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Variants

Let
I S be a semigroup, and
I fix an element a ∈ S.

Consider the semigroup Sa = (S, ?a), where

x ?a y = xay, for x, y ∈ S.

Then, Sa is the variant of S with respect to a.

Example
T aX ; MA

n (F); Ga, where G is a group, . . .
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Examples
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Egg-box diagram of the variant T a4, where a = ( 1 2 3 4
1 2 3 3 ) .
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Egg-box diagram of the variant T b4, where b = ( 1 2 3 4
1 2 2 2 ).
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Egg-box diagram of the variant T c4, where c = ( 1 2 3 4
1 1 2 2 ).

Source: I. Dolinka and J. East. Variants of finite full transformation.
Internat. J. Algebra Comput., 25(8): 1187–1222, 2015.
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Partitions
Consider the semigroup
I of partitions of [n] ∪ [n]′ (example: ∈ P7),
I with the composition

−→ −→

We are interested in variants of form Pσn, as well as:

Planar PPσn Partial Brauer PBσn Motzkin M σ
n

Brauer Bσn Temperley-Lieb T Lσn
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Motivation

Variants
I were first studied by Hickey in his 1983 and 1986 papers,

(they were used to provide a natural interpretation of the
Nambooripad partial order on a regular semigroup);

I arise naturally in relation to Rees matrix semigroups [Khan
and Lawson, 2001];

I were used as a means for introducing an alternative to the
group of units in some classes of non-monoidal regular
semigroups [Khan and Lawson, 2001);

I merit a whole chapter in the monograph Classical finite
transformation semigroups by Ganyushkin and Mazorchuk
(2009).
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Motivation
Partitions
I arise in representation theory (see the survey Diagram

categories, representation theory, statistical mechanics by
Martin in Noncommutative rings, group rings, diagram
algebras and their applications, 2008);

I arise in statistical mechanics and
I in knot theory (e.g. see the works of Jones from 1983, 1987,

1994 and Kauffman from 1987, 1990, 1997);
I arise in invariant theory [Lehrer and Zhang, 2012 and

2015];
I Partial Brauer algebras and semigroups were investigated

by Kudryavtseva and Mazorchuk, (2006), Martin and
Mazorchuk (2014), Dolinka, Gray, and East (2017), East
and Ruškuc (to appear) and others.
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Classification of variants of other types

Properties which determine the isomorphism class of
I the variants of form T an : size n and the structure of the

kernel of the sandwich element a [Tsyaputa, 2003];
example: ( 1 2 3 4 5 6 7 8 9

2 5 2 4 1 2 1 4 1 ) and ( 1 2 3 4 5 6 7 8 9
8 5 8 6 5 8 3 3 5 ) .

I the variants of form P T an : size n and the structure of the
kernel of the sandwich element a [Tsyaputa, 2004];

I the variants of form Ban : size n and the rank of the
sandwich element a [Dolinka, Durdev, and East, to appear];

example: and
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What do we know?
In Sandwich semigroups in diagram categories (by Dolinka,
Durdev, and East), we have proved that
I the regular elements of the variants of Pn, PPn, Bn, T Ln,
PBn and M n form a subsemigroup;

I for K ∈ {P,PP,PB,B} and any σ ∈ Kn, the regular
D-classes in Kσn are
Dσ
q = {α ∈ Reg(Kσn) : rank(α) = q}, for 0 ≤ q ≤ rank(σ);

I there exists a homomorphism φ : Reg(Kan)→ Krank(a).
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A close-up

Left: A D-class in Reg(Kan).
Right: The corresponding D-class in Krank(a).

For K ∈ {R,L ,H }, and a, b ∈ Reg(Kan) we define

a”K b ⇔ φ(a) K φ(b).
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Isomorphisms of variants

Proposition
Let i, j be objects and let a ∈ Si and c ∈ Sj be sandwich-regular
elements of a locally small category S. If φ : Sai → Scj is an
isomorphism, then it preserves the relations “R, L̂ and ”H .
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Isomorphisms of variants

1 1 1 1 1

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

3 3 3

3 3 3

3 3 3

3 3 3

3 3 3

3 3 3

3 3 3

3 3 3

3 3 3

1 1 1 1 1

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

3 3 3

3 3 3

3 3 3

3 3 3

3 3 3

3 3 3

3 3 3

3 3 3

3 3 3

The regular parts of two isomorphic variants.

Source: I. Dolinka and J. East. Variants of finite full transformation.
Internat. J. Algebra Comput., 25(8): 1187–1222, 2015.
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Partitions: notation and notions

I An example: α = ∈ PB4

I dom(α) = {2},
I codom(α) = {3},
I ker(α) = {{1, 3}, {2}, {4}},
I coker(α) = {{1}, {2, 4}, {3}},
I rank(α) = 1,

Lemma (Mazorchuk, 1998)
For α, β ∈ PBn, in the monoid PBn we have
I αR β ⇔ dom(α) = dom(β) and ker(α) = ker(β),
I αL β ⇔ codom(α) = codom(β) and coker(α) = coker(β).
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PB-pairs

I PB-pair (ε,X) on n:
I ε − an equivalence on the set [n] = {1, . . . , n},
I X ⊆ [n],
I there exists α ∈ PBn such that ker(α) = ε and dom(α) = X.

I The join of two PB pairs on n:

the result:(
{1, 3, 7, 9 | 2 | 4, 5, 6, 8 | 10, 11, 12} , {(2, 2), (10, 12)}

)
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The number of L -classes

I Dσ
q = the D-class of PBσn containing all regular elements of

rank q;
I |Dσ

q /L | = the number of PB-pairs (ε,X) on {1, . . . , n}
with
I |X| = q,
I the join of (ε,X) and (ker(σ), dom(σ)) has rank q.

I This value depends on:
I the number of vertices (n),
I the number of singletons in ker(σ),
I the rank of σ,
I the value q.
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The recurrence relation

For n, k, r, q ∈ N0, we define µ(n, k, r, q):
(i) µ(n, k, r, q) =(n− k)µ(n− 2, k, r, q)+

µ(n− 1, k − 1, r − 1, q − 1)+
µ(n− 1, k − 1, r − 1, q)+
(k − r)µ(n− 2, k − 2, r − 1, q)+
(r − 1)µ(n− 2, k − 2, r − 2, q)

if n ≥ k ≥ r ≥ q > 0 and n ≡ k(mod 2).

(ii) µ(n, k, r, 0) = ∑b n
2 c
i=0
(n

2i
)
(2i− 1)!!

if n ≥ k ≥ r and n ≡ k(mod 2).
(iii) µ(n, k, r, q) = 0, otherwise.
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The crucial results

Proposition
Let σ ∈ PBn, where ker(σ) has k singletons and rank(σ) = r.
For 0 ≤ q ≤ r, in PBσn holds:

|Dσ
q /L | = µ(n, k, r, q).

Proposition
Let n, k, r, q ∈ N0 with n ≥ k ≥ r ≥ q ≥ 1 and n ≡ k(mod 2). If
n ≥ k + 2, then

µ(n, k, r, q) > µ(n, k + 2, r, q).
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Case 1: sandwich element with non-zero rank

Theorem
Let m,n ∈ N, and let σ ∈ PBm and τ ∈ PBn with
r = rank(σ) ≥ 1 and s = rank(τ) ≥ 1. In addition, write k and l
for the number of singleton classes in ker(σ) and ker(τ),
respectively. Similarly, write p and w for the number of
singleton classes in coker(σ) and coker(τ), respectively. Then
PBσm ∼= PBτn if and only if m = n, k = l, p = w, and r = s.

Example
For α = and β = , the variants PBα4 and PBβ4 are
isomorphic.
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Case 2: sandwich element of rank zero
I We have Reg(PBσn) = {α ∈ PBn : rank(α) = 0} = Dσ

0 = J0.
The remaining elements form singleton J -classes, all
unrelated and above J0.

I However, these variants are not necessarily isomorphic!
For σ = and τ = , consider ≤R in PBσ2 and PBτ2 :

In PBσ
2 In PBτ

2

Open Problem
Classification of variants of PBn having sandwich elements of
rank 0.
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Directions for further investigation

I Classification of variants of other partition monoids.

I Classification of sandwich semigroups of transformations.

I Classification of sandwich semigroups of partitions.



Thank you!
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