Amalgams and HNNs of Inverse Semigroups York Semigroup External Talk

Paul Bennett, Singapore

10th February 2021

Singapore

Singapore

Bali

Amalgams and HNNs, 1997–2019: Italians et al.

Sandra Cherubini, Emanuele Rodaro and many others.

Amalgams of Inverse Semigroups

▶ S_1 , S_2 , \overline{U} inverse semigroups, $\overline{S_1} \cap S_2 = U$. ▶ Hall, 1975: $S_1 \cup S_2 \hookrightarrow S_1 *_U S_2$.

Literature on $S_1 *_U S_2$

- ▶ Haataja, Margolis, Meakin, 1996.
- Cherubini, Meakin, Piochi, 1997–2005.
- B., 1997.
- Stephen, 1998.
- Cherubini, Jajcayová, Rodaro et al. 2008–2015.

Definition (B., 2020): U lower bounded in S_1

 \triangleright U lower bounded in S_2 , similar.

Theorems (B., 2020)

If U is lower bounded in S_1 and S_2 then, for $S_1\ast_U S_2,$ we have:

- Schützenberger automata descriptions.
- Structure of maximal subgroups (Bass-Serre theory).
- Preservational properties (e.g. completely semisimple).
- Conditions for decidable word problem (e.g. finite U).

Opuntia 'Prickly Pear' Cacti

Schützenberger 'Opuntoid' graphs of $S_1 *_U S_2$

Hosts and Parasites

Finite case

Theorems (Italians et al., 2008-2015) If S_1 and S_2 are finite then, for $S_1 *_U S_2$, we have:

- Schützenberger graph descriptions.
- Structure of maximal subgroups.
- Preservational properties.
- Decidable word problem.

Finite case overlaps with lower bounded case.

General case: a new approach

- Construct a new amalgam $[T_1, T_2; Z]$.
- Show Z lower bounded in T_1 and T_2 .

$$\blacktriangleright \text{ Show } S_1 *_U S_2 \hookrightarrow T_1 *_Z T_2.$$

New amalgam $[T_1, T_2; Z]$

- ▶ M(U) = semilattice of closed inverse submonoids of U.
- $M_1 \cdot M_2 =$ inverse semigroup closure of $\overline{M_1 \cup M_2}$ in U.
- ▶ $\langle u \rangle$ = closed inverse submonoid of U generated by $u \in U$.

• Construct
$$S_i *_{E(U)} M(U)$$
.

▶ μ_U is the least congruence on $S_i *_{E(U)} M(U)$ with:

$$g\mu_U \le u\mu_U \Leftrightarrow g\mu_U \le \langle u
angle \mu_U$$

 $\forall u \in U, g \in E(S_i *_{E(U)} M(U)), i = 1, 2.$

Theorem (B., 2020)

 $\blacktriangleright Z \hookrightarrow T_1, Z \hookrightarrow T_2.$

 \triangleright Z is lower bounded in T_1 and T_2 .

$$\blacktriangleright S_1 *_U S_2 \hookrightarrow T_1 *_Z T_2.$$

Theorem (Cherubini, Meakin and Piochi, 2005) If S_1 and S_2 are finite then $S_1 *_U S_2$ has decidable word problem.

Theorem (B., 2020) Suppose U is finite and S_1 , S_2 have:

- finite presentations with decidable word problems,
- finite descending chains of idempotents of calculable length,
- ► finite subgroups of calculable order generated by *H*-related partial conjugates of *U*.

Then $S_1 *_U S_2$ has decidable word problem.

Theorem (Cherubini, Jajcayová, Rodaro, 2011) If S_1 and S_2 are finite then the maximal subgroup of $S_1 *_U S_2$ containing an idempotent of S_1 or S_2 has a Bass-Serre description.

Theorem (B., 2020) The above result extends to when U is finite.

Theorem (B., 2020) Suppose, in addition, S_1 and S_2 have:

finite descending chains of idempotents,

Finite subgroups generated by \mathcal{H} -rel. partial conjugates of U. Then any other subgroup of $S_1 *_U S_2$ is a homomorphic image of a subgroup of S_1 or S_2 .

▶ Define $f \prec_i g \Leftrightarrow f\mathcal{D}h \leq g$ in S_i , for some $h \in E(S_i)$, for all $f, g \in E(U)$ and i = 1, 2.

• Define \prec as the transitive closure of \prec_1 and \prec_2 .

Theorem (Rodaro, 2010) If S_1 and S_2 are finite then $S_1 *_U S_2$ is completely semisimple if and only if $\prec \cap \succ_1 \subseteq \prec_1$ and $\prec \cap \succ_2 \subseteq \prec_2$.

Theorem (B., 2020)

The above result extends to when U is finite and S_1 , S_2 :

- are completely semisimple,
- have finite descending chains of idempotents.
- have finite \mathcal{H} -classes.

HNN Extension S^* of an Inverse Semigroup S

 \triangleright U_1 , U_2 inverse monoids, S inverse semigroup.

- $\phi: U_1 \to U_2$ isomorphism, $e_i = \text{identity of } U_i$, i = 1, 2.
- ▶ Yamamura, 1997: $S \hookrightarrow S^* = [S; U_1, U_2; \phi].$
- ► $tt^{-1} = e_1$, $t^{-1}t = e_2$, $t^{-1}ut = (u)\phi$, $u \in U_1$, in S^* .

Literature on $S^* = [S; U_1, U_2; \phi].$

- Yamamura, 1997-2006.
- Jajcayová, 1997.
- Cherubini and Rodaro, 2008–2011.
- Ayyash, 2014–2019.

Definition: U_1 lower bounded in S

 U_2 lower bounded in S, similar.

Theorems (B. and Jajcayová, 2020)

If U_1 are U_2 are lower bounded in ${\cal S}$ then, for ${\cal S}^*,$ we have:

- Schützenberger automata descriptions.
- Structure of maximal subgroups (Bass-Serre theory).
- Preservational properties (e.g. completely semisimple).
- Conditions for decidable word problem (e.g. finite U).

Opuntia 'Pricky Pear' Cacti

Schützenberger 'Opuntoid' graphs of S^{\ast}

Schützenberger Automata Construction

- Given word w over $\{t\}$ and the generators of S.
- Close relative S * FIM(t), using Jones et al. (1994).
- Circles represent Schützenberger graphs of S.

Step 1: Sew e_1 and e_2 loops (green)

- Sew e_1 -loop, using $tt^{-1} = e_1$ relation.
- Sew e_2 -loop, using $t^{-1}t = e_2$ relation.
- Close relative S * FIM(t), using Jones et al. (1994).

Step 2: sew $E(U_1)$ and $E(U_2)$ loops (green)

Sew $(f)\phi$ -loop, using $t^{-1}ft = (f)\phi$ relation, $f \in E(U_1)$.

Sew $(g)\phi^{-1}$ -loop, using $t(g)\phi^{-1}t^{-1} = g$ relation, $g \in E(U_2)$.

• Close relative S * FIM(t).

Take Direct Limit of Step 2

Use refinements:

- linitial vertices of two *t*-edges not connected by U_1 -paths.
- Terminal vertices of two t-edges not connected by U₂-paths.

Step 3: sew parallel *t*-edges

Sew $v'_1 \rightarrow^t v'_2$, given $v_1 \rightarrow^t v_2$, $v_1 \rightarrow^a v'_1$, for some $a \in U_1$, where v'_2 is such that we have a path $v_2 \rightarrow^{(a)\phi} v'_2$.

Step 4: sew on new circles and *t*-edges (green)

Sew v₁ →^t v₂ if we have v₁ →^{e₁} v₁.
Then sew v₂ →^{(a)φ} v₂, for all v₁ →^a v₁ where a ∈ U₁.
Sew v'₁ →^t v'₂ if we have v'₂ →^{e₂} v'₂.
Then sew v'₁ →^{(b)φ⁻¹} v'₁, for all v'₂ →^b v'₂ where b ∈ U₂.

Take Direct Limit of Step 4

Step 4 embeds each automaton in the directed system.
 Direct Limit is the Schützenberger automaton of w in S*.

The Host(s)

Everything else feeds off the host(s).

If multiple hosts then each host is a single circle.

Maximal Subgroups of S^*

The Automorphism Group is that of the subgraph of all hosts.For multiple hosts, we have a graph of groups structure.

General Case: a new approach

- Construct a new HNN $T^* = [T; Z_1, Z_2; \pi]$.
- Show Z_1 and Z_2 lower bounded in T.

 $\blacktriangleright \text{ Show } S^* \hookrightarrow T^*.$

New HNN extension $T^* = [T; Z_1, Z_2; \pi]$.

- \triangleright U = inverse subsemigroup of S generated by $U_1 \cup U_2$.
- M(U) = semilattice of closed inverse submonoids of U.
- $M_1 \cdot M_2 =$ inverse semigroup closure of $M_1 \cup M_2$ in U.
- \triangleright $\langle u \rangle =$ closed inverse submonoid of U generated by $u \in U$.

• Construct
$$S *_{E(U)} M(U)$$
.

 \blacktriangleright μ_U is the least congruence on $S *_{E(U)} M(U)$ with:

$$g\mu_U \le u\mu_U \Leftrightarrow g\mu_U \le \langle u
angle \mu_U$$

 $\forall u \in U, g \in E(S *_{E(U)} M(U)).$

T = (S *_{E(U)} M(U))/µ_U.
 Z_i = (U_i *_{E(U_i)} M(U_i))/µ_{U_i}, i = 1, 2, similarly.
 π : Z₁ → Z₂ isomorphism.

Theorem (B., 2020)

Z₁ ⇔ T, Z₂ ⇔ T.
Z₁ and Z₂ lower bounded in T.
S* ⇔ T*.

Theorem (Cherubini and Rodaro, 2008) If S is finite then S^* has decidable word problem.

Theorem (B., 2020) Suppose $U = \langle U_1 \cup U_2 \rangle$ is finite and S has:

- a finite presentation with decidable word problem,
- finite descending chains of idempotents of calculable length,
- ► finite subgroups of calculable order generated by *H*-related partial conjugates of *U*.

Then $S^* = [S; U_1, U_2; \phi]$ has decidable word problem.

Theorem (Ayyash, 2014) If S is finite then the maximal subgroup of S^* containing an idempotent of S has a Bass-Serre description.

```
Theorem (B., 2020)
The above result extends to when U = \langle U_1 \cup U_2 \rangle is finite.
```

Theorem (B., 2020) Suppose, in addition, *S* has:

finite descending chains of idempotents,

Finite subgroups generated by \mathcal{H} -rel. partial conjugates of U. Then any other subgroup of S^* is a homomorphic image of a subgroup of S.

▶ Define $f \prec_S g \Leftrightarrow f\mathcal{D}h \leq g$ in *S*, for some $h \in E(S)$, for all $f, g \in E(U_1) \cup E(U_2)$.

▶ Define \prec as the transitive closure of \prec_S and $\{(f, (f)\phi), ((f)\phi, f) : f \in E(U_1)\}.$

Theorem (Ayyash, 2014) If S is finite then S^* is completely semisimple if and only if $\prec \cap \succ_S \subseteq \prec_S$.

Theorem (B., 2020)

The above result extends to when $U = \langle U_1 \cup U_2 \rangle$ is finite and:

- \blacktriangleright S is completely semisimple,
- S have finite descending chains of idempotents,
- \triangleright S has finite \mathcal{H} -classes.

Analogue 1

Theorem (Higman, Neumann and Neumann, 1949) For any HNN $S^* = [S; U_1, U_2; \phi]$ of groups, there is an amalgam of groups $[S_1, S_2; V]$ and $t \in S_1 *_V S_2$ with:

•
$$t^{-1}ut = (u)\phi$$
, for $u \in U_1$

$$\triangleright S^* \hookrightarrow S_1 *_V S_2.$$

Theorem (B., 2020).

For any HNN $S^* = [S; U_1, U_2; \phi]$ of inverse semigroups, there is an amalgam of inverse semigroups $[S_1, S_2; V]$ and $t \in S_1 *_V S_2$ with:

•
$$t^{-1}ut = (u)\phi$$
, for $u \in U_1$.

$$\triangleright S^* \hookrightarrow S_1 *_V S_2.$$

HNN Theorem (B., 2020)

►
$$S_1 = S *_{\{e_1\}} FIM(x_1).$$

▶ V_1 = inverse subsemigroup generated by $S \cup x_1^{-1}U_1x_1$.

Prove
$$V_1 \cong S * x_1^{-1} U_1 x_1 \cong S * x_2 U_2 x_2^{-1} \cong V_2$$
.

• The result follows, using $t = x_1 x_2$.

One-one map

▶ From the Schützenberger automata of S * x₁⁻¹U₁x₁
 ▶ To the Schützenberger automata of S₁ = S * {e₁} FIM(x₁).

One-one map

- ▶ Replace Schützenberger graphs of $x^{-1}U_1x_1$
- By Schützenberger graphs of $S * FIM(x_1)$.

One-one map

Sew x_1 -edges, using relation $e_1 = x_1 x_1^{-1}$.

▶ We obtain a Schützenberger graph of $S_1 = S = \overline{*_{e_1}} FIM(x_1)$.

• This proves
$$V_1 \cong S * x_1^{-1} U_1 x_1$$
.

Conclusions

Lower bounded case:

- Schützenberger graphs descriptions.
- Structural and preservational results.
- Conditions for decidable word problem.

General case:

- Construct containing amalgam (HNN), lower bounded case.
- Thus we can study the general case.
- Generalize the literature.
- Analogues of group theory results.