Classification of variants of partial Brauer monoids

Ivana Đurđev

Mathematical Institute of the Serbian Academy of Sciences and Arts ivana.djurdjev@mi.sanu.ac.rs

The York Semigroup Seminar 2^{nd} June 2021

INTRODUCTION	The idea	Realisation	CLASSIFICATION
000000	0000	00000	0000

OVERVIEW

Introduction

The idea

Realisation

Classification and open problems

The idea 0000	REALISATION 00000	CLASSIFICATION 0000
		THE IDEAL TOLINITION

VARIANTS

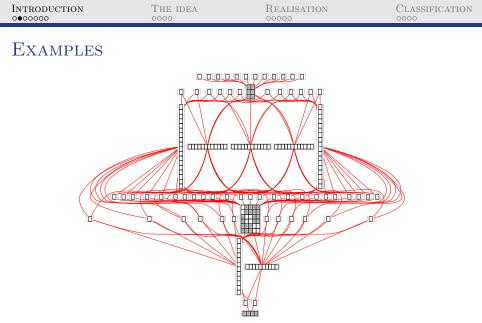
Let

- \blacktriangleright S be a semigroup, and
- fix an element $a \in S$.

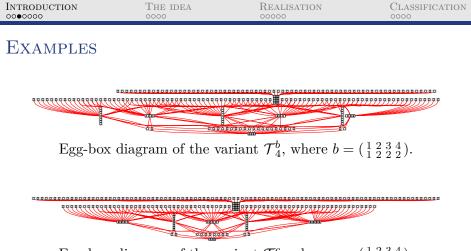
Consider the semigroup $S^a = (S, \star_a)$, where

$$x \star_a y = xay, \quad \text{for } x, y \in S.$$

Then, S^a is the *variant* of S with respect to a. Example \mathcal{T}^a_X ; $\mathcal{M}^A_n(\mathbb{F})$; G^a , where G is a group, ...



Egg-box diagram of the variant \mathcal{T}_4^a , where $a = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 3 \end{pmatrix}$.



Egg-box diagram of the variant \mathcal{T}_4^c , where $c = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 2 \end{pmatrix}$.

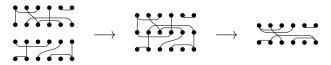
Source: I. Dolinka and J. East. Variants of finite full transformation. Internat. J. Algebra Comput., 25(8): 1187–1222, 2015.

INTRODUCTION	The idea	Realisation	CLASSIFICATION
0000000	0000	00000	0000
DADTITIONS			

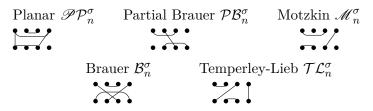
PARTITIONS

Consider the semigroup

- ▶ with the composition



We are interested in variants of form \mathcal{P}_n^{σ} , as well as:



The idea 0000	REALISATION 00000	CLASSIFICATION 0000
	1111 10111	

MOTIVATION

Variants

- were first studied by Hickey in his 1983 and 1986 papers, (they were used to provide a natural interpretation of the Nambooripad partial order on a regular semigroup);
- arise naturally in relation to Rees matrix semigroups [Khan and Lawson, 2001];
- were used as a means for introducing an alternative to the group of units in some classes of non-monoidal regular semigroups [Khan and Lawson, 2001);
- merit a whole chapter in the monograph Classical finite transformation semigroups by Ganyushkin and Mazorchuk (2009).

INTRODUCTION 0000000	THE IDEA 0000	REALISATION 00000	CLASSIFICATION 0000

MOTIVATION

Partitions

- arise in representation theory (see the survey *Diagram* categories, representation theory, statistical mechanics by Martin in Noncommutative rings, group rings, diagram algebras and their applications, 2008);
- ▶ arise in statistical mechanics and
- in knot theory (e.g. see the works of Jones from 1983, 1987, 1994 and Kauffman from 1987, 1990, 1997);
- arise in invariant theory [Lehrer and Zhang, 2012 and 2015];
- Partial Brauer algebras and semigroups were investigated by Kudryavtseva and Mazorchuk, (2006), Martin and Mazorchuk (2014), Dolinka, Gray, and East (2017), East and Ruškuc (to appear) and others.

INTRODUCTION	The idea	Realisation	CLASSIFICATION
000000	0000	00000	0000

CLASSIFICATION OF VARIANTS OF OTHER TYPES

Properties which determine the isomorphism class of

▶ the variants of form \mathcal{T}_n^a : size *n* and the structure of the kernel of the sandwich element *a* [Tsyaputa, 2003];

example: $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 5 & 2 & 4 & 1 & 2 & 1 & 4 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 5 & 8 & 6 & 5 & 8 & 3 & 3 & 5 \end{pmatrix}$.

▶ the variants of form \mathcal{PT}_n^a : size *n* and the structure of the kernel of the sandwich element *a* [Tsyaputa, 2004];

▶ the variants of form \mathcal{B}_n^a : size *n* and the rank of the sandwich element *a* [Dolinka, Đurđev, and East, to appear];

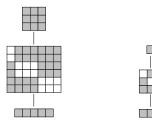
INTRODUCTION THE IDEA REALISATION CLASSIFICATION 000000 0000 0000	ON
---	----

WHAT DO WE KNOW?

In Sandwich semigroups in diagram categories (by Dolinka, Durđev, and East), we have proved that

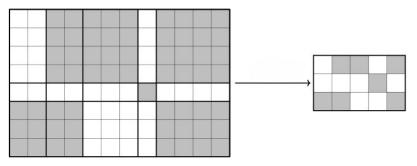
- the regular elements of the variants of \mathcal{P}_n , $\mathscr{P}\mathcal{P}_n$, \mathcal{B}_n , \mathcal{TL}_n , \mathcal{PB}_n and \mathscr{M}_n form a subsemigroup;
- ▶ for $\mathcal{K} \in \{\mathcal{P}, \mathscr{PP}, \mathcal{PB}, \mathcal{B}\}$ and any $\sigma \in \mathcal{K}_n$, the regular \mathscr{D} -classes in \mathcal{K}_n^{σ} are
 - $\mathbf{D}_q^{\sigma} = \{ \alpha \in \operatorname{Reg}(\mathcal{K}_n^{\sigma}) : \operatorname{rank}(\alpha) = q \}, \text{ for } 0 \leq q \leq \operatorname{rank}(\sigma);$

▶ there exists a homomorphism $\phi : \operatorname{Reg}(\mathcal{K}_n^a) \to \mathcal{K}_{\operatorname{rank}(a)}$.



INTRODUCTION	The idea 0000	REALISATION	CLASSIFICATION
0000000		00000	0000

A CLOSE-UP



Left: A \mathscr{D} -class in $\operatorname{Reg}(\mathcal{K}_n^a)$. Right: The corresponding \mathscr{D} -class in $\mathcal{K}_{\operatorname{rank}(a)}$.

For $\mathscr{K} \in \{\mathscr{R}, \mathscr{L}, \mathscr{H}\}$, and $a, b \in \operatorname{Reg}(\mathcal{K}_n^a)$ we define

 $a \ \widehat{\mathscr{K}} \ b \quad \Leftrightarrow \quad \phi(a) \ \mathscr{K} \ \phi(b).$

Introduction	The idea	Realisation	CLASSIFICATION
000000	0000	00000	0000

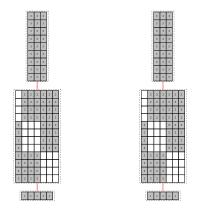
ISOMORPHISMS OF VARIANTS

Proposition

Let i, j be objects and let $a \in S_i$ and $c \in S_j$ be sandwich-regular elements of a locally small category S. If $\phi : S_i^a \to S_j^c$ is an isomorphism, then it preserves the relations $\widehat{\mathscr{R}}, \widehat{\mathscr{L}}$ and $\widehat{\mathscr{H}}$.

INTRODUCTION	The idea	REALISATION	CLASSIFICATION
0000000	∞∞●	00000	0000

ISOMORPHISMS OF VARIANTS



The regular parts of two isomorphic variants.

Source: I. Dolinka and J. East. Variants of finite full transformation. Internat. J. Algebra Comput., 25(8): 1187–1222, 2015.

INTRODUCTION	The idea	REALISATION	CLASSIFICATION
000000	0000	00000	0000

PARTITIONS: NOTATION AND NOTIONS

An example:
$$\alpha = \mathcal{PB}_4$$

$$\bullet \operatorname{dom}(\alpha) = \{2\},\$$

$$\blacktriangleright \operatorname{codom}(\alpha) = \{3\},\$$

•
$$\ker(\alpha) = \{\{1,3\},\{2\},\{4\}\},\$$

•
$$\operatorname{coker}(\alpha) = \{\{1\}, \{2, 4\}, \{3\}\},\$$

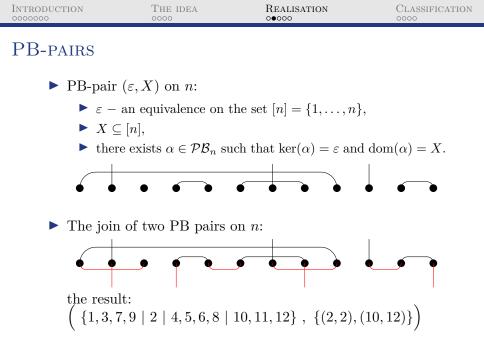
$$\blacktriangleright \operatorname{rank}(\alpha) = 1,$$

Lemma (Mazorchuk, 1998)

For $\alpha, \beta \in \mathcal{PB}_n$, in the monoid \mathcal{PB}_n we have

$$\blacktriangleright \ \alpha \,\mathscr{R} \,\beta \Leftrightarrow \operatorname{dom}(\alpha) = \operatorname{dom}(\beta) \ and \ \operatorname{ker}(\alpha) = \operatorname{ker}(\beta),$$

 $\blacktriangleright \ \alpha \, \mathscr{L} \beta \Leftrightarrow \operatorname{codom}(\alpha) = \operatorname{codom}(\beta) \ and \ \operatorname{coker}(\alpha) = \operatorname{coker}(\beta).$



INTRODUCTION	The idea	REALISATION	CLASSIFICATION
0000000	0000	00000	0000

The number of \mathscr{L} -classes

- ► D_q^{σ} = the \mathscr{D} -class of \mathcal{PB}_n^{σ} containing all regular elements of rank q;
- ▶ $|D_q^{\sigma} / \mathscr{L}|$ = the number of PB-pairs (ε, X) on $\{1, \ldots, n\}$ with
 - $\blacktriangleright |X| = q,$
 - the join of (ε, X) and $(\ker(\sigma), \operatorname{dom}(\sigma))$ has rank q.
- ▶ This value depends on:
 - ▶ the number of vertices (n),
 - the number of singletons in $\ker(\sigma)$,
 - the rank of σ ,
 - the value q.

The idea 0000	REALISATION 00000	CLASSIFICATION 0000
	1111 10111	

THE RECURRENCE RELATION

For
$$n, k, r, q \in \mathbb{N}_0$$
, we define $\mu(n, k, r, q)$:
(i) $\mu(n, k, r, q) = (n - k)\mu(n - 2, k, r, q) + \mu(n - 1, k - 1, r - 1, q - 1) + \mu(n - 1, k - 1, r - 1, q) + (k - r)\mu(n - 2, k - 2, r - 1, q) + (r - 1)\mu(n - 2, k - 2, r - 2, q)$
if $n \ge k \ge r \ge q > 0$ and $n \equiv k \pmod{2}$.
(ii) $\mu(n, k, r, 0) = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} {\binom{n}{2i}} (2i - 1)!!$
if $n \ge k \ge r$ and $n \equiv k \pmod{2}$.
(iii) $\mu(n, k, r, q) = 0$, otherwise.

INTRODUCTION	The idea	REALISATION	CLASSIFICATION
0000000	0000	00000	0000

The crucial results

Proposition Let $\sigma \in \mathcal{PB}_n$, where ker (σ) has k singletons and rank $(\sigma) = r$. For $0 \leq q \leq r$, in \mathcal{PB}_n^{σ} holds:

 $|\operatorname{D}_q^\sigma/\mathscr{L}|=\mu(n,k,r,q).$

Proposition

Let $n, k, r, q \in \mathbb{N}_0$ with $n \ge k \ge r \ge q \ge 1$ and $n \equiv k \pmod{2}$. If $n \ge k+2$, then

$$\mu(n,k,r,q)>\mu(n,k+2,r,q).$$

INTRODUCTION	The idea	Realisation	CLASSIFICATION
000000	0000	00000	●000

CASE 1: SANDWICH ELEMENT WITH NON-ZERO RANK

Theorem

Let $m, n \in \mathbb{N}$, and let $\sigma \in \mathcal{PB}_m$ and $\tau \in \mathcal{PB}_n$ with $r = \operatorname{rank}(\sigma) \geq 1$ and $s = \operatorname{rank}(\tau) \geq 1$. In addition, write k and l for the number of singleton classes in ker (σ) and ker (τ) , respectively. Similarly, write p and w for the number of singleton classes in coker (σ) and coker (τ) , respectively. Then $\mathcal{PB}_m^{\sigma} \cong \mathcal{PB}_n^{\tau}$ if and only if m = n, k = l, p = w, and r = s.

Example

For $\alpha = \beta$ and $\beta = \beta$, the variants \mathcal{PB}_4^{α} and \mathcal{PB}_4^{β} are isomorphic.

INTRODUCTION	The idea	Realisation	CLASSIFICATION
000000	0000	00000	0000

Case 2: Sandwich element of rank zero

- ► We have $\operatorname{Reg}(\mathcal{PB}_n^{\sigma}) = \{\alpha \in \mathcal{PB}_n : \operatorname{rank}(\alpha) = 0\} = D_0^{\sigma} = J_0$. The remaining elements form singleton \mathscr{J} -classes, all unrelated and above J_0 .
- ► However, these variants are not necessarily isomorphic! For $\sigma = -$ and $\tau = -$, consider $\leq_{\mathscr{R}}$ in \mathcal{PB}_2^{σ} and \mathcal{PB}_2^{τ} :

Open Problem

Classification of variants of \mathcal{PB}_n having sandwich elements of rank 0.

		INTRODUCTION 0000000	THE IDEA 0000	REALISATION 00000	CLASSIFICATION 0000
--	--	-------------------------	------------------	----------------------	---------------------

DIRECTIONS FOR FURTHER INVESTIGATION

- ▶ Classification of variants of other partition monoids.
- ▶ Classification of sandwich semigroups of transformations.
- ▶ Classification of sandwich semigroups of partitions.

INTRODUCTION	The idea	REALISATION	CLASSIFICATION
0000000	0000	00000	0000

Thank you!