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Semigroup identities and varieties of semigroups

Let Σ be an alphabet, and consider two words w, v ∈ Σ+. Say
that w = v is a semigroup identity for S if ϕ(w) = ϕ(v) for
all semigroup morphisms ϕ : Σ+ → S.

A variety of semigroups is a class of semigroups defined by
satisfaction of a particular set of identities.

Birkhoff’s theorem: A class of semigroups is a variety if
and only if it is closed under taking subsemigroups, direct
products and homomorphic images.

By the variety generated by a semigroup S we mean the
variety defined by the set of all identities satisfied by S.
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General Questions

Given a semigroup S we may ask...

I Does S satisfy a non-trivial semigroup identity?

Golubchik and Mikhalev, 1978: For n > 1, K an infinite
field, Mn(K) does not satisfy a non-trivial semigroup identity.

I Can we “describe” the identities satisfied by S?
This can be difficult...

There are finite semigroups which are not finitely based!
Perkins, 1969: Six element example using 0-1 matrices.
Sapir/Volkov, 1980s: Mn(K) where n > 1 and K finite.

I Does S generate the same semigroup variety as
some other interesting/well-studied semigroup?
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The basics of tropical arithmetic

Let T denote the tropical semiring (R ∪ {−∞},⊕,⊗), where
⊕ and ⊗ denote two binary operations defined by:
x⊕ y := max(x, y), x⊗ y := x+ y.

I x⊕ x = x;
I x⊗ 0 = 0⊗ x = x.

The semigroup Mn(T) is the set of all n× n tropical
matrices, with multiplication ⊗ defined in the obvious way:

(
2 1
0 19

)
⊗
(
−1 −1
−20 4

)
=

(
1 5
−1 23

)
Variants: Let T = R,Q,Z or N0. Can also consider:
T̄max := (T ∪ {−∞},⊕,⊗), or Tmax := (T ,⊕,⊗), or
T̄min := (T ∪ {+∞},�,⊗), or Tmin := (T ,�,⊗),
where x� y = min(x, y).
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Tropical matrix identities

Does Mn(T) satisfy a non-trivial semigroup identity?

Izhakian and Margolis, 2010: For n = 2, yes!

They proved that...

I The bicyclic monoid B embeds into the monoid UT2(T) of
upper triangular tropical matrices.
So, any identity satisfied by UT2(T) is also satisfied by B.

I UT2(T) satisfies Adjan’s identity:

abba ab abba = abba ba abba,

thus exhibiting a minimal length identity for UT2(T).

I M2(T) satisfies the identity:

a2b2b2a2 a2b2 a2b2b2a2 = a2b2b2a2 b2a2 a2b2b2a2.
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Upper triangular tropical matrix identities

I Does UTn(T) satisfy a non-trivial semigroup
identity?

Izhakian 2014, Okninski 2015, Taylor 2016: Yes - different
constructions.

I Can we “describe” the identities satisfied by
UTn(T)?

Daviaud, J, Kambites, 2017: We give a necessary and
sufficient condition for an identity to hold in UTn(T).

I Do UT2(T) and B generate the same variety?

Daviaud, J, Kambites, 2017: Yes! Several variants of
UT2(T) and B also generate the same variety.
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The case n = 2

Consider morphisms ϕ : Σ+ → UT2(T) of the form:

(F) ϕ(s) =

(
xs x′s
−∞ 0

)
, for all s ∈ Σ.

I For all w ∈ Σ+, can see that:

ϕ(w)1,1 =
∑
t∈Σ

|w|txt, ϕ(w)2,1 = −∞, ϕ(w)2,2 = 0

ϕ(w)1,2 = maxs∈Σ

(
maxw=usv

(∑
t∈Σ

|u|txt + x′s + 0

))

= maxs∈Σ

(
x′s + maxwi=s

(∑
t∈Σ

λwt (i− 1)xt

))

where |w|t = the number of occurrences of the letter t in w,
and λwt (k) = #t’s in the first k letters of w.
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The case n = 2

The latter equation can be written tropically as:

ϕ(w)1,2 =
⊕
s∈Σ

(
x′s ⊗

⊕
wi=s

⊗
t∈Σ

x
⊗λwt (i−1)
t

)
=
⊕
s∈Σ

(
x′s ⊗ fws (x)

)

Theorem 1: Let w, v ∈ Σ+.
The identity w = v holds on UT2(T) if and only if
fws (x) = fvs (x) for all s ∈ Σ and all x ∈ RΣ.

I If fws (x) 6= fvs (x) for some s ∈ Σ and x ∈ RΣ, then there is
a morphism (F) falsifying the identity in UT2(T).

I If fws (x) = fvs (x) for all s ∈ Σ and all x ∈ RΣ can show that
w and v must have the same content. The result then
follows from the following (technical) reductions...
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Reductions

UTn(T) and UTn(Rmax) satisfy the same identities.

If ρ : Σ+ → UTn(T) is a morphism falsifying an identity, then
construct from this a morphism ρx : Σ+ → UTn(Rmax) where
any −∞ entries on or above the diagonal in ρ(s) are replaced
by x� 0 in ρx(s).

Let w, v ∈ Σ+ be words of the same content.
If ϕ(w) = ϕ(v) for each morphism ϕ : Σ+ → UTn(Rmax)
satisfying ϕ(s)n,n = 0 for all s ∈ Σ, then w = v is an identity
in UTn(T).

Follows from the above together with the fact that if ψ and φ
are morphisms related by ψ(s) = µs ⊗ φ(s) for some µs ∈ Rmax,

φ(w) = φ(v)⇔ ψ(w) = ψ(v).
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The case n = 2: Example

By Theorem 1: The identity
w := abba ab abba = abba ba abba =: v holds on UT2(T) if and
only if fws (x) = fvs (x) for s = a, b and all x ∈ RΣ, where

fus (x) =
⊕
ui=s

⊗
t∈Σ

x
⊗λut (i−1)
t

So for example,

fwa (xa, xb) = max(0, xa + 2xb, 2xa + 2xb, 3xa + 3xb, 4xa + 5xb)

= max(0, xa + 2xb, 3xa + 3xb, 4xa + 5xb)

fva (xa, xb) = max(0, xa + 2xb, 2xa + 3xb, 3xa + 3xb, 4xa + 5xb)

= max(0, xa + 2xb, 3xa + 3xb, 4xa + 5xb)
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The bicyclic monoid

Recall that B = 〈p, q : pq = 1〉 = {qipj : i, j ∈ N0}.

I Izhakian and Margolis: B ↪→ UT2(T) via

qipj 7→
(
i− j i+ j
−∞ j − i

)

Theorem 2: B and UT2(T) generate the same variety.

I We show that if w 6= v in UT2(T) then we can construct a
morphism from Σ+ to the image of B in UT2(T) that
falsifies the identity.

I Easy to see that this can be done if cont(w) 6= cont(v).
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The bicyclic monoid

Suppose that w 6= v in UT2(T), where cont(w) = cont(v).

I Can assume that fwt (x) > fvt (x) for some t ∈ Σ, x ∈ RΣ.

I The functions are piecewise linear. Inequality above
holds in some open neighbourhood of x, so can choose
x ∈ QΣ.

I All linear expressions involved are homogeneous.
Multiplying all entries of x by a positive integer does not
change the inequality, so can choose x ∈ (2Z)Σ.
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I Can assume that fwt (x) > fvt (x) for some t ∈ Σ, x ∈ (2Z)Σ.

I For each s ∈ Σ choose a positive even integer x′s > xs in
such a way that x′s � x′t for s 6= t.

I With these choices, the morphism (F) falsifies the identity:
ϕ(w)1,2 = x′t ⊗ fwt (x) 6= x′t ⊗ fvt (x) = ϕ(v)1,2.

I Setting is = x′s
2 , js = x′s−xs

2 ∈ N0 then gives

ϕ(s) = (is − js)⊗
(
is − js is + js
−∞ js − is

)

I Take ψ(s) = (js − is)⊗ ϕ(s).
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Variants

I Let T = R,Q or Z and define the semigroup BT := T × T
via the product

(a, b) · (c, d) = (a− b+ max(b, c), d− c+ max(b, c)).

I For each T as above we have

B ↪→ BT ↪→ UT2(Tmax) ↪→ UT2(T̄max) ↪→ UT2(T).

I Since B and UT2(T) generate the same semigroup variety,
it follows that each of the intermediate variants above must
satisfy exactly the same semigroup identities as these two.



Generalisation

[n] := {1, . . . , n}, Γ ⊆ {(i, j) : i 6= j} a directed graph.

If Γ is transitive, then

Γ(T) = {A ∈Mn(T) : Ai,j 6= −∞⇒ i = j or (i, j) ∈ Γ}

is a semigroup.

Theorem: Let Γ be non-empty, transitive, and acyclic.
The semigroup identity w = v holds in Γ(T) if and only if
for all pairs u ∈ Σ+ and ρ a path of length |u| through Γ we
have equality of tropical polynomial functions fwu,ρ = fvu,ρ.

Corollary: Let L(Γ) denote the maximum length of any
directed path in Γ. Then Γ(T) satisfies the same semigroup
identities as UTL(Γ)+1(T).



Example: The free monogenic inverse monoid

I = 〈x, x−1 : xx−1x = x, x−1xx−1 = x−1〉
∼= {(i, j, k) ∈ Z3 : i, j > 0,−j ≤ k ≤ i}.

with product

(i, j, k) · (i′, j′, k′) = (max(i, i′ + k), max(j, j′ − k), k + k′)

via x 7→ (1, 0, 1), x−1 7→ (0, 1,−1),

I For Γ = {(1, 3), (2, 3)} can show that I ↪→ Γ(T)

(i, j, k) 7→

 k −∞ i
−∞ −k j
−∞ −∞ 0

 .

I Γ(T) satisfies the same semigroup identities as UT2(T), and
hence B.

I Follows that I satisfies all identities satisfied by B.



Tropical matrix identities

I Does Mn(T) satisfy a non-trivial semigroup identity?

Izhakian and Margolis: Identity of length 20 for M2(T).
Shitov: Identity of length 1,795,308 for M3(T).
Open for n > 3.

I Does M2(T) satisfy a shorter semigroup identity?

Daviaud, J, 2017: Yes!
(Although not much shorter - minimal length is 17.)

I Can we “describe” the identities satisfied by M2(T)?

Daviaud and J, 2017: Necessary conditions for n = 2; these
may not yet be sufficient. (Work in progress.)


