<u>Almost and Absolute Pure Acts over</u> <u>Semilattices</u>

Salma Shaheen

19th January 2016

Throughout, S is a monoid.

A right S-act is a nonempty set A together with a map

 $A \times S \rightarrow A$, (a, s) \mapsto as

such that for all $a \in A$, s, t $\in S$

(as)t = a(st) and a1 = a.

◆ For any s ∈ S, we have an operation e_s: A → A given by (a)e_s = as. The function
 e: S → T_A given by (s)e = e_s is a monoid morphism.

Conversly, if $\theta: s \rightarrow T_A$ is monoid morphism, define

as = (a)e_s

Then A is an S-act.

Examples of S-acts

- 1. S is an S-act
- 2. Any right ideal of S is an S-act.
- 3. Let $(K, +, \cdot)$ be a field and V be a left vector space. Then V is a left (K, \cdot) -act but not a (K, +)-act.
- 4. For any monoid S and a non-empty set A, define as = a for all $a \in A$, then A becomes a right S-act.

Subact of S-acts

Let As be an S-act and $B \subseteq A$, a nonempty subst. Then B is a subact of A if as \in B for all a \in B and s \in S.

Obviously, any right ideal of S is a subact of S_s.

Congruences and Morphisms for S-acts

- ★ Let A be an S-act. An equivalence relation σ on A is called an <u>S-act congruence</u> or a congruence on A, if aσb implies (as) $\sigma(bs)$ for a, b ∈ A and s ∈ S.
- ♦ If $X \subseteq A \times A$, then $\sigma(X)$ denote the smallest congruence on A containing X.
- A congruence σ is <u>finitely generated</u> if there exists a finite subset X ⊆ A×A such that $\sigma = \sigma(X)$.
- ★ The ordered pair (a,b) $\in \sigma(X)$ if and only if either

a = b

or there exists a natural number n and a sequence

where $t_1, t_2, t_3, \dots, t_n \in S$ and for each $i = 1, \dots, n$ either (c_i, d_i) or (d_i, c_i) is in X.

- Arr If σ is a congruence on A, then A/σ is an S-act.
- An S-morphism from A to B is a map $f : A \rightarrow B$ with (as)f = (af) s for all a ∈ A and s ∈ S.

Free S-acts

✤ An S-act A is <u>finitely generated</u> if there exists a subset U of such that

A= $U_{\text{\tiny ueu}}$ uS and $|U| < \infty$.

- An S-act is <u>free</u> if there exists a subset U of A such that A= U_{u∈U} uS and each element a ∈ A can be <u>uniquely presented</u> in the form a=us, u ∈ U and s ∈ S.
- ✤ Let X be a nonempty set. Then free S-act F(X) on X exists.

Construction for F(X): Let

$$F(X) = X \times S$$

and define

$$(x, s)t = (x, st).$$

Then it is easy to check that F(X) is an S-act. With $x \mapsto (x,1)$, we have F(X) is free on X.

Notice that

$$(x, s) = (x, 1)s \equiv xs.$$

Free S-acts are disjoint unions of copies of S.

An S-act As is cyclic is $A = \langle \{a\} \rangle$, where $a \in A$.

An S-act A is finitely presented if

 $A\cong F/\ \sigma$

for some finitely generated free S-act F and finitely generated congruence σ .

Proposition:

Let As be a cyclic S-act. Then As is finitely presented if and only if it is isomorphic to a factor act of Ss by a finitely generated right congruence on S, that is,

 $A\cong S/\,\sigma$

where σ is finitely generated right congruence.

Let A be an S-act. An equation over A has one of the three forms

```
xs = a xs = xt xs = yt
```

where $s,t \in S$, $a \in A$ and x, y are variables

★ Let Σ be a system of equtions over A. Then Σ is consistent if Σ has solution in some S-act B ⊇ A.

<u>Consistency criteria for Σ</u>:

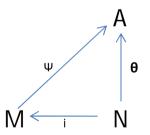
Let $\Sigma = \{ xs_i = a_i, xu_i = xv_j : s_i, u_j, v_j \in S, a_i \in A, 1 \le i \le n, 1 \le j \le m \}$ and $\sigma = \langle (u_j, v_j) : 1 \le j \le m \rangle$. Then Σ is consistent if and only if for all $h, k \in S$ and for all $1 \le i, i' \le n$,

 $s_ih \sigma s_{i'}k$ implies $a_ih = a_{i'}k$.

An S-system A is <u>almost pure</u> if every finite consistent system of equations in one varaible, with constants from A, has a solution in A.

Proposition: The following conditions are equivalent for as S-act A:

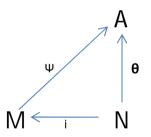
- 1. A is almost pure;
- 2. Given any diagram of S-acts and S-homomorphisms



where M is cyclic finitely presented, N is finitely generated and I : N \rightarrow M is an injection, there exists an S-homomorphism Ψ : M \rightarrow A such that i Ψ = θ ; further, for any s₁, · · ·, S_n in S there is an element a in A with a = as₁ = · · · = as_n. An S-system A is <u>absolutely pure</u> if every finite consistent system of equations, with constants from A, has a solution in A.

Proposition: The following conditions are equivalent for as S-act A:

- 1. A is absolutely pure;
- 2. Given any diagram of S-acts and S-homomorphisms



where M is finitely presented, N is finitely generated and I : N \rightarrow M is an injection, there exists an S-homomorphism Ψ : M \rightarrow A such that i Ψ = θ .

A monoid S is called <u>completely right pure</u> if all right S-acts are absolutely pure.

Theorem: A monoid S is completely right pure if and only if all S-acts are almost pure.

Absolutely pure S-act \Rightarrow Almost Pure S-acts

For completely right pure monoids: Almost Pure S-acts \Rightarrow Absolutely pure S-act

Does there exists an almost pure S-act which is not absolutely pure??? OR Does there exists a class of monoids (Other than completely right pure) for which almost pure s-acts are absolutely pure????

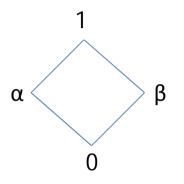
Theorem: A monoid S is completely right pure if and only if S has local left zeros and satisfies (*):

(*) given any finitely generated right congruence σ on S and any finitely generated right ideal I of S, there is an element s of I such that for any u,v in S, if u σ v then su σ sv and for any w I, w σ sw.

Corollary: Let I be finitely generated right ideal of a completely right pure monoid. Then I = eS for some idempotent element e of S.

- ✤ The following conditions are equivalent for a monoid S:
- i. S is regular and its principle right ideals are linearly ordered with respect to inclusion.
- ii. Every finitely generated right ideal is generated by an idempotent element.

Consider the semilattice $S = \{0, \alpha, \beta, 1\}$.



- ✤ S is an S-act over itself.
- S is not completely right pure because the principle right ideals {0, α } and {0, β} are not linearly ordered with respect to inclusion.
- ✤ S is an almost pure S-act over itself.

For S={0, α , β , 1}, every almost pure S-act is absolutely pure.

<u>Proof</u>: Let A be an arbitrary almost pure S-act.

<u>S(n)</u>: All finite consistent system of equations over A in no more than <u>n</u> variables have a solution in A.

Clearly, the assumption is true for n = 1.

Let Σ be a finite consistent system of equations in n+1 variables $x_1, x_2, ..., x_n, x_{n+1}$. Since Σ is consistent, Σ has a solution ($b_1, b_2, ..., b_n, b_{n+1}$) in some S-act B \supseteq A.

Case I:

 Σ has no equation of the form <u>x_is = t</u> for all i = 1, 2, ..., n+1. Since A is almost pure S-act, so Solution of Σ exists in A.

Case II:

Σ has an equation of the form $\underline{x_i} = \underline{t}$ for some i = 1, 2, ..., n+1. Since **Σ** is consistent. So $\underline{b_1} = \underline{a} \in A$.

Construct

 Σ' = Considering all equations of Σ in $x_2, ..., x_n, x_{n+1}$ and replacing x_1 by a.

 Σ' is consistent. So, by induction Σ' has a solution (a₂, a₃, ..., a_n, a_{n+1}) in A.

 $(a_1 = a, a_2, \dots, a_n, a_{n+1})$ is the solution of Σ in A.

Case III:

Suppose $\boldsymbol{\Sigma}$ has equations of the form :

 $x_is = a$ and $x_i = x_it$ for some i, i' = 1, 2, ..., n+1 and i \neq i'

Take I = 1 and i' = 2.

Construct

Σ' = Considering all equations of Σ in x₂, ..., x_n, x_{n+1} and replacing x₁ by x₂t.

 Σ' is consistent because (b₂, ..., b_n, b_{n+1}) is the solution of Σ in B. So, by induction Σ' has a solution (a₂, a₃, ..., a_n, a_{n+1}) in A.

 $(a_1 = a_2S, a_2, \dots, a_n, a_{n+1})$ is the solution of Σ in A.

Case IV:

Suppose $\boldsymbol{\Sigma}$ has equations of the form :

x_is = a for i=1,2,3,...n

We prove this case for i = 1, 2 and by the similar argument it would be true for i = 1,2 , ... , n+1.

Rename x_1 by x and x_2 by y and consider

Σ = { $x\alpha$ = a, xs' = xt', xs = yt, yu = b}

Subcase I:

If s=1, then Σ has a solution in A.

Subcase II:

If s = 0, then construct

$$Σ' = { xα = a, xs' = xt', x0 = a.0 }$$

 $Σ* = {yu = b, yt = a.0 }$

 Σ' and Σ^* both are consistent having solution b_1 and b_2 in B. So, by induction, Σ' and Σ^* having solution a_1 and a_2 in A, respectively.

 $(\underline{a_1, a_2})$ is the solution for **\Sigma**.

Subcase III:

If s = α , then construct

$$\Sigma^* = \{yu = b, yt = a\}$$

 Σ' and Σ^* both are consistent having solution b_1 and b_2 in B. So, by induction, Σ and Σ^* having solution a_1 and a_2 in A, respectively.

 $(\underline{a_1, a_2})$ is the solution for **\Sigma**.

Subcase IV:

If $s = \beta$

$$\Sigma = \{ \mathbf{x}\alpha = a, \mathbf{xs'} = \mathbf{xt'}, \mathbf{x}\beta = \mathbf{yt}, \mathbf{yu} = b \}.$$

Consider

Σ' = { x
$$\alpha$$
 = a, xs' = xt'}.

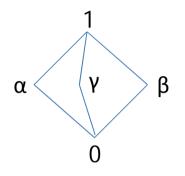
Then corresponds to every $\sigma = \langle (s', t') \rangle$, Σ has solution in A.

So, if

$$\Sigma = \{ \mathbf{x}\alpha = \mathbf{a}, \mathbf{x}\beta = \mathbf{y}\mathbf{t}, \mathbf{y}\mathbf{u} = \mathbf{b} \}.$$

Then, corresponds to every value of t and u, we can either split Σ into two system in one variable or (a, b) is the solution of Σ .

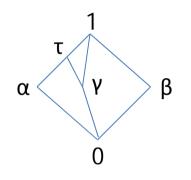
Consider the semilattice $S = \{0, \alpha, \beta, \gamma, 1\}$.



- ✤ S is an S-act over itself.
- S is not completely right pure because the principle right ideals {0, α } and {0, β} are not linearly ordered with respect to inclusion.
- S is not an almost pure S-act. Consider the system of equation

Σ = { x α = α , x β = 0, x γ = γ }

 $\pmb{\Sigma}$ is consistent because it has solution in extension $T=S\cup\{\tau\}$



But $\boldsymbol{\Sigma}$ has no solution in S.

For **S** = {0, α , β , γ , 1}, every almost pure S-act is absolutely pure.

For the following semilattices, every almost pure s-act is absolutely pure.

