# Amalgams and HNNs of Inverse Semigroups York Semigroup External Talk 

Paul Bennett, Singapore

10th February 2021

## Singapore



## Singapore



## Bali



Amalgams and HNNs, 1997-2019: Italians et al.

> Sandra Cherubini, Emanuele Rodaro and many others.

## Amalgams of Inverse Semigroups


$>S_{1}, S_{2}, U$ inverse semigroups, $S_{1} \cap S_{2}=U$.
$>$ Hall, 1975: $S_{1} \cup S_{2} \hookrightarrow S_{1} *_{U} S_{2}$.

## Literature on $S_{1} *_{U} S_{2}$

> Haataja, Margolis, Meakin, 1996.

- Cherubini, Meakin, Piochi, 1997-2005.
> B., 1997.
- Stephen, 1998.
- Cherubini, Jajcayová, Rodaro et al. 2008-2015.


## Definition (B., 2020): $U$ lower bounded in $S_{1}$


> $U$ lower bounded in $S_{2}$, similar.

## Lower bounded case

Theorems (B., 2020)
If $U$ is lower bounded in $S_{1}$ and $S_{2}$ then, for $S_{1} *_{U} S_{2}$, we have:
> Schützenberger automata descriptions.
> Structure of maximal subgroups (Bass-Serre theory).
> Preservational properties (e.g. completely semisimple).

- Conditions for decidable word problem (e.g. finite U).


## Opuntia 'Prickly Pear' Cacti



Schützenberger 'Opuntoid' graphs of $S_{1} *_{U} S_{2}$


Hosts and Parasites


## Finite case

Theorems (Italians et al., 2008-2015)
If $S_{1}$ and $S_{2}$ are finite then, for $S_{1} *_{U} S_{2}$, we have:
$>$ Schützenberger graph descriptions.

- Structure of maximal subgroups.

P Preservational properties.
D Decidable word problem.

Finite case overlaps with lower bounded case.

## General case: a new approach


$>$ Construct a new amalgam $\left[T_{1}, T_{2} ; Z\right]$.
$>$ Show $Z$ lower bounded in $T_{1}$ and $T_{2}$.
$>$ Show $S_{1} *_{U} S_{2} \hookrightarrow T_{1} *_{Z} T_{2}$.

## New amalgam $\left[T_{1}, T_{2} ; Z\right]$

> $M(U)=$ semilattice of closed inverse submonoids of $U$.
$>M_{1} \cdot M_{2}=$ inverse semigroup closure of $M_{1} \cup M_{2}$ in $U$.
> $\langle u\rangle=$ closed inverse submonoid of $U$ generated by $u \in U$.
Construct $S_{i}{ }^{*} E(U) M(U)$.
$>\mu_{U}$ is the least congruence on $S_{i} *_{E(U)} M(U)$ with:

$$
g \mu_{U} \leq u \mu_{U} \Leftrightarrow g \mu_{U} \leq\langle u\rangle \mu_{U}
$$

$\forall u \in U, g \in E\left(S_{i} *_{E(U)} M(U)\right), i=1,2$.
$>T_{i}=\left(S_{i} *_{E(U)} M(U)\right) / \mu_{U}, i=1,2$.
> $Z=\left(U *_{E(U)} M(U)\right) / \mu_{U}$, similarly.

Theorem (B., 2020)

$\triangleright Z \hookrightarrow T_{1}, Z \hookrightarrow T_{2}$.
$\triangleright Z$ is lower bounded in $T_{1}$ and $T_{2}$.
$>S_{1} *_{U} S_{2} \hookrightarrow T_{1} *_{Z} T_{2}$.

## Generalisation 1

Theorem (Cherubini, Meakin and Piochi, 2005)
If $S_{1}$ and $S_{2}$ are finite then $S_{1} *_{U} S_{2}$ has decidable word problem.

Theorem (B., 2020)
Suppose $U$ is finite and $S_{1}, S_{2}$ have:

- finite presentations with decidable word problems,
- finite descending chains of idempotents of calculable length,
- finite subgroups of calculable order generated by $\mathcal{H}$-related partial conjugates of $U$.
Then $S_{1} *_{U} S_{2}$ has decidable word problem.


## Generalisation 2

Theorem (Cherubini, Jajcayová, Rodaro, 2011)
If $S_{1}$ and $S_{2}$ are finite then the maximal subgroup of $S_{1} *_{U} S_{2}$ containing an idempotent of $S_{1}$ or $S_{2}$ has a Bass-Serre description.

Theorem (B., 2020)
The above result extends to when $U$ is finite.

Theorem (B., 2020)
Suppose, in addition, $S_{1}$ and $S_{2}$ have:
$>$ finite descending chains of idempotents,
> finite subgroups generated by $\mathcal{H}$-rel. partial conjugates of $U$.
Then any other subgroup of $S_{1} *_{U} S_{2}$ is a homomorphic image of a subgroup of $S_{1}$ or $S_{2}$.

## Generalisation 3

$>$ Define $f \prec_{i} g \Leftrightarrow f \mathcal{D} h \leq g$ in $S_{i}$, for some $h \in E\left(S_{i}\right)$, for all $f, g \in E(U)$ and $i=1,2$.
$>$ Define $\prec$ as the transitive closure of $\prec_{1}$ and $\prec_{2}$.

Theorem (Rodaro, 2010)
If $S_{1}$ and $S_{2}$ are finite then $S_{1} *_{U} S_{2}$ is completely semisimple if and only if $\prec \cap \succ_{1} \subseteq \prec_{1}$ and $\prec \cap \succ_{2} \subseteq \prec_{2}$.

Theorem (B., 2020)
The above result extends to when $U$ is finite and $S_{1}, S_{2}$ :
$>$ are completely semisimple,
$>$ have finite descending chains of idempotents.
$>$ have finite $\mathcal{H}$-classes.

## HNN Extension $S^{*}$ of an Inverse Semigroup $S$


$>U_{1}, U_{2}$ inverse monoids, $S$ inverse semigroup.
> $\phi: U_{1} \rightarrow U_{2}$ isomorphism, $e_{i}=$ identity of $U_{i}, i=1,2$.
$\vee$ Yamamura, 1997: $S \hookrightarrow S^{*}=\left[S ; U_{1}, U_{2} ; \phi\right]$.
$>t t^{-1}=e_{1}, t^{-1} t=e_{2}, t^{-1} u t=(u) \phi, u \in U_{1}$, in $S^{*}$.

## Literature on $S^{*}=\left[S ; U_{1}, U_{2} ; \phi\right]$.

- Yamamura, 1997-2006.
> Jajcayová, 1997.
- Cherubini and Rodaro, 2008-2011.
- Ayyash, 2014-2019.

Definition: $U_{1}$ lower bounded in $S$

$U_{2}$ lower bounded in $S$, similar.

## Lower bounded case

Theorems (B. and Jajcayová, 2020)
If $U_{1}$ are $U_{2}$ are lower bounded in $S$ then, for $S^{*}$, we have:
$>$ Schützenberger automata descriptions.

- Structure of maximal subgroups (Bass-Serre theory).
$>$ Preservational properties (e.g. completely semisimple).
- Conditions for decidable word problem (e.g. finite U).


## Opuntia 'Pricky Pear' Cacti



## Schützenberger 'Opuntoid' graphs of $S^{*}$



## Schützenberger Automata Construction



- Given word $w$ over $\{t\}$ and the generators of $S$.
$>$ Close relative $S * F I M(t)$, using Jones et al. (1994).
- Circles represent Schützenberger graphs of $S$.


## Step 1: Sew $e_{1}$ and $e_{2}$ loops (green)


$>$ Sew $e_{1}$-loop, using $t t^{-1}=e_{1}$ relation.
$>$ Sew $e_{2}$-loop, using $t^{-1} t=e_{2}$ relation.

- Close relative $S * F I M(t)$, using Jones et al. (1994).


## Step 2: sew $E\left(U_{1}\right)$ and $E\left(U_{2}\right)$ loops (green)


$>$ Sew $(f) \phi$-loop, using $t^{-1} f t=(f) \phi$ relation, $f \in E\left(U_{1}\right)$.
$>$ Sew $(g) \phi^{-1}$-loop, using $t(g) \phi^{-1} t^{-1}=g$ relation, $g \in E\left(U_{2}\right)$.

- Close relative $S * \operatorname{FIM}(t)$.


## Take Direct Limit of Step 2



Use refinements:
$>$ Initial vertices of two $t$-edges not connected by $U_{1}$-paths.
Terminal vertices of two $t$-edges not connected by $U_{2}$-paths.

## Step 3: sew parallel $t$-edges


$>$ Sew $v_{1}^{\prime} \rightarrow^{t} v_{2}^{\prime}$, given $v_{1} \rightarrow^{t} v_{2}, v_{1} \rightarrow^{a} v_{1}^{\prime}$, for some $a \in U_{1}$, where $v_{2}^{\prime}$ is such that we have a path $v_{2} \rightarrow^{(a) \phi} v_{2}^{\prime}$.

## Step 4: sew on new circles and $t$-edges (green)



- Sew $v_{1} \rightarrow^{t} v_{2}$ if we have $v_{1} \rightarrow^{e_{1}} v_{1}$.
$>$ Then sew $v_{2} \rightarrow^{(a) \phi} v_{2}$, for all $v_{1} \rightarrow^{a} v_{1}$ where $a \in U_{1}$.
$>$ Sew $v_{1}^{\prime} \rightarrow^{t} v_{2}^{\prime}$ if we have $v_{2}^{\prime} \rightarrow^{e_{2}} v_{2}^{\prime}$.
$>$ Then sew $v_{1}^{\prime} \rightarrow^{(b) \phi^{-1}} v_{1}^{\prime}$, for all $v_{2}^{\prime} \rightarrow^{b} v_{2}^{\prime}$ where $b \in U_{2}$.


## Take Direct Limit of Step 4


$>$ Step 4 embeds each automaton in the directed system.
$>$ Direct Limit is the Schützenberger automaton of $w$ in $S^{*}$.

## The Host(s)



- Everything else feeds off the host(s).
- If multiple hosts then each host is a single circle.

Maximal Subgroups of $S^{*}$


The Automorphism Group is that of the subgraph of all hosts.

- For multiple hosts, we have a graph of groups structure.


## General Case: a new approach



- Construct a new HNN $T^{*}=\left[T ; Z_{1}, Z_{2} ; \pi\right]$.
$>$ Show $Z_{1}$ and $Z_{2}$ lower bounded in $T$.
$>$ Show $S^{*} \hookrightarrow T^{*}$.


## New HNN extension $T^{*}=\left[T ; Z_{1}, Z_{2} ; \pi\right]$.

> $U=$ inverse subsemigroup of $S$ generated by $U_{1} \cup U_{2}$.
> $M(U)=$ semilattice of closed inverse submonoids of $U$.
$>M_{1} \cdot M_{2}=$ inverse semigroup closure of $M_{1} \cup M_{2}$ in $U$.
> $\langle u\rangle=$ closed inverse submonoid of $U$ generated by $u \in U$.

- Construct $S *_{E(U)} M(U)$.
$>\mu_{U}$ is the least congruence on $S *_{E(U)} M(U)$ with:

$$
g \mu_{U} \leq u \mu_{U} \Leftrightarrow g \mu_{U} \leq\langle u\rangle \mu_{U}
$$

$\forall u \in U, g \in E\left(S *_{E(U)} M(U)\right)$.
$>T=\left(S *_{E(U)} M(U)\right) / \mu_{U}$.
$>Z_{i}=\left(U_{i} *_{E\left(U_{i}\right)} M\left(U_{i}\right)\right) / \mu_{U_{i}}, i=1,2$, similarly.
$>\pi: Z_{1} \rightarrow Z_{2}$ isomorphism.

## Theorem (B., 2020)


$>Z_{1} \hookrightarrow T, Z_{2} \hookrightarrow T$.
$\triangleright Z_{1}$ and $Z_{2}$ lower bounded in $T$.
$>S^{*} \hookrightarrow T^{*}$.

## Generalisation 1

Theorem (Cherubini and Rodaro, 2008)
If $S$ is finite then $S^{*}$ has decidable word problem.
Theorem (B., 2020)
Suppose $U=\left\langle U_{1} \cup U_{2}\right\rangle$ is finite and $S$ has:

- a finite presentation with decidable word problem,
- finite descending chains of idempotents of calculable length,
- finite subgroups of calculable order generated by $\mathcal{H}$-related partial conjugates of $U$.
Then $S^{*}=\left[S ; U_{1}, U_{2} ; \phi\right]$ has decidable word problem.


## Generalisation 2

Theorem (Ayyash, 2014)
If $S$ is finite then the maximal subgroup of $S^{*}$ containing an idempotent of $S$ has a Bass-Serre description.

Theorem (B., 2020)
The above result extends to when $U=\left\langle U_{1} \cup U_{2}\right\rangle$ is finite.
Theorem (B., 2020)
Suppose, in addition, $S$ has:
$>$ finite descending chains of idempotents,
> finite subgroups generated by $\mathcal{H}$-rel. partial conjugates of $U$.
Then any other subgroup of $S^{*}$ is a homomorphic image of a subgroup of $S$.

## Generalisation 3

$>$ Define $f \prec_{S} g \Leftrightarrow f \mathcal{D} h \leq g$ in $S$, for some $h \in E(S)$, for all $f, g \in E\left(U_{1}\right) \cup E\left(U_{2}\right)$.
Define $\prec$ as the transitive closure of $\prec S$ and $\left\{(f,(f) \phi),((f) \phi, f): f \in E\left(U_{1}\right)\right\}$.

Theorem (Ayyash, 2014)
If $S$ is finite then $S^{*}$ is completely semisimple if and only if
$\prec \cap \succ S \subseteq \prec S$.
Theorem (B., 2020)
The above result extends to when $U=\left\langle U_{1} \cup U_{2}\right\rangle$ is finite and:

- $S$ is completely semisimple,
$>S$ have finite descending chains of idempotents,
- $S$ has finite $\mathcal{H}$-classes.


## Analogue 1

Theorem (Higman, Neumann and Neumann, 1949)
For any HNN $S^{*}=\left[S ; U_{1}, U_{2} ; \phi\right]$ of groups, there is an amalgam of groups $\left[S_{1}, S_{2} ; V\right]$ and $t \in S_{1} *_{V} S_{2}$ with:
$>t^{-1} u t=(u) \phi$, for $u \in U_{1}$.
$>S^{*} \hookrightarrow S_{1} *_{V} S_{2}$.

Theorem (B., 2020).
For any HNN $S^{*}=\left[S ; U_{1}, U_{2} ; \phi\right]$ of inverse semigroups, there is an amalgam of inverse semigroups $\left[S_{1}, S_{2} ; V\right]$ and $t \in S_{1} *_{V} S_{2}$ with:
$>t^{-1} u t=(u) \phi$, for $u \in U_{1}$.
$>S^{*} \hookrightarrow S_{1} *_{V} S_{2}$.

## HNN Theorem (B., 2020)

$>S_{1}=S *_{\left\{e_{1}\right\}} F I M\left(x_{1}\right)$.
> $V_{1}=$ inverse subsemigroup generated by $S \cup x_{1}^{-1} U_{1} x_{1}$.
$>S_{2}=S *\left\{e_{2}\right\} \operatorname{FIM}\left(x_{2}\right)$.
> $V_{2}=$ inverse subsemigroup generated by $S \cup x_{2} U_{2} x_{2}^{-1}$.
$>$ Prove $V_{1} \cong S * x_{1}^{-1} U_{1} x_{1} \cong S * x_{2} U_{2} x_{2}^{-1} \cong V_{2}$.
The result follows, using $t=x_{1} x_{2}$.

## One-one map



From the Schützenberger automata of $S * x_{1}^{-1} U_{1} x_{1}$
To the Schützenberger automata of $S_{1}=S *_{\left\{e_{1}\right\}} F I M\left(x_{1}\right)$.

## One-one map


$>$ Replace Schützenberger graphs of $x^{-1} U_{1} x_{1}$
$>$ By Schützenberger graphs of $S * F I M\left(x_{1}\right)$.

## One-one map


$>$ Sew $x_{1}$-edges, using relation $e_{1}=x_{1} x_{1}^{-1}$.
$>$ We obtain a Schützenberger graph of $S_{1}=S *_{\left\{e_{1}\right\}} F I M\left(x_{1}\right)$.
$>$ This proves $V_{1} \cong S * x_{1}^{-1} U_{1} x_{1}$.

## Conclusions

Lower bounded case:
> Schützenberger graphs descriptions.

- Structural and preservational results.
- Conditions for decidable word problem.

General case:

- Construct containing amalgam (HNN), lower bounded case.
- Thus we can study the general case.
$>$ Generalize the literature.
- Analogues of group theory results.

