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Amalgams and HNNs, 1997–2019: Italians et al.

I Sandra Cherubini, Emanuele Rodaro and many others.



Amalgams of Inverse Semigroups

I S1, S2, U inverse semigroups, S1 ∩ S2 = U .

I Hall, 1975: S1 ∪ S2 ↪→ S1 ∗U S2.



Literature on S1 ∗U S2

I Haataja, Margolis, Meakin, 1996.

I Cherubini, Meakin, Piochi, 1997–2005.

I B., 1997.

I Stephen, 1998.

I Cherubini, Jajcayová, Rodaro et al. 2008–2015.



Definition (B., 2020): U lower bounded in S1

I U lower bounded in S2, similar.



Lower bounded case

Theorems (B., 2020)
If U is lower bounded in S1 and S2 then, for S1 ∗U S2, we have:

I Schützenberger automata descriptions.

I Structure of maximal subgroups (Bass-Serre theory).

I Preservational properties (e.g. completely semisimple).

I Conditions for decidable word problem (e.g. finite U).



Opuntia ’Prickly Pear’ Cacti



Schützenberger ’Opuntoid’ graphs of S1 ∗U S2



Hosts and Parasites



Finite case

Theorems (Italians et al., 2008-2015)
If S1 and S2 are finite then, for S1 ∗U S2, we have:

I Schützenberger graph descriptions.

I Structure of maximal subgroups.

I Preservational properties.

I Decidable word problem.

Finite case overlaps with lower bounded case.



General case: a new approach

I Construct a new amalgam [T1, T2;Z].

I Show Z lower bounded in T1 and T2.

I Show S1 ∗U S2 ↪→ T1 ∗Z T2.



New amalgam [T1, T2;Z]

I M(U) = semilattice of closed inverse submonoids of U .

I M1 ·M2 = inverse semigroup closure of M1 ∪M2 in U .

I 〈u〉 = closed inverse submonoid of U generated by u ∈ U .

I Construct Si ∗E(U) M(U).

I µU is the least congruence on Si ∗E(U) M(U) with:

gµU ≤ uµU ⇔ gµU ≤ 〈u〉µU

∀u ∈ U, g ∈ E(Si ∗E(U) M(U)), i = 1, 2.

I Ti = (Si ∗E(U) M(U))/µU , i = 1, 2.

I Z = (U ∗E(U) M(U))/µU , similarly.



Theorem (B., 2020)

I Z ↪→ T1, Z ↪→ T2.

I Z is lower bounded in T1 and T2.

I S1 ∗U S2 ↪→ T1 ∗Z T2.



Generalisation 1

Theorem (Cherubini, Meakin and Piochi, 2005)
If S1 and S2 are finite then S1 ∗U S2 has decidable word problem.

Theorem (B., 2020)
Suppose U is finite and S1, S2 have:

I finite presentations with decidable word problems,

I finite descending chains of idempotents of calculable length,

I finite subgroups of calculable order generated by H-related
partial conjugates of U .

Then S1 ∗U S2 has decidable word problem.



Generalisation 2

Theorem (Cherubini, Jajcayová, Rodaro, 2011)
If S1 and S2 are finite then the maximal subgroup of S1 ∗U S2
containing an idempotent of S1 or S2 has a Bass-Serre description.

Theorem (B., 2020)
The above result extends to when U is finite.

Theorem (B., 2020)
Suppose, in addition, S1 and S2 have:

I finite descending chains of idempotents,

I finite subgroups generated by H-rel. partial conjugates of U .

Then any other subgroup of S1 ∗U S2 is a homomorphic image of a
subgroup of S1 or S2.



Generalisation 3

I Define f ≺i g ⇔ fDh ≤ g in Si, for some h ∈ E(Si),
for all f, g ∈ E(U) and i = 1, 2.

I Define ≺ as the transitive closure of ≺1 and ≺2.

Theorem (Rodaro, 2010)
If S1 and S2 are finite then S1 ∗U S2 is completely semisimple if
and only if ≺ ∩ �1⊆≺1 and ≺ ∩ �2⊆≺2.

Theorem (B., 2020)
The above result extends to when U is finite and S1, S2:

I are completely semisimple,

I have finite descending chains of idempotents.

I have finite H-classes.



HNN Extension S∗ of an Inverse Semigroup S

I U1, U2 inverse monoids, S inverse semigroup.

I φ : U1 → U2 isomorphism, ei = identity of Ui, i = 1, 2.

I Yamamura, 1997: S ↪→ S∗ = [S;U1, U2;φ].

I tt−1 = e1, t−1t = e2, t−1ut = (u)φ, u ∈ U1, in S∗.



Literature on S∗ = [S;U1, U2;φ].

I Yamamura, 1997-2006.

I Jajcayová, 1997.

I Cherubini and Rodaro, 2008–2011.

I Ayyash, 2014–2019.



Definition: U1 lower bounded in S

U2 lower bounded in S, similar.



Lower bounded case

Theorems (B. and Jajcayová, 2020)
If U1 are U2 are lower bounded in S then, for S∗, we have:

I Schützenberger automata descriptions.

I Structure of maximal subgroups (Bass-Serre theory).

I Preservational properties (e.g. completely semisimple).

I Conditions for decidable word problem (e.g. finite U).



Opuntia ’Pricky Pear’ Cacti



Schützenberger ’Opuntoid’ graphs of S∗



Schützenberger Automata Construction

I Given word w over {t} and the generators of S.

I Close relative S ∗ FIM(t), using Jones et al. (1994).

I Circles represent Schützenberger graphs of S.



Step 1: Sew e1 and e2 loops (green)

I Sew e1-loop, using tt−1 = e1 relation.

I Sew e2-loop, using t−1t = e2 relation.

I Close relative S ∗ FIM(t), using Jones et al. (1994).



Step 2: sew E(U1) and E(U2) loops (green)

I Sew (f)φ-loop, using t−1ft = (f)φ relation, f ∈ E(U1).

I Sew (g)φ−1-loop, using t(g)φ−1t−1 = g relation, g ∈ E(U2).

I Close relative S ∗ FIM(t).



Take Direct Limit of Step 2

Use refinements:

I Initial vertices of two t-edges not connected by U1-paths.

I Terminal vertices of two t-edges not connected by U2-paths.



Step 3: sew parallel t-edges

I Sew v′1 →t v′2, given v1 →t v2, v1 →a v′1, for some a ∈ U1,
where v′2 is such that we have a path v2 →(a)φ v′2.



Step 4: sew on new circles and t-edges (green)

I Sew v1 →t v2 if we have v1 →e1 v1.

I Then sew v2 →(a)φ v2, for all v1 →a v1 where a ∈ U1.

I Sew v′1 →t v′2 if we have v′2 →e2 v′2.

I Then sew v′1 →(b)φ−1
v′1, for all v′2 →b v′2 where b ∈ U2.



Take Direct Limit of Step 4

I Step 4 embeds each automaton in the directed system.

I Direct Limit is the Schützenberger automaton of w in S∗.



The Host(s)

I Everything else feeds off the host(s).

I If multiple hosts then each host is a single circle.



Maximal Subgroups of S∗

I The Automorphism Group is that of the subgraph of all hosts.

I For multiple hosts, we have a graph of groups structure.



General Case: a new approach

I Construct a new HNN T ∗ = [T ;Z1, Z2;π].

I Show Z1 and Z2 lower bounded in T .

I Show S∗ ↪→ T ∗.



New HNN extension T ∗ = [T ;Z1, Z2; π].

I U = inverse subsemigroup of S generated by U1 ∪ U2.

I M(U) = semilattice of closed inverse submonoids of U .

I M1 ·M2 = inverse semigroup closure of M1 ∪M2 in U .

I 〈u〉 = closed inverse submonoid of U generated by u ∈ U .

I Construct S ∗E(U) M(U).

I µU is the least congruence on S ∗E(U) M(U) with:

gµU ≤ uµU ⇔ gµU ≤ 〈u〉µU

∀u ∈ U, g ∈ E(S ∗E(U) M(U)).

I T = (S ∗E(U) M(U))/µU .

I Zi = (Ui ∗E(Ui) M(Ui))/µUi , i = 1, 2, similarly.

I π : Z1 → Z2 isomorphism.



Theorem (B., 2020)

I Z1 ↪→ T , Z2 ↪→ T .

I Z1 and Z2 lower bounded in T .

I S∗ ↪→ T ∗.



Generalisation 1

Theorem (Cherubini and Rodaro, 2008)
If S is finite then S∗ has decidable word problem.

Theorem (B., 2020)
Suppose U = 〈U1 ∪ U2〉 is finite and S has:

I a finite presentation with decidable word problem,

I finite descending chains of idempotents of calculable length,

I finite subgroups of calculable order generated by H-related
partial conjugates of U .

Then S∗ = [S;U1, U2;φ] has decidable word problem.



Generalisation 2

Theorem (Ayyash, 2014)
If S is finite then the maximal subgroup of S∗ containing an
idempotent of S has a Bass-Serre description.

Theorem (B., 2020)
The above result extends to when U = 〈U1 ∪ U2〉 is finite.

Theorem (B., 2020)
Suppose, in addition, S has:

I finite descending chains of idempotents,

I finite subgroups generated by H-rel. partial conjugates of U .

Then any other subgroup of S∗ is a homomorphic image of a
subgroup of S.



Generalisation 3

I Define f ≺S g ⇔ fDh ≤ g in S, for some h ∈ E(S),
for all f, g ∈ E(U1) ∪ E(U2).

I Define ≺ as the transitive closure of ≺S
and {(f, (f)φ), ((f)φ, f) : f ∈ E(U1)}.

Theorem (Ayyash, 2014)
If S is finite then S∗ is completely semisimple if and only if
≺ ∩ �S⊆≺S .

Theorem (B., 2020)
The above result extends to when U = 〈U1 ∪ U2〉 is finite and:

I S is completely semisimple,

I S have finite descending chains of idempotents,

I S has finite H-classes.



Analogue 1

Theorem (Higman, Neumann and Neumann, 1949)
For any HNN S∗ = [S;U1, U2;φ] of groups, there is an amalgam of
groups [S1, S2;V ] and t ∈ S1 ∗V S2 with:

I t−1ut = (u)φ, for u ∈ U1.

I S∗ ↪→ S1 ∗V S2.

Theorem (B., 2020).
For any HNN S∗ = [S;U1, U2;φ] of inverse semigroups, there is an
amalgam of inverse semigroups [S1, S2;V ] and t ∈ S1 ∗V S2 with:

I t−1ut = (u)φ, for u ∈ U1.

I S∗ ↪→ S1 ∗V S2.



HNN Theorem (B., 2020)

I S1 = S ∗{e1} FIM(x1).

I V1 = inverse subsemigroup generated by S ∪ x−11 U1x1.

I S2 = S ∗{e2} FIM(x2).

I V2 = inverse subsemigroup generated by S ∪ x2U2x
−1
2 .

I Prove V1 ∼= S ∗ x−11 U1x1 ∼= S ∗ x2U2x
−1
2
∼= V2.

I The result follows, using t = x1x2.



One-one map

I From the Schützenberger automata of S ∗ x−11 U1x1

I To the Schützenberger automata of S1 = S ∗{e1} FIM(x1).



One-one map

I Replace Schützenberger graphs of x−1U1x1

I By Schützenberger graphs of S ∗ FIM(x1).



One-one map

I Sew x1-edges, using relation e1 = x1x
−1
1 .

I We obtain a Schützenberger graph of S1 = S ∗{e1} FIM(x1).

I This proves V1 ∼= S ∗ x−11 U1x1.



Conclusions

Lower bounded case:

I Schützenberger graphs descriptions.

I Structural and preservational results.

I Conditions for decidable word problem.

General case:

I Construct containing amalgam (HNN), lower bounded case.

I Thus we can study the general case.

I Generalize the literature.

I Analogues of group theory results.


