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Information security

Information security is concerned with the safe and private
transmission and storage of data.

Motivating questions include:

How can a message be sent so that we can detect whether it
has been changed during transmission?

If we detect that a change has occurred, can we recover the
original message - and if so, how?

How can we encrypt messages/data so that they cannot
feasibly be decrypted by anyone other than the intended
recipient?

. . . and many more.
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Manipulation detection

In this talk, we consider an encoding system and how to design it
to minimise the chances that an undetected change can occur.

Applies to various situations:

message transmission which is subject to attack

storage device which is subject to tampering

We will be thinking in terms of the message-sending scenario.

It is helpful to model the situation as a “game” between an
encoder and an adversary who is trying to “cheat” the encoder.

Our focus is on algebraic manipulation detection (AMD) codes.
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AMD code model

We will have:

Set S of plaintext sources (the messages)

Encoded message space G (finite group, written additively)

Encoding function E (possibly randomized) maps source
s ∈ S to some g ∈ G

For each source s ∈ S , subset A(s) of G is the set of valid
encodings of s

Unique decodability: A(s) ∩ A(s ′) = ∅ if s 6= s ′,
i.e. the sets of encodings do not overlap

Traditionally G abelian but the set-up is valid for non-abelian G .
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Diagram

Sources Encoded Message
Space G

sm

A(sm)

s2

A(s2)

s1
E

A(s1)
g
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The “game”

AMD code

Adversary: chooses a value δ ∈ G \ {0} (their “manipulation”)

Encoder: chooses source s ∈ S

Encoder: s encoded by E to some g ∈ A(s)

Adversary: g is replaced by g ′ = g + δ

Adversary wins if g ′ ∈ A(s ′) for some s ′ 6= s

The adversary wins if they succeed in shifting the group element g
into an element g + δ that’s an encoding of a different source
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Diagram

Sources Encoded Message
Space G

sm

A(sm)

s2

A(s2)

s1

A(s1)

g

g + δ

If message s1 is sent and encoded as g , it will be incorrectly
decoded to s2 after this manipulation. In this case, adversary wins!
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Model as system of sets

The AMD “game” can be modelled as a set-up in combinatorics.

We model the sender’s choice of message probabilistically.

Let {A1, . . . ,Am} be a disjoint collection of sets in G .

Adversary chooses δ ∈ G \ {0}
Pick a set Ai uniformly at random (source)

Then pick an element di ∈ Ai uniformly at random (encoding)

Adversary “wins” if di + δ ∈ Aj for some j 6= i

Adversary wins if δ occurs as a difference between our element in
Ai and some element in Aj .

Need to look at the differences between elements of Ai and Aj .
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Internal and external differences

Suppose we have a disjoint family of subsets A1, . . . ,Am of G

For a fixed i , the differences between the elements of Ai are
called internal differences:

I (Ai ) := {x − y : x , y ∈ Ai , x 6= y}

For i 6= j , the differences between the elements of Ai and Aj

are called external differences:

E (Ai ,Aj) := {x − y : x ∈ Ai , y ∈ Aj}
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Ai
Ak

Aj

x

y

z

δ1

δ2

s

t
γ1

γ2

In this diagram,

δ1 and δ2 are internal differences in Ai

(x − y = δ1, x − z = δ2)

γ1 and γ2 are external differences out of Ai (to Aj ,Ak resp.)
(y − s = γ1, z − t = γ2)
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Ai
Ak

Aj

A`

γ

γ

γ

For a disjoint family of sets A1, . . . ,Am, define the number of times
a non-zero element γ occurs as an external difference out of Ai by

Ni (γ) := |{(x , y) : x − y = γ, x ∈ Ai , y ∈ Aj , j 6= i}|

In the example above, we show all occurrences of γ as an external
difference out of Ai , so Ni (γ) = 3 here.
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Success probability

Returning to our AMD code:

The probability that an adversary succeeds when they pick δ is

eδ =
1

m

(
N1(δ)

|A1|
+ · · ·+ Nm(δ)

|Am|

)
(1)

Source i picked with probability 1
m

Ni (δ) of the possible |Ai | encodings will lead to success for an
adversary who picks δ
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Which codes are optimal?

We seek AMD codes that are optimal (from sender’s perspective).

We are considering an adversary who chooses δ uniformly at
random (R-strategy)

Definition

An AMD code is (R)-optimal precisely when the maximum success
probability of the adversary over all δ ∈ G ∗ is equal to their
average success probability.

Result

An AMD code is R-optimal ⇔ eδ is constant for all δ ∈ G ∗.
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RWEDFs

We [HP] named the set systems corresponding to optimal AMD
codes reciprocally-weighted external difference families (RWEDFs).

Definition

An (n,m; k1, . . . , km; `)-RWEDF is a collection of disjoint subsets
A1, . . . ,Am of a group G of order n, where |Ai | = ki for all
i ∈ {1, . . . ,m}, with the property that:

1

k1
N1(δ) + · · ·+ 1

km
Nm(δ) = `

for all non-zero δ ∈ G .

In the special case when sets Ai are of equal size, this becomes

N1(δ) + · · ·+ Nm(δ) = constant

Have been studied (abelian): external difference families (EDFs).
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EDF example

Let G = (Z10,+); take A1 = {4, 7, 9} and A2 = {0, 2, 5}
Differences from A1 to A2 are
{4− 0 = 4, 4− 2 = 2, 4− 5 = −1 = 9,
7− 0 = 7, 7− 2 = 5, 7− 5 = 2,
9− 0 = 9, 9− 2 = 7, 9− 5 = 4}, ie {2, 2, 4, 4, 5, 7, 7, 9, 9}.
Differences from A2 to A1 are their negatives, i.e.
{1, 1, 3, 3, 5, 6, 6, 8, 8}.
Union of all external differences=each nonzero element twice!

For δ = 1, the adversary’s success probability is

1

2

(
N1(δ)

|A1|
+

N2(δ)

|A2|

)
=

1

2

(
0

3
+

2

3

)
=

1

3

Same for any choice of δ 6= 0.
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Finite field EDF construction

Construction

Let G be the additive group of GF (q), the finite field of order q,
where q is a prime power congruent to 1 mod 4.
Let A1 = {the set of non-zero squares in GF (q)}.
Let A2 = {the set of non-squares in GF (q)}.
Then {A1,A2} form a (q, 2; q−1

2 , q−12 ; 1)-RWEDF (indeed an
EDF).

Special case of cyclotomic method - using subgroups of the
multiplicative group of a finite field to make EDFs in its additive
group.
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What about RWEDFs which are not EDFs?

Now we would like to construct examples of RWEDFs which have
different set-sizes (i.e. are not EDFs).

Example

Let G = Zk1k2+1. The sets

A1 = {0, 1, . . . , k1 − 1} and A2 = {k1, 2k1, . . . , k1k2}

form a (k1k2 + 1, 2; k1, k2; 1
k1

+ 1
k2

)-RWEDF.

Can prove: this gives an AMD code whose success probability is as
small as possible when m = 2 for the given group size.
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Difference sets

Definition

A difference set in a group G is a set D ⊆ G such that, when we
take all pairwise internal differences between the elements of D,
every non-identity group element occurs a fixed number λ of times.

Result

Let G be a group of order n, and let A = {A1,A2} partition G .
Then A is an RWEDF ⇔ A1 and A2 are difference sets.

Example: Let G = Z7. Let A1 = {1, 2, 4} and A2 = {0, 3, 5, 6}.
Then {A1,A2} is a (7, 2; 3, 4; 7

6)-RWEDF.
For any δ, adversary’s success probability is 7

12 .
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Motivating questions for RWEDFs

Observe that all the examples we have seen so far have 2 sets.

Question

Can we get examples with more than 2 sets, ie m > 2?

The constant ` in the definition is in Q but not necessarily in Z.

Question

Can we obtain constructions for RWEDFs with integer `?

One way to guarantee integer ` would be if ki | Ni (1 ≤ i ≤ m).

We must have Ni (δ) ≤ ki for δ ∈ G \ {0} - so this would mean
Ni (δ) = 0 or ki .
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Defining a New Property

Motivated by this condition for RWEDFs with integer `, we define
the following general property.

Let G be a finite group and let A be a collection {A1,A2, ...,Am}
of disjoint subsets of G with sizes k1, k2, . . . km respectively.

Definition

We shall say A has the bimodal property if for all δ ∈ G ∗ we have
Nj(δ) ∈ {0, kj} for j = 1, 2, . . . ,m.

In other words: for each δ ∈ G ∗, either δ never occurs as a
difference between Ai and some other Aj , or else for every ai ∈ Ai

there is an aj ∈ Aj (i 6= j) s.t. δ = ai − aj .
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Not every collection of bimodal sets will be an RWEDF...

Example

Let G = Z10 and take A1 = {1, 6}, A2 = {3, 8} and A3 = {4, 9}.
Then A = {A1,A2,A3} is bimodal but not an RWEDF.
For i = 3 we have N3(1) = N3(3) = N3(6) = N3(8) = 2 = k3 while

N3(2) = N3(4) = N3(5) = N3(7) = N3(9) = 0.

Similar calculations for N1(δ) and N2(δ) confirm A has the
bimodal property but 5 never occurs as an external difference.

...and not every RWEDF with integer ` will be bimodal - though
some always will:

Result

An (n,m; k1, ..., km; `)-RWEDF with ` ∈ Z and {k1, ..., km}
pairwise coprime is bimodal.
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Understanding bimodal sets

This opens up two quite distinct questions:

Can families of sets with the bimodal property in finite
(abelian) groups be algebraically characterized?

Can we find bimodal families of sets which are RWEDFs?
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Theoretical examples of bimodal sets

Result

Let H be a subgroup of an abelian group G . If C = {C1, . . . ,Cm}
is a collection of cosets of H, the C has the bimodal property.

Proof: For fixed i and 1 ≤ j ≤ m with i 6= j , the sets Ci − Cj

comprise m− 1 distinct cosets of H. For any δ ∈ Ci −Cj and every
x ∈ Ci , ∃ a unique y ∈ Cj s.t. x − y = δ. However, for any
δ ∈ G \ ∪j 6=i (Ci − Cj), δ occurs 0 times as a difference out of Ci .

Cosets are such a “natural” example that you may guess they are
the only non-trivial collection of sets with the bimodal property,
but in fact a much richer landscape emerges.
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Internal difference group

Definition

Let A be a subset of a finite abelian group G . We define the
internal difference group H of A to be the subgroup of G
generated by all x − y where x , y ∈ A, ie H = 〈I (A)〉.

The group H has the property that A is contained in a single coset
of H, and is the smallest subgroup of G with this property.
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Bimodal property and cosets

For disjoint subsets {A1, . . . ,Am} of our group G , we will let:

A = ∪mi=1Ai

Bi = A \ Ai for any 1 ≤ i ≤ m

Hi = 〈I (Ai )〉

Result

Let G be a finite abelian group and let A = {A1, . . . ,Am} be a
collection of disjoint subsets of G . Then A has the bimodal
property if and only if for each i the set Bi is a union of cosets of
the subgroup Hi .
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Subgroup partitions

Definition

If a finite group G has subgroups S1, . . . ,Sm with the property
that S1 \ {0}, . . . ,Sm \ {0} partition G \ {0}, then the collection of
subgroups is called a partition of G .

Example

Let G = Z3 × Z3.
A partition of G is given by:
S1 = {(0, 0), (1, 1), (2, 2)},S2 = {(0, 0), (0, 1), (0, 2)},
S3 = {(0, 0), (1, 2), (2, 1)}, S4 = {(0, 0), (1, 0), (2, 0)}.
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Subgroup partitions give bimodal sets

Let Si
∗ denote Si \ {0}.

Result

If a finite abelian group G has subgroups S1, . . . ,Sm forming a
partition of G , then {S∗1 , . . . ,S∗m} has the bimodal property.

Proof: For each i , the internal difference group of S∗i is Si itself.
So the union ∪j 6=iS

∗
j is G \ Si , a union of cosets of Si .

Have seen: cosets and subgroup partitions - what is the general
landscape for collections of bimodal sets?
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Impressionistic idea of the situation

Collections of bimodal sets in finite abelian groups are in some
sense a “blend” of the coset and subgroup partition examples
we’ve seen.

Let rA be the number of Ai with |Ai | < |Hi |.
Key structural differences when rA ≥ 2, = 1 and = 0.

When rA ≥ 2, the sets A1, . . . ,ArA occur together in a very
tightly-structured way: like an “inflated” group partition.

This imposes considerable structure on the remaining
members of A (coset part).

The cases with rA = 1 and = 0 are comparable but have a
simpler description.
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Some technical points for our main structure result

Recall |Ai | ≤ |Hi | for all 1 ≤ i ≤ m.
Wlog, we label the sets such that

|Ai | < |Hi | for i = 1, . . . , rA
|Ai | = |Hi | for i = rA + 1, . . . ,m.

Following literature, a collection of sets F1, . . . ,Fk with the
property that Fi ∩ Fj = D for all for all i 6= j is said to be a
k-star with kernel D.

Helpful to shift to “canonical position”: a translation
guaranteeing that instead of cosets of certain subgroups, we
are dealing with the subgroups themselves.
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Structural result

Let A = {A1, . . . ,Am} be a bimodal collection of disjoint subsets
of an abelian group G with rA ≥ 2, in canonical position.

Result

The internal difference groups H1, . . . ,HrA form an rA-star
with kernel DA (a subgroup of G ), and for each i with
1 ≤ i ≤ rA we have Ai = Hi \ DA.

Any set Ai with i > rA is a coset of a subgroup of DA

If H denotes the group H1 + H2 + · · ·+ HrA , then H \ DA is
contained in A . Furthermore, the sets in A can be labelled
such that for some k with rA ≤ k ≤ m we have that H \ DA
is partitioned by A1, . . . ,Ak .

If k < m then the sets Ai with i > k arise from a subdivision
of cosets of H.
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We also have the other way round...

Let G be an abelian group, and for t ≥ 2 let H1, . . . ,Ht be distinct
subgroups of G forming a t-star with kernel D, such that
|Hi : D| > 2 for i with 1 ≤ i ≤ t.
Let H = H1 + · · ·+ Ht .

Result

Let A consist of the following subsets of G :

all subsets of the form Ai = Hi \ D for i with 1 ≤ i ≤ t;

all cosets of D that are subsets of H, but are not in ∪ti=1Hi ;

for any number of cosets of H, all the cosets of D that lie
within those cosets of H.

Then A is a bimodal collection of subsets of G with rA = t in
canonical position.
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Return to RWEDFs...

Returning to RWEDFs, we can prove the following for any (not
necessarily abelian) finite group:

Result

If a finite group G of order n has subgroups S1, . . .Sm forming a
partition of G , then {S∗1 , . . . ,S∗m} is a (bimodal) RWEDF.

This gives a wealth of new RWEDF/EDF examples, in both
abelian and non-abelian groups.
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Groups possessing subgroup partitions

From the literature, groups which admit a subgroup partition
include:

elementary abelian p-groups of order ≥ p2, for p prime

Frobenius groups (eg dihedral group D2n with n odd)

groups of Hughes-Thompson type

groups isomorphic to PGL(2, ph) with p an odd prime
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RWEDF example from subgroup partition

Example

Let G = Z3 × Z3.

We use the subgroup partition from the earlier slide, removing
the zero element.

Let A1 = {(1, 1), (2, 2)}, A2 = {(0, 1), (0, 2)},
A3 = {(1, 2), (2, 1)} and A4 = {(1, 0), (2, 0)}.
For non-zero δ ∈ G , Ni (δ) = 2 for δ 6∈ Ai and Ni (δ) = 0 for
δ ∈ Ai (for each 1 ≤ i ≤ 4).

A forms a (9, 4; 2, 2, 2, 2; 3)-RWEDF (indeed, this is an EDF).

This is an example of a more general construction we have in
elementary abelian p-groups using vector space partitions.
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Nonabelian RWEDF partition example

Example

Let n be odd, and let D2n be the dihedral group given by the
presentation

〈r , s|rn = 1, s2 = 1, rs = sr−1〉

A partition is given by Si = 〈sr i−1〉 for 1 ≤ i ≤ n and Sn+1 = 〈r〉.
Here |S1| = · · · = |Sn| = 2 and |Sn+1| = n.
For D10 this yields a (10, 6; 1, 1, 1, 1, 1, 4; 5)-RWEDF.
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Nonabelian RWEDF partition example

Example

Let G be the Heisenberg group modulo 3, ie the group of 3× 3
upper triangle matrices with entries from GF (3) that have 1s on
the main diagonal.

Each element of G has the form

1 a b
0 1 c
0 0 1

 and each

non-identity element has order 3.
|G | = 27 and its order 3 subgroups partition its non-identity
elements.
This will give an EDF with 13 sets of size 2.
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A stronger security model

Question: is it always realistic to assume that an adversary will not
know which message (source) is being sent?

We may wish to consider a stronger security model, in which the
adversary knows the source before they choose their δ.
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Stronger security model

Strong AMD code

Encoder: chooses a source s ∈ S

Adversary: is given source s

Adversary: chooses some δ ∈ G \ {0}
Encoder: source is encoded by E to g ∈ A(s)

Adversary: g is replaced by g ′ = g + δ

Adversary wins if g ′ ∈ A(s ′) for some s ′ 6= s.

In a strong AMD code, the adversary learns s before choosing δ.
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Strong AMD codes and set systems

What mathematical structures correspond to optimal strong AMD
codes?

At present: strong EDFs are used.

These require a condition for each possible i :

Definition

A strong external difference family in an abelian group G of order n
is a collection of disjoint sets A1, . . . ,Am of G , each of size k, such
that when we take all external differences from any Ai to ∪j 6=iAj ,
every non-identity group element occurs a fixed number ` of times.

We write this as an (n,m, k , `)-SEDF.
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Examples of SEDFs

In fact, we have seen examples of SEDFs earlier in the talk:

In G = Z5, the sets {1, 4} and {2, 3} form an SEDF.

Let G be the additive group of GF (q) where q is a prime
power congruent to 1 mod 4; the set of non-zero squares and
the set of non-squares form an SEDF.

In G = Zk2+1, the sets

A1 = {0, 1, . . . , k − 1} and A2 = {k , 2k, . . . , k2}

form a (k2 + 1, 2, k , 1)-SEDF.
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The SEDF landscape: existence

SEDFs are known to exist for the following (n,m, k , `):

(a) (k2 + 1, 2, k , 1): G = Zk2+1, Paterson/Stinson

(b) (v , 2, v−12 , v−14 ) where v ≡ 1mod 4 and an appropriate partial
difference set exists: Davis/Huczynska/Mullen and
Huczynska/Paterson

(c) (q, 2, q−14 , q−116 ) where q = 16t2 + 1 is a prime power and
G = GF (q): Bao/Wei/Zhang

(d) (q, 2, q−16 , q−136 ) where q = 108t2 + 1 is a prime power and
G = GF (q): Bao/Wei/Zhang
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First SEDF with m > 2

Until the start of 2018, no SEDFs were known with m 6= 2.
Then the first with m > 2 was found - independently by two sets
of authors.

(243, 11, 22, 20)-SEDF in Z5
3

Cyclotomic construction [Wen,Yang,Feng]

Action of M11 on PG(4, 3) [Jedwab,Li]

This is still the only known SEDF with more than 2 sets!
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Non-abelian SEDFs

One theme of the bimodal work was the emergence of non-abelian
RWEDF examples.

Recently, we [HJN] obtained the first construction for a family of
non-abelian SEDFs:

Theorem

Let k > 1 be odd. In Dk2+1, the dihedral group of order
n = k2 + 1, there exists a (k2 + 1, 2, k, 1)-SEDF in G .
Specifically, in

〈r , s|rn/2 = 1, s2 = 1, rs = sr−1〉

we can take {A1,A2} where

A1 = {r i : 0 ≤ i ≤ k−1
2 } ∪ {sr

j : 0 ≤ j ≤ k−3
2 }.

A2 = {r ik : 1 ≤ i ≤ k−1
2 } ∪ {sr

k(2j+1)−1
2 : 0 ≤ j ≤ k−1

2 }.
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Open questions

There are many avenues to explore further in this area.

Beyond group partitions, which collections of bimodal sets
guarantee RWEDFs?

Obtain a combinatorial characterization of RWEDFs with
integer `.

Constructions for RWEDFs with integer ` which are not
bimodal?

Fine-tune our constructions to yield smallest possible success
probabilities.

The strong model for RWEDFs.

Further constructions in nonabelian groups.

Specific connections with Frobenius groups?
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Thank you for listening!
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