3, \\ \frac{n-1}{2} & n \pmod{8} = 7. \end{cases}$$

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

크

Order-preserving bijections $\mathbb{N} \uplus \mathbb{N} \cong \mathbb{N}$

- are in 1:1 correspondence with points of the Cantor set².
- each determine a distinct tensor & associativity iso. on ℕ

In each case:

We derive a distinct representation of Thompson's group.

This is a good way of confusing group theorists!

²excluding a subset of measure zero.

Just give us time to work it out!

Every division of \mathbb{N} into two infinite subsets determines such a bijection $\mathbb{N} \uplus \mathbb{N} \cong \mathbb{N}$.

N odd.	N even	Trivial!
$N \pmod{k} = 0$	$N \pmod{k} \neq 0$	simple
$N = p^n$	$N eq p^n$	interesting
N prime	N non-prime	complicated
Statement with Gödel number <i>N</i> is provable.	Statement with Gödel number <i>N</i> is not provable.	Subtle!

www.peter.hines.net

□▶▲□▶▲□▶

크

Where else do we see associativity isomorphisms?

In which other settings might we find:

For $n \in \mathbb{N}$,

$$\mathbf{f}(n) = \begin{cases} 2n & n \in 2\mathbb{N}, \\ n+1 & n \in 4\mathbb{N}+1, \\ \frac{n-1}{2} & n \in 4\mathbb{N}+3. \end{cases}$$

or similar untyped associativity isomorphisms?

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

크

At least one interesting setting:

For $n \in \mathbb{Z}_p$, $au(n) = \begin{cases} 2n & n \in A, \\ n+1 & n \in B, \\ \frac{1}{2}(n-1) & n \in C. \end{cases}$

where $\mathbb{Z}_p = A \uplus B \uplus C$.

Coherence in Hilbert's hotel arXiv[math.CT]:1304.5954

www.peter.hines.net

That's all, folks (!)

Coming up next time ...

What all this has to do with:

- The Cantor space.
- Shuffling decks of cards.
- Young tableaux.
- Inverse semigroup theory.
- Linear logic & state machines.
- Some more modular arithmetic.

www.peter.hines.net

< A > < 3