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Abstract. Self-similar group actions may be encoded by a class of left can-

cellative monoids called left Rees monoids. This connection was discovered
by Perrot and the first author who subsequently generalized it to self-similar

groupoid actions and a class of categories called left Rees categories. In this

paper, we prove that the theory of Rees categories, that is the left Rees cate-
gories which are actually cancellative, may be viewed as a generalization of the

classical theory of graphs of groups as developed by Serre and the groupoid

approach to that theory by Philip Higgins. Using a standard construction,
we also show that the theory of graphs of groups may be viewed as part of

the theory of inverse semigroups. This enables us to prove that the Serre

tree associated with a graph of groups can be constructed using Ehresmann’s
maximum enlargement theorem. This shows the close connection that exists

between the theory of graphs of groups and McAlister’s classical P -theorem
within inverse semigroup theory.
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1. Introduction

The theory of self-similar groups has two aspects: a group-theoretical and a
monoid-theoretical. The group-theoretical is well-known, being the subject of the
2005 book by Nekrashevych [31], and originating in the 1980’s. The monoid-
theoretical is less well-known. The first author showed [20] that self-similar groups
were also defined in the 1972 thesis of J.-F. Perrot [33] (see also [34]). In [20],
the first author established correspondences between three classes of mathematical
structures:

(1) Self-similar group actions defined in full generality without the assumption
that the action be faithful.

(2) A class of left cancellative monoids, called left Rees monoids.
(3) A class of 0-bisimple inverse monoids with zero, referred to in this paper as

0-bisimple Perrot monoids.

The correspondence between (1) and (2) was investigated in more detail in the
authors’ paper [24] and yielded an unexpected connection between the theory of
Rees monoids and HNN extensions of groups; it was this connection that was the
catalyst for this paper. Our main goal is to show that by replacing Rees monoids
by Rees categories, we may in fact develop a theory that subsumes not only HNN
extensions and free products with amalgamation but all of the classical theory of
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graphs of groups. Our work was additionally strongly influenced by Cohn [6], the
work of von Karger [38, 39], a paper by Krieger [14], the first author’s paper [21]
and Philip Higgins’s groupoid approach to graphs of groups described in [8]. Once
we have achieved our main goal, it is then relatively routine to construct an inverse
semigroup theoretical approach to graphs of groups.

Acknowledgements This paper was inspired by a few pages in the first edition
of Cohn’s book [6] where he develops a theory of group embeddings of a class of
cancellative monoids he calls ‘rigid’. The theory reminded us of Bass-Serre theory
but defined for cancellative monoids rather than groups.

2. Terminology

Any undefined terms from category theory we use may be found in [28]. For us,
categories are small and objects are replaced by identities; thus we view them as
‘monoids with many identities’. The elements of a category C are called arrows
and the set of identities of C is denoted by Co. Each arrow a has a domain,
denoted by d(a), and a codomain denoted by r(a), both of which are identities and
a = d(a)a = ar(a). The product ab exists if and only if r(a) = d(b).1 Thus our
products should be conceived thus

e
a−→ f

b−→ i

where e, f and i are identities. We shall sometimes write ∃ab to mean that the
product ab exists in the category. Given identities e and f , the set of arrows eCf is
called a hom-set and eCe is a monoid called the local monoid at e. The group of units
of the local monoid at e is called the local group at e. We say that arrows x and y
are parallel if they belong to the same hom-set. A category is called left cancellative
if whenever ax = ay we have that x = y. We define right cancellative categories
dually. A cancellative category is one which is both left and right cancellative. An
arrow a is invertible or an isomorphism if there is an arrow a−1, called an inverse
and perforce unique, such that aa−1 = d(a) and a−1a = r(a). An element a ∈ C
of a category is said to be an atom if it is not invertible and if a = bc then either b
or c is invertible.

Lemma 2.1. If a is an atom in an arbitrary category, g is invertible and ∃ga then
ga is an atom.

Proof. Suppose that ga = bc. Then a = (g−1b)c. Thus g−1b or c is invertible; that
is, b or c is invertible. It follows that ga is also an atom. �

A category in which every arrow is invertible is called a groupoid. If a groupoid
is just a disjoint union of its local groups then we say that it is totally disconnected.
The set of invertible elements of a category forms a groupoid with the same set of
identities. Later, we shall deal only with categories C having the following property:
any isomorphism belongs to a local monoid. We shall say that such categories are
skeletal. The following is well-known.

Lemma 2.2. Every category is equivalent to a skeletal category.

1This is the reverse of the way that the first author usually treats category products but is the
most natural one in the light of the applications we have in mind.
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Proof. Let C be a category. Let {ei : i ∈ I} be a transversal of the isomorphism
classes of the identities. Thus if i 6= j then ei is not isomorphic to ej and every
identity in C is isomorphic to some ei. Let C ′ be the full subcategory determined
by the ei. Then C ′ is a skeletal category equivalent to C. �

Given any directed graph D, we may construct the free category on D denoted
by D∗. This has one identity for each vertex and consists of all finite directed paths
in the graph. Multiplication is concatenation of paths. The elements of D∗ will be

written a1 · . . . · am where the ai are edges of the graph such that
a1→a2→ . . .

am→.
With each category C, we may associate its universal or fundamental groupoid

U(C) [27]. To construct this groupoid, first regard C as a directed graph. For each

edge e
a→ f attach a new edge f

a−1

→ e. Form the free category (C ∪ C−1)∗ on the
set C∪C−1. We denote elements of this category by a1 · . . . ·an where ai ∈ C∪C−1

and r(ai) = d(ai+1) for i = 1, 2, . . . , n− 1. Now define a congruence ≡ on this free
category generated by

a · a−1 ≡ d(a), a−1 · a ≡ r(a), a · b ≡ ab if ∃ab

where a, b ∈ C. The first two identifications ensure that the quotient category is a
groupoid and the third ensures that there will be a functor from C to the quotient.
This gives us our groupoid U(C) with an associated functor ι : C → U(G). We
prove that this has the correct universal property. Let θ : C → G be a functor to
a groupoid. We may extend θ to a function θ̄ : C ∪ C−1 → G where we define
θ̄(a) = θ(a) and θ̄(a−1) = θ(a)−1. We may therefore extend θ̄ to a functor θ′ from
the free category (C ∪ C−1)∗ to G. Observe that that if x ≡ y then θ̄(x) ≡ θ̄(y).
Thus we may define a functor Θ from U(C) to G. The uniqueness property comes
from the fact that U(C) is generated by C.

3. Equidivisible categories

The following definition is generalized from semigroup theory [30]. A category
C is said to be equidivisible if for every commutative square

c

��

a //

b

��
d

//

we either have an arrow u making the following diagram commute

c

��

a //

b

��
d

//

u

??
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or one, v, making the following diagram commute

c

��

a //

b

��

v

��
d

//

A length functor is a functor λ : C → N from a category C to the additive monoid
of natural numbers satisfying the following conditions:

(LF1): If xy is defined then λ(xy) = λ(x) + λ(y).
(LF2): λ−1(0) consists of all and only the invertible elements of C.
(LF3): λ−1(1) consists of all and only the atoms of C.

Sometimes we shall write λC if we wish to emphasize the fact that the length
functor belongs to C.

A principal right ideal in a category C is a subset of the form aC where a ∈ C.
We may similarly define principal right ideals and principal ideals. Greens relations
L , R, H , D , and J can also be defined in categories. Thus, for example, in
the category C we define aL b if and only if Ca = Cb. Let aC ⊆ bC. We
use the notation [aC, bC] to mean the set of principal right ideals xC such that
aC ⊆ xC ⊆ bC. The proof of the following is straightforward.

Lemma 3.1. Let C be a category equipped with a length functor having G as its
groupoid of invertible elements.

(1) aL b⇔ Ga = Gb. In particular, r(a) = r(b).
(2) aR b⇔ aG = bG. In particular, d(a) = d(b).
(3) aJ b⇔ GaG = GbG.

Principal right ideals of the form eC where e is an identity are maximal such
ideals because if eC ⊆ aC then e = d(a) and aC = eaC ⊆ eC giving eC = aC. A
principal right ideal aC is said to be submaximal if aC 6= d(a)C and there are no
proper principal right ideals between aC and d(a)C.

Lemma 3.2. Let C be a category equipped with a length functor λ.

(1) The element a is an atom if and only if aC is submaximal if and only if
Ca is submaximal.

(2) Each non-invertible element a of C can be written a = a′b where a′ is an
atom.

(3) Every non-invertible element of C can be written as a product of atoms.

Proof. (1). Suppose that a is an atom and that aC ⊆ bC. Then a = bc. But a is
an atom and so either b is invertible or c is invertible. Suppose that c is invertible
then aC = bC. Suppose that b is invertible then bC = d(b)C. We have proved that
aC is submaximal.

Conversely, suppose that aC is submaximal. Let a = bc. Then aC ⊆ bC. It
follows that either aC = bC or bC = d(b)C. It the latter occurs then b is invertible.
If the former occurs then λ(a) = λ(b). It follows that λ(c) = 0 and so c is invertible.

(2). Let a be a non-invertible element. If a is an atom then we are done. If not,
then a = a1b1 for some b1 and a1 where neither a1 nor b are invertible. Observe that
λ(a1) < λ(a). If a1 is an atom then we are done, otherwise we may write a1 = a2b2
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again where neither a2 and b2 are atoms. Observe that λ(a2) < λ(a1). This process
can only continue in a finite number of steps and will end with a = anb

′ for some
b′ where an is an atom.

(3). If a is an atom then there is nothing to prove. Otherwise by (2), we may
write a = a1b1 where a1 is an atom and λ(b1) = λ(a)− 1. If b1 were invertible then
a would have been an atom. If b1 is an atom then we are done. Otherwise, we may
repeat the above procedure with b1. �

In categories equipped with length functors, we can write every element in terms
of atoms and invertible elements. The obvious next question is what kind of unique-
ness we can expect. Under the additional assumption of equidivisibility, we can
retrieve a kind of uniqueness.

Lemma 3.3. Let C be an equidivisible category equipped with a length functor and
suppose that

x = a1 . . . am = b1 . . . bn

where the ai and bj are atoms.

(1) m = n.
(2) There are invertible elements g1, . . . , gn−1 such that

a1 = b1g1, a2 = g−1
1 b2g2, . . . an = g−1

n−1bn.

This data is best presented by means of the following interleaving diagram.

a2 // a3 // . . .
an−1 //

an

��

a1

??

b1

��

g1

OO

b2

//

g2

OO

b3

//

g3

OO

. . .

gn−2

OO

bn−1

//

gn−1

OO

bn

??

(3) If C is in addition skeletal then ai is parallel to bi for i = 1, . . . ,m.

Proof. (1). This is immediate from the properties of length functors.
(2). We bracket as follows

a1(a2 . . . am) = b1(b1 . . . bm).

By equidivisibility, a1 = b1u and b2 . . . bm = ua2 . . . am for some u or b1 = a1v and
a2 . . . am = vb2 . . . bm for some v. In either case, u and v are invertible since both
a1 and b1 are atoms using the length function. Thus a1 = b1g1, where v = g1 is an
isomorphism, and b2 . . . bm = g1a2 . . . am.

We now repeat this procedure bracketing thus

b2(b3 . . . bm) = g1a2(a3 . . . am).

By the same argument as above, we get that g1a2 = b2g2 for some isomorphism g2

and b3 . . . bm = g2a3 . . . am.
The process continues and we obtain the result.
(3). The result is immediate from the assumption that the category is also

skeletal. �
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We shall be interested in left cancellative equidivisible categories equipped with
length functors and ultimately those that are also skeletal. But we shall start with
a slightly different definition and show that it is equivalent to this one. A category
C is said to be right rigid if aC ∩ bC 6= ∅ implies that aC ⊆ bC or bC ⊆ aC. A left
Rees category is a left cancellative, right rigid category in which each principal right
ideal is properly contained in only finitely many distinct principal right ideals.

Example 3.4. Free categories are left Rees categories: the atoms are the edges;
the length functor simply counts the number of edges in a path; the groupoid of
invertible elements is trivial.

Lemma 3.5. Let C be a left cancellative category with groupoid of invertible ele-
ments G.

(1) aR b if and only if aG = bG.
(2) C is a right rigid category if and only if it is equidivisible.
(3) If e = xy is an identity then x is invertible with inverse y.

Proof. (1). Only one direction needs proving. Suppose that aR b. Then a = bx
and b = ay for some x, y ∈ C. Thus a = ayx and b = bxy. By left cancellation
both xy and yx are identities and so x is invertible with inverse y.

(2). Only one direction needs proving. Suppose that ab = cd. Then aC∩cC 6= ∅.
Without loss of generality, we may suppose by right rigidity that aC ⊆ cC. Thus
a = cu But then cub = cd and so ub = d, as required.

(3). We have that xyx = x and by left cancellation this shows that yx is an
identity and so x is invertible with inverse y. �

In the light of the lemma above, the following says that left cancellative equidi-
visible categories equipped with length functors are left Rees categories.

Lemma 3.6. Let C be a right rigid, left cancellative category equipped with a length
functor λ. Then C is a left Rees category.

Proof. Let a ∈ C be any element with e = d(a). We need to prove that the set
[aC, eC] is finite. Let bC ∈ [aC, eC]. Then a = bx for some x and so λ(a) ≥ λ(b).
There is therefore an upper bound on the lengths of those elements b such that
aC ⊆ bC. Let b1C, b2C ∈ [aC, eC] and suppose that λ(b1) = λ(b2). By right
rigidity, we may assume, without loss of generality that b1C ⊆ b2C. Thus b1 = b2x
for some x. But b1 and b2 have the same length and so x must have length zero.
It follows that x is invertible. Hence b1C = b2C. It follows that the set [aC, eC] is
finite, as claimed. �

We shall now prove the converse to the above result. This involves proving
that every left Rees category is equipped with a length functor. Let a ∈ C be an
element of a left Rees category. We shall define the length, λ(a), of a. Put d(a) = e.
By assumption, the set [aC, eC] is finite and linearly ordered. The proofs of the
following are straightforward.

Lemma 3.7. Let C be a left Rees category.

(1) The set [aC, eC] contains one element if and only if a is invertible.
(2) The set [aC, eC] contains two elements if and only if a is an atom.

If the set [aC, eC] contains n elements, where n ≥ 1 always, define λ(a) = n− 1.

Lemma 3.8. Let C be a left Rees category and let a, b ∈ C such that ab is defined.
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(1) a[bC,d(b)C] = [abC, aC].
(2) [abC,d(a)C] = a[bC,d(b)C] ∪ [aC,d(a)C].

Proof. (1). Let xC ∈ [bC,d(b)C]. Then bC ⊆ xC ⊆ d(b)C. It is immediate that
abC ⊆ axC ⊆ aC. Thus the lefthand side is contained in the righthand side. Now
let abC ⊆ yC ⊆ aC. Then y = au for some u ∈ C. Thus yC = auC = a(uC).
Now ab = yv for some v. Hence ab = auv and so by left cancellation, we have that
b = uv. Thus bC ⊆ uC ⊆ d(b)C.

(2). Let c = ab. Then cC ⊆ aC ⊆ d(a)C. Let xC ∈ [cC,d(c)C]. Since this
set is linearly ordered either xC ⊆ aC or aC ⊆ xC. It follows that the lefthand
side is contained in the righthand side. The proof of the reverse containment is
immediate. �

The proof of the following is now immediate.

Lemma 3.9. Let C be a left Rees category.

(1) λ(ab) = λ(a) + λ(b).
(2) λ(a) = 0 if and only if a is invertible.
(3) λ(a) = 1 if and only if a is an atom.

We have therefore proved the following.

Proposition 3.10. A left cancellative, right rigid category is a left Rees category
if and only if it is equipped with a length functor. In other words, the left Rees
categories are precisely the left cancellative equidivisible categories equipped with
length functors.

The following result is worth noting here.

Lemma 3.11. Let C be a left Rees category. Then each local monoid of C is a left
Rees monoid.

Proof. Let S = eCe be a local monoid. It is immediate that it is a left cancellative
monoid. Let aS∩bS 6= ∅ where a, b ∈ S. Then clearly aC∩bC 6= ∅. Without loss of
generality, it follows that aC ⊆ bC. Thus a = bc for some c ∈ C. Now eae = a and
b = ebe so that a = b(ece) and c = ece. We have therefore proved that aS ⊆ bS.
Thus S is right rigid. We denote by [aS, bS] the obvious set of principal right ideals
in S. The set [aS, eS] is linearly ordered. We shall prove that it is finite. Let
aS ⊆ b1S ⊂ b2S ⊆ eS where b1, b2 ∈ S. We shall prove that b1C 6= b2C. Suppose
on the contrary that b1C = b2C. Then b1 = b2g for some invertible element g. then
b1 = b2(ege) and ege = g. Thus g is an invertible element in S and so b1S = b2S,
a contradiction. Since, by assumption, the set [aC, bC] is finite it follows that the
set [aS, bS] is finite. �

Remark 3.12. Let C be a left Rees category. It is important to observe that
although S = eCe is a left Rees monoid, its length function need not be the re-
striction of the one in C. The length of the element a ∈ S, viewed as an element
of the monoid S, is defined to be one less than the number of elements of [aS, eS].
The length of the element a ∈ S viewed as an element of C is defined to be one
less than the number of elements in [aC, eC]. But the latter set may contain more
elements than the former. Thus λS(a) ≤ λC(a). Consider the following example.
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Let C be the free category defined by the following directed graph

e

a
!!
f

b

__

The local monoid at e is just S = (ab)∗, the free monoid on one generator ab. Here
λS(ab) = 1 but λC(ab) = 2 since both a and b are atoms in C.

4. Constructing equidivisible categories

The goal of this section is to show that each equidivisible category with a length
functor is isomorphic to a tensor category over what we call a bimodule: that is,
sets on which a given groupoid acts on the left and the right in such a way that the
two actions associate.

Let G be a groupoid and let X be a set equipped with two functions

G0
s←− X t−→ Go.

We suppose that there is a left groupoid action G×X → X and a right groupoid
action X × G → X such that the two actions associate meaning (gx)h = g(xh)
when defined. We write ∃gx and ∃xg if the actions are defined. Observe that ∃gx
iff r(g) = s(x) and ∃xg iff t(x) = d(g). We call the structure (G,X,G) a bimodule
or a (G,G)-bimodule. If whenever ∃xg and xg = x we have that g is an identity,
then we say the action is right free. A bimodule which is right free is called a
covering bimodule. We define left free dually. A bimodule which is both left and
right free is said to be bifree. We define homomorphisms and isomorphisms between
(G,G)-bimodules in the usual way.

Our first result shows that bimodules arise naturally from our categories. The
proof is straightforward; in particular, the fact that the actions are well-defined
follows from Lemma 2.1.

Lemma 4.1. Let C be an equidivisible category with length functor λ. Denote by
X the set of all atoms of C equipped with the maps d, r : X → C0. Denote by G
the groupoid of invertible elements of C. Define a bimodule (G,X,G) where the left
and right actions are defined via multiplication in C when defined. We obtain a
covering bimodule if C is left cancellative and a bifree bimodule if C is cancellative

We call (G,X,G) constructed as in the above lemma, the bimodule associated
with C or the bimodule of atoms of C.

Our goal now is to show that from each bimodule we may construct a suitable
category. Our tool for this will be tensor products and the construction of a suitable
tensor algebra: see Chapter 6 of [37], for example. We recall the key definitions
and results we need first.

Let G be a groupoid that acts on the set X on the right and the set Y on the
left. We consider the set X ∗Y consisting of those pairs (x, y) where t(x) = s(x). A
function α : X ∗Y → Z to a set Z is called a bi-map or a 2-map if α(xg, y) = (x, gy)
for all (xg, y) ∈ X ∗ Y where g ∈ G. We may construct a universal such bimap
λ : X ∗ Y → X ⊗ Y in the usual way [7]. However, there is a simplification in the
theory due to the fact that we are acting by means of a groupoid. The element
x⊗y in X⊗Y is the equivalence class of (x, y) ∈ X ∗Y under the relation ∼ where
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(x, y) ∼ (x′, y′) if and only if (x′, y′) = (xg−1, gy) for some g ∈ G. Observe that we
may define s(x⊗ y) = s(x) and t(x⊗ y) = t(y) unambiguously.

Suppose now that X is a (G,G)-bimodule. We may therefore define the tensor
product X ⊗X as a set. This set is equipped with maps s, t : X ⊗X → Go. We
define g(x ⊗ y) = gx ⊗ y and (x ⊗ y)g = x ⊗ yg when this makes sense. Observe
that x ⊗ y = x′ ⊗ y′ implies that gx ⊗ y = gx′ ⊗ y′, and dually. It follows that
X ⊗ X is a also a bimodule. Put X⊗2 = X ⊗ X. More generally, we may define
X⊗n for all n ≥ 1 using n-maps, and we define X⊗0 = G where G acts on itself
by multiplication on the left and right. The proof of the following lemma is almost
immediate from the definition and the fact that we are acting by a groupoid.

Lemma 4.2. Let n ≥ 2. Then

x1 ⊗ . . .⊗ xn = y1 ⊗ . . .⊗ yn
if and only if there are elements g1, . . . , gn−1 ∈ G such that y1 = x1g1, y2 =
g−1

1 x2g2, y3 = g−1
2 x3g3, . . . yn = g−1

n−1xn.

Define

T(X) =

∞⋃
n=0

X⊗n.

We shall call this the tensor category associated with the bimodule (G,X,G). Ob-
serve that we may regard X as a subset of T(X). The justification for this termi-
nology will follow from (1) below.

Theorem 4.3.

(1) T(X) is an equidivisible category equipped with a length functor whose as-
sociated bimodule is (G,X,G).

(2) The category T(X) is left cancellative if and only if (G,X,G) is right free,
and dually.

(3) Let C be a category whose groupoid of invertible elements is G. Regard C as
a (G,G)-bimodule under left and right multiplication. Let θ : X → C be any
bimodule morphism to C. Then there is a unique functor Θ: T(X) → C
extending θ.

(4) Every equidivisible category equipped with a length functor is isomorphic to
the tensor category of its associated bimodule.

Proof. (1). The identities of the category are the same as the identities of G.
The element x1 ⊗ . . . ⊗ xn has domain d(x1) and codomain r(xn). Multiplication
is tensoring of sequences that begin and end in the right places and left and right
actions by elements of G. We define λ(g) = 0 where g ∈ G and λ(x1⊗ . . .⊗xn) = n.
Formally, we are using the fact that there is a canonical isomorphism

X⊗p ⊗X⊗q ∼= X⊗(p+q).

The proof of equidivisibility is essentially the same as that of Proposition 5.6 of
[20]. The elements of length 0 are precisely the elements of G and so the invertible
elements; the elements of length 1 are precisely the elements of X.

(2). Suppose that the category is left cancellative and that xg = x = xd(g) in
the bimodule. But this can also be interpreted as a product in the category and
so g = d(g), as required. Conversely, suppose that the bimodule is right free. Let
x ⊗ y = x ⊗ z. From Lemma 4.2 and the fact that lengths match, we have that
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(x,y) = (xg, g−1z) for some g ∈ G. But using the fact that the action is right free,
we get that g is an identity and so y = z, as required.

(3). Define Θ(g) = g when g ∈ G and Θ(x1 ⊗ x2 ⊗ . . .⊗ xn) = θ(x1)⊗ θ(x2)⊗
. . . ⊗ θ(xn). This is well-defined by Lemma 4.2. It is routine to check that this
defines a functor.

(4). This now follows from (3) above, part (3) of Lemma 3.2, and part (2) of
Lemma 3.3. �

Remark 4.4. It follows by the above theorem that left Rees categories are de-
scribed by covering bimodules.

5. Left Rees categories

We shall describe the structure of arbitrary left Rees categories in terms of
free categories using Zappa-Szép products generalized to categories; see [3]. This
will show that they can be regarded as the categories associated with self-similar
groupoid actions. The material in this section can be regarded as a special case of
[21]. However, we have included it for the sake of completeness.

Let G be a groupoid with set of identities G0 and let C be a category with set
of identities Co. We shall suppose that there is a bijection between G0 and Co and,
to simplify notation, we shall identify these two sets. Denote by G ∗ C the set of
pairs (g, x) such that r(g) = d(x). We shall picture such pairs as follows:

g

��
x

//

We suppose that there is a function

G ∗ C → C denoted by (g, x) 7→ g · x,
which gives a left action of G on C and a function

G ∗ C → G denoted by (g, x) 7→ g|x,
which gives a right action of C on G such that these two functions satisfy the
following conditions:

(C1): d(g · x) = d(g).
(C2): r(g · x) = d(g|x).
(C3): r(x) = r(g|x).

This information is summarized by the following diagram

g

��

g·x //

g|x

��
x

//

We also require that the following axioms be satisfied:

(SS1): d(x) ·x = x. Observe that this is the action, not the category product.
(SS2): If gh is defined then (gh) · x = g · (h · x).
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(SS3): d(g) = g · r(g).
(SS4): d(x)|x = r(x).
(SS5): g|r(g) = g.
(SS6): If xy is defined and r(g) = d(x) then g|xy = (g|x)|y.
(SS7): If gh is defined and r(h) = d(x) then (gh)|x = g|h·xh|x.
(SS8): If xy is defined and r(g) = d(x) then g · (xy) = (g · x)(g|x · y).

If there are maps (g, x) 7→ g · x and (g, x) 7→ g|x satisfying (C1)–(C3) and (SS1)–
(SS8) then we say that there is a self-similar action of G on C. Put

C ./ G = {(x, g) ∈ C ×G : r(x) = d(g)}.
We represent (x, g) by the diagram

x //

g

��

Given elements (x, g) and (y, h) satisfying r(g) = d(y) we then have the following
diagram

x //

g

��

g·y //

g|y

��y //

h

��

Completing the square, as shown, enables us to define a partial binary operation
on C ./ G by

(x, g)(y, h) = (x(g · y), g|yh).

Lemma 5.1. Let G be a groupoid having a self-similar action on the category C.

(1) If y is an invertible element of C then so too is g · y.
(2) If g ∈ G and x ∈ X is an atom then g · x is an atom.
(3) If C is a left Rees category with length function λ then λ(g · x) = λ(x).

Proof. (1). We prove first that if y is an invertible element of C then so too is g · y.

Suppose that e
y→ f . We have that g · e = d(g), by (SS3), and e = yy−1. Thus

d(g) = (g · y)(g|y · y−1). It follows that g · y is invertible with inverse g|y · y−1.
(2). Let g · x = uv, where u, v ∈ C. By axioms (SS1), (SS2) and (SS8), we have

that
x = (g−1 · u)(g−1|u · v).

By assumption, x is an atom and so at least one of the elements in the product is
invertible. Suppose that g−1·u is invertible. Then by our result above g·(g−1·u) = u
is invertible. Suppose now that g−1|u · v is invertible then we may deduce that v is
invertible. We have therefore proved that g · x is an atom.

(3). Write x = x1 . . . xn a product of atoms where n = λ(x). Now use (SS8). �
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Proposition 5.2. Let G be a groupoid having a self-similar action on the category
C.

(1) C ./ G is a category.
(2) C ./ G contains copies C ′ and G′ of C and G respectively such that each

element of C ./ G can be written as a product of a unique element from C ′

followed by a unique element from G′.
(3) If C is left cancellative then so too is C ./ G.
(4) If C is left cancellative then the set of invertible elements of C ./ G consists

of all those elements (x, g) where x is invertible in C
(5) If C is left cancellative then the set of atoms in C ./ G consists of all those

elements (x, g) where x is an atom in C.
(6) If C is left cancellative and right rigid then so too is C ./ G.
(7) If C is a left Rees category then so too is C ./ G.

Proof. (1) Define d(x, g) = (d(x),d(x)) and r(x, g) = (r(g), r(g)). The condition
for the existence of (x, g)(y, h) is that r(x, g) = d(y, h). Axioms (C1),(C2) and (C3)
then guarantee the existence of (x(g ·y), g|yh). We therefore have a partially defined
multiplication. We next locate the identities. Suppose that (u, a) is an element
such that if (u, a)(x, g) is defined then (u, a)(x, g) = (x, g). Now (u, a)(r(a), r(a))
is defined. We deduce that r(a) = u(a · r(a)) and r(a) = a|r(a)r(a). By (SS5), we
have that a = r(a) and by (SS3) that a ·r(a) = d(a). Thus (u, a) = (r(a), r(a)). By
(SS1) and (SS4), we deduce that the identities are the elements of the form (e, e)
where e ∈ Co = Go. Observe that d[(x, g)(y, h)] = d(x, g) and r[(x, g)(y, h)]r(y, h).
It remains only to prove associativity. Suppose first that

[(x, g)(y, h)](z, k)

exists. The product (x, g)(y, h) exists and so we have the following diagram

x //

g

��

g·y //

g|y

��y //

h

��
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similarly [(x, g)(y, h)](z, k) exists and so we have the following diagram

x(g·y) //

g|yh

��

(g|yh)·z //

(g|yh)|z

��z //

k

��

resulting in the product

(x(g · y)[(g|yh) · z], (g|yh)|zk).

By assumption, x(g · y)[(g|yh) · z] exists and so (g · y)[(g|yh) · z] exists. We now use
(SS8) and (SS4) and (SS7), to get that y(h · z) exists and we use (SS7) and (SS6)
to show that

(g|yh)|zk = g|y(h·z)h|zk.
By (SS2),

x(g · y)[(g|yh) · z] = (x(g · y)((g|y · (h · z)).
It now follows that

(y, h)(z, k) = (y(h · z), h|zk)

exists. It also follows that (x, g)[(y, h)(z, k)] exists and is equal to

[(x, g)(y, h)](z, k).

Next suppose that
(x, g)[(y, h)(z, k)]

exists. This multiplies out to give (x[g · (y(h ·z))], g|y(h·z)h|zk). By (SS6) and (SS7)
we get that

g|y(h·z)h|zk = (g|yh)|zk,
and by (SS8) and (SS2) we get that x[g · (y(h · z))] = x(g · y)[(g|yh) · z]. This
completes the proof that C ./ G is a category.

(2) Define ιC : C → C ./ G by ιC(x) = (x, r(x)). This is well-defined. Suppose
that xy exists. Then in particular r(x) = d(y). It is easy to check using (SS4) and
(SS1) that ιC(x)ιC(y) = ιC(xy). In fact, ιC(x)ιC(y) exists iff xy exists. Thus the
categories C and C ′ are isomorphic.

Now define ιG : G→ C ./ G by ιG(g) = (r(g), g). Then once again the categories
G and G′ are isomorphic.

Finally, pick an arbitrary non-zero element (x, g). Then r(x) = d(g). We may
write (x, g) = (x, r(x))(d(g), g) using the fact that r(x) · d(g) = d(g) by (SS1) and
r(x)|d(g) = d(g) by (SS4).

(3) Suppose that C is left cancellative. We prove that C ./ G is left cancellative.
Suppose that (x, g)(y, h) = (x, g)(z, k). Then x(g · y) = x(g · z) and g|yh = g|zk.
By left cancellation in C it follows that g · y = g · z and by (SS1) we deduce that
y = z. Hence h = k. We have therefore proved that (y, h) = (z, k), as required.

(4) We know by (3), that the resulting category is left cancellative. Suppose
that (x, g) is invertible. Then there is an element (y, h) such that (d(x),d(x)) =
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(x, g)(y, h). In particular, d(x) = x(g · y) and so x is invertible. Conversely, if x is
invertible, it can be verified that

(x, g)−1 = (g−1 · x−1, (g|g−1·x−1))−1.

(5). Suppose that x is an atom. Let (x, g) = (u, h)(v, k). Then x = u(h · v) and
g = h|vk. If u is invertible then (u, h) is invertible, whereas if h · v is invertible
then v is invertible and so (v, k) is invertible. It follows that (x, g) is an atom.
To prove the converse, suppose that (x, g) is an atom. It is immediate that x is
not invertible. Suppose that x is not an atom. Then we may write x = uv where
neither u nor v is invertible. But then (x, r(x)) = (u, r(u))(v, r(x)) and this leads
to a non-trivial factorization of (x, g), which is a contradiction.

(6) Suppose now that C is left cancellative and right rigid. By (3), we know that
C ./ G is left cancellative so it only remains to be proved that C ./ G is right rigid.
Suppose that

(x, g)(y, h) = (u, k)(v, l)

From the definition of the product it follows that x(g ·y) = u(k ·v) and g|yh = k|vl.
From the first equation see that xC ∩ uC 6= ∅. Without loss of generality, suppose
that x = uw. Then by left cancellation w(g · y) = k · v. Observe that k−1 · (k · v) is
defined and so k−1 · (w(g ·y)) is defined by (SS2). Thus by (SS8), k−1 ·w is defined.
It is now easy to check that

(x, g) = (u, k)(k−1 · w, (k|k−1·w)−1g).

(7) Let C be a left Rees category. It is enough to prove that C ./ G is equipped
with a length function. Let the length function on C be denoted by λ. Let (x, g) ∈
C ./ G. Define µ(x, g) = λ(x). By the above, µ(x, g) = 0 if and only if (x, g) is
invertible, and µ(x, g) = 1 if and only if x is an atom. The fact that µ is a functor
follows from the fact that λ(g · y) = λ(y). �

We call C ./ G the Zappa-Szép product of the category C by the groupoid G.
Let C be a left Rees category. A transversal of the generators of the submaximal

principal right ideals is called a basis for the category. From Section 3, a basis is
therefore a subset of the set of atoms of C.

Theorem 5.3. A category is a left Rees category if and only if it is isomorphic to
the Zappa-Szép product of a free category by a groupoid.

Proof. We shall sketch the proof. Let C be the left Rees category. Choose a basis
X for C. Every element of C can be written uniquely as a product of elements of
X followed by an invertible element. The subcategory X∗ generated by X is free.
Thus C = X∗G. The Zappa-Szép product representation then readily follows. �

The following theorem describes the precise circumstances under which Zappa-
Szép products arise.

Theorem 5.4. Let A be a category with subcategories B and C. We suppose that
Ao = Bo = Co and that C = AB, uniquely. Then C is isomorphic to the Zappa-
Szép product A ./ B.

Proof. We sketch out the proof. Suppose that ba is defined where b ∈ B and a ∈ A.
Then ba = a′b′ for uniquely determined elements a′ ∈ A and b′ ∈ B. We define

ba = (b · a)b|a.
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It is immediate that axioms (C1), (C2) and (C3) hold. The equality a = d(a)a
yields the axioms (SS1) and (SS4); the equality b = br(b) yields axioms (SS3) and
(SS5); the equality b1(b2a) = (b1b2)a yields axioms (SS2) and (SS7); the equality
b(a1a2) = (ba1)a2 yields axioms (SS6) and (SS8). We may therefore construct the
category A ./ B. We define a map C → A ./ B by c 7→ (a, b) if c = ab. It is now
straightforward to check that this determines an isomorphism of categories. �

The following result shows that the theory in this paper can be regarded as a
generalization of the theory of free categories.

Theorem 5.5. The free categories are precisely the left Rees categories with a
trivial groupoid of invertible elements and precisely the equidivisible categories with
length functors having trivial groupoids of invertible elements.

Proof. We need only prove that an equidivisible category with length functor having
a trivial groupoid of invertible elements is left cancellative. But this essentially
follows from Lemma 3.3. �

Remark 5.6. Cancellative equidivisible monoids with trivial groups of units do
not have to be free; see, for example, Example 1.8 of Chapter 5 of [15]. This
example also suggests that studying equidivisible categories with more general kinds
of length functors may be interesting.

6. Diagrams of partial homomorphisms

From now on, the groupoids involved in bimodules will always be totally discon-
nected.

Let D be a directed graph. An edge x from the vertex e to the vertex f will

be written e
x→ f . With each vertex e of D we associate a group Ge, called the

vertex group, and with each edge e
x→ f , we associate a surjective homomorphism

φx : (Ge)
+
x → (Gf )−x where (Ge)

+
x ≤ Ge and (Gf )−x ≤ Gf . In other words, with

each edge e
x→ f , we associate a partial homomorphism φx from Ge to Gf . We call

this structure a diagram of partial homomorphisms. If all the φx are isomorphisms
then we shall speak of a diagram of partial isomorphisms. For brevity, we shall say
that D is the diagram of partial homomorphisms though of course it is defined only
by the totality of data.

Let D1 and D2 be two diagrams of partial homomorphisms having the same
vertex sets, and edge sets that differ only in labelling and the same vertex groups.
We say these two diagrams of partial homomorphisms are conjugate, if for each

edge e
x→ f in D1 and corresponding edge e

y→ f in D2 there are inner automor-
phisms αx,y : Ge → Ge and βx,y : Gf → Gf such that αx,y((Ge)

+
x ) = (Ge)

−
y and

βx,y((Gf )+
x ) = (Gf )−y and βx,yφx = φyαx,y.

Remark 6.1. The above definition could be generalized a little by assuming only
that the underlying graphs were isomorphic.

The goal of this section is to prove that covering bimodules and diagrams of
partial homomorphisms are different ways of describing the same object.

Let (G,X,G) be a covering bimodule where G =
⋃
e∈V Ge. Define a relation C

on X by xC y if and only if y = gxh for some g, h ∈ G.2 Observe that because

2This relation was used by Paul Cohn whence the choice of notation.
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G is a disjoint union of groups if xC y then x and y are parallel. Clearly, C is an
equivalence relation.

Lemma 6.2. Let (G,X,G) be a covering bimodule where G =
⋃
e∈V Ge.

(1) With each transversal of the C -classes, we may associate a diagram of
partial homomorphisms.

(2) Different transversals yield conjugate diagrams of partial homomorphisms.
(3) The bimodule is bifree if and only if the associated diagram is a diagram of

partial isomorphisms.

Proof. (1). Choose a transversal E of the C -classes. Define the directed graph D
to have as vertices the set of identities of G and edges the elements of E. The group

associated with the vertex e is the group Ge. Consider now the edge e
x→ f . We

define

(Ge)
+
x = {g ∈ Ge : gx = xh for some h ∈ Gf}

and

(Gf )−x = {h ∈ Gf : gx = xh for some g ∈ Ge}
and φx(g) = h if g ∈ (Ge)

+
x and gx = xh where h ∈ Gf . In a covering bimodule

the right action is free and so φx is a function and, in fact, a homomorphism. We
have therefore constructed a diagram of partial homomorphisms.

(2). Let E′ be another transversal. We denote the elements of E by xi where
i ∈ I and the elements of E′ by yi where i ∈ I and assume that xi C yi. Choose

gi, hi ∈ G such that xi = giyihi. Let e
xi→ f . Let g ∈ (Ge)

+
xi

. Then

(g−1
i ggi)yi = yi(hiφxi

(g)h−1
i ).

Thus

hiφxi(g)h−1
i = φyi(g

−1
i ggi).

Define inner automorphisms βi(−) = hi−h−1
i and αi(−) = g−1

i −gi where αi : Ge →
Ge and βi : Gf → Gf . We therefore have βiφxi

= φyiαi and αi((Ge)
+
xi

) = (Ge)
+
yi

and βi((Gf )+
xi

= (Gf )+
yi . Thus the two diagrams are conjugate

(3). Suppose that the bimodule is bifree. By definition gx = xφx(g). Suppose
that g1x = g2x. Then x = (g−1

1 g2)x and so by left freeness we have that g−1
1 g2 is

an identity and so g1 = g2. Thus φx is injective and so an isomorphism. The proof
of the converse is straightforward. �

We now show how to go in the opposite direction. Let D be a diagram of partial
homomorphisms. Let G =

⋃
e∈V Ge be the disjoint union of the vertex groups

regarded as a groupoid. Denote the set of edges by E. Let G ∗E ∗G be the set of

triples (g, x, h) where e
x→ f and g ∈ Ge and h ∈ Gf . We define a relation ≡ on

the set G ∗ E ∗ G as follows: (g1, x1, h1) ≡ (g2, x2, h2) if and only if x1 = x2 = x,
say, g−1

1 g2 ∈ (Ge)
+
x and φx(g−1

1 g2) = h1h
−1
2 .

Lemma 6.3. With the above definition, ≡ is an equivalence relation. Denote the
≡-class containing (g, x, h) by [g, x, h]. Then we get a covering bimodule B(D)
when we define g[g1, x, h1] = [gg1, x, h1] when ∃gg1 and [g1, x, h1]h = [g1, x, h1h]
when ∃h1h. The diagram of partial homomorphisms associated with this covering
module is conjugate to D.
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Proof. We shall just prove the last part since the other proofs are routine. We

choose the transversal [e, x, f ] where e
x→ f is an edge of the diagram D. It is now

easy to check that we get back exactly the digram of partial homomorphisms we
started with. �

Lemma 6.4. Let (G,X,G) be a covering bimodule, let E be a transversal of the
C -classes and let D be the associated diagram of partial homomomorphisms. Then
the bimodule X is isomorphic to the bimodule B(D).

Proof. Let x ∈ X. Then xC y for a unique y ∈ E. By definition, x = g1yh1 for
some g1, h1 ∈ G. Suppose also that x = g2yh2. Then g−1

2 g1y = yh2h
−1
1 . It follows

that (g1, y, h1) ≡ (g2, y, h2). We may therefore define a function θ : X → B(D) by
θ(x) = [g1, x, h1]. It remains to show that this is a bijection and an isomorphism
of bimodules both of which are now straightforward. �

We summarize the results of this section in the following theorem.

Theorem 6.5. With each diagram of partial homomorphisms D we may associate
a covering bimodule B(D) and every covering bimodule is isomorphic to one of this
form. Diagrams of partial isomorphisms correspond to bifree covering bimodules.

7. Presentations of skeletal left Rees categories

In this section, we shall prove that every skeletal left Rees category has a pre-
sentation of a particular form. This presentation is then the final link in showing
that the theory of graphs of groups is a special case of the theory of skeletal left
Rees categories.

Let C be a skeletal left Rees category. Then for each atom x ∈ eCf , we have as
before the following definitions:

(Ge)
+
x = {g ∈ Ge : gx = xh for some h ∈ Gf},

and

(Gf )−x = {h ∈ Gf : gx = xh for some g ∈ Ge},
and

φx(g) = h if g ∈ (Ge)
+
x and h ∈ (Gf )−x and gx = xh.

We have that (Ge)
+
x ≤ Ge and (Gf )−x ≤ Gf and φx is a surjective homomorphism.

Lemma 7.1. Let C be a skeletal left Rees category. Then C is right cancellative
if and only if all the homomorphisms φx defined above are also injective and so in
fact isomorphisms.

Proof. If C is right cancellative, it is immediate that all the homomorphisms φx
are injective. We prove the converse using Section 6. Choose a basis for C so that
C = X∗G where X∗ is a free category and G the groupoid of isomorphisms. Let
a, b, c ∈ C such that ab = cb. We shall prove that a = c. We have that a = xg,
b = yh and c = zk where x, y, z ∈ X∗ and g, h, k ∈ G. Thus

x(g · y)g|yh = z(k · y)k|yh.
From length considerations, x = z. We also have that g|y = k|y. It remains only
to prove that g = k and we are done. We know that gy = ky. Thus (g−1k)y = y.
Therefore, to prove our result it is enough to prove that gy = y implies that g is
an identity. If y is an atom then the result is immediate. We assume the result
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holds for all elements y whose length is at most n and prove it for those elements
of length n + 1. Let y have length n + 1. Let y = uv where v has length 1. Then
gy = guv = (g · u)(g|u · v)g|uv = y = uv. Thus g|y = g|uv = r(g). Also u = g · u
and v = g|u · v. We have that g|uv = vg|uv. It follows that g|u is an identity. We
then have gu = u and so g is an identity, as required. �

The proof of the following is immediate from the definitions and Lemma 3.1.

Lemma 7.2. Let C be a skeletal left Rees category. If x and y are atoms then
xJ y if and only if xC y.

The following two results will enable us to refine the way that we choose a basis
for a left Rees category. We refer the reader to Section 5 for the structure theory
of left Rees categories which we use here.

Lemma 7.3. Let C be a left Rees category and let X be a transversal of the gen-
erators of the submaximal principal right ideals so that C = X∗G. Let x, y ∈ X.
Then xJ y if and only if y = g · x.

Proof. Suppose that y = g·x. Then CyC = Cg·xC = C(g·x)g|xC = CgxC = CxC.
Thus xJ y. Conversely, suppose that xJ y. Then y = gxh for some g, h ∈ G.
Thus y = (g ·x)g|xh. But by the uniqueness of the factorization, we must have that
y = g · x. �

Lemma 7.4. Let C be a skeletal left Rees category and let x be an atom where

e
x→ f . Choose a coset decomposition Ge =

⋃
i∈I gi(Ge)

+
x . The set {gix : i ∈ I}

consists of pairwise R-inequivalent elements and every atom J -related to x is
R-related to one of these elements.

Proof. Suppose that gixR gjx. Then gix = gjxg for some g ∈ Gf . Then x =

(g−1
i gj)xg. But g−1

i gj ∈ (Ge)
+
x . By the definition of coset representatives, we have

that gi = gj , as required. Let yJ x be an arbitrary atom. Then y = gxh for
some g, h ∈ G. Write g = gia where a ∈ (Ge)

+
x . Then y = giaxh = gixh. Hence

yR gih. �

We now define a special type of basis for a left Rees category C. For each hom-
set eCf , choose a transversal Y of the J -classes of the atoms. For each x ∈ Y ,
choose a coset decomposition Ge =

⋃
i∈I gi(Ge)

+
x . Denote by T+

x the transversal
{gi : i ∈ I}. We shall assume that the appropriate identities are always elements
of these transversals. For each such x, we have a set of atoms {kx : k ∈ T+

x } and
the totality of those atoms as x varies over Y then provides a basis for C. We
call a basis constructed in this way a co-ordinatization. Observe that it contains
two components: a transversal of the J -classes of the set of atoms of C, we call
this an atomic transversal, and for each atom x in that transversal a set of coset
representatives T+

x .

Theorem 7.5 (Skeletal left Rees categories and their diagrams).

(1) Let D be a diagram of partial homomorphisms. Then we may construct a
skeletal left Rees category C equipped with an atomic transversal such that
the diagram of partial homomorphisms constructed from the bimodule of
atoms of C relative to that transversal is equal to D. If D is a diagram of
partial isomorphisms then C is a Rees category.
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(2) Let C be a skeletal left Rees category equipped with an atomic transversal.
Then we may construct a diagram of partial homomorphisms D using that
transversal such that the tensor category of the covering bimodule associated
with D is isomorphic to C. If C is a Rees category then D is a diagram of
partial isomorphisms.

Proof. (1). Let D be a diagram of partial homomorphisms. Then by Lemma 6.3,
we may construct a covering bimodule B(D). This bimodule has a transversal
with respect to which the associated diagram of partial homomorphisms is D. By
Theorem 4.3, we may construct a left cancellative, skeletal equidivisible category
equipped with a length functor T(B(D)). By Proposition 3.10 this is a skeletal left
Rees category whose associated bimodule is B(D). It follows by our results proved
earlier that if we start with a diagram of partial isomorphisms we obtain a Rees
category.

(2). Let C be a skeletal left Rees category equipped with an atomic transversal.
Then by Proposition 3.10 and Lemma 4.1, we may construct a covering bimodule
B from the set of atoms acted on by the groupoid of invertible elements. From
such a bimodule and an atomic transversal, we may construct a diagram of homo-
morphisms by Lemma 6.2 D. But then by part (3) of Theorem 4.3, the category
C is isomorphic to the tensor category T(B(D)) where B is essentially B(D). It
follows by our results proved earlier that if we start with a Rees category we obtain
a diagram of partial isomorphisms. �

Remark 7.6. We have now seen that diagrams of partial homomorphisms and
skeletal left Rees categories are two ways of viewing the same structure. The
path from diagram to category taking in both the construction of bimodules from
diagrams and then (tensor) categories from bimodules. We shall now describe a
direct construction of left Rees categories from diagrams of partial homomorphisms.

Let D be a diagram of partial homomorphisms. We shall define a category 〈D〉
by means of a presentation constructed from D. We first construct a new directed
graph D′ from D. This contains the directed graph D but at each vertex we adjoin
additional loops labelled by the elements of Ge. We construct the free category
(D′)∗. We denote elements of this category thus x1 · . . . · xm where the xi are
edges that match. We now factor out by two kinds of relations: those of the form
g ·h = gh where g, h ∈ Ge; and those of the form g · x = x ·φx(g) where g ∈ (Ge)

+
x .

The resulting category is denoted by 〈D〉.

Theorem 7.7 (Presentation theorem). Let D be a diagram of partial homomor-
phisms. Then the category 〈D〉 is a skeletal left Rees category isomorphic to the
category obtained from D by constructing the tensor category of the covering bimod-
ule associated with D. The category 〈D〉 is a skeletal Rees category if and only if
D is a diagram of partial isomorphisms.

Proof. Denote by C the skeletal left Rees category constructed from the diagram
of partial homomorphisms D according to part (1) of Theorem 7.5. This category
satisfies all the defining relations of the category 〈D〉 and so C is a functorial image
of 〈D〉.

It remains therefore only to show that this functor is injective. We work first in
the category C. In the category C we choose an atomic transversal whose elements
can be identified with the edges of the diagram D. For each such atom x choose a
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coset decomposition Ge =
⋃
i∈I gi(Ge)

+
x . This leads to a co-ordinatization for C as

described earlier in this section. We now appeal to the structure theory of Section 5,
and deduce that every element of x can be written as a unique product of atoms in
this co-ordinatization followed by an invertible element. Call this a normal form.
We now work in the category 〈D〉. Using the same coset decomposition as above,
we may show that every element in 〈D〉 is equivalent in the presentation, using our
two types of relations, to an element in normal forms. However, different normal
forms correspond to different elements of C and so these normal forms are unique
and we have established our isomorphism. �

We may paraphrase the above theorem as saying that every skeletal left Rees
category may be presented by a diagram of partial homomorphisms.

The following theorem was originally suggested by [38, 39] and [6] but the proof
is a straightforward generalization of Higgins’s main result [8] and at the same time
this shows how our approach is related to his.

Theorem 7.8. Every skeletal Rees category may be embedded in its universal
groupoid.

Proof. Let C be a skeletal Rees category. By Theorem 7.7, we may assume that
C = 〈D〉 where D is a diagram of partial isomorphisms. Denote by G the universal
groupoid of C. Our goal is to obtain a normal form for the elements of G. To that

end, let e
x→ f . Choose a coset decomposition Ge =

⋃
i∈I gi(Ge)

+
x to obtain the

transversal T+
x as before. However, now that we want to work in a groupoid, we

shall also need a coset decomposition Gf =
⋃
j∈J hj(Gf )−x to obtain the transversal

T−x . In both transversals, we assume that the identity elements of their respective
groups have been choosen. We may now follow the proof of the theorem in Section 3
of [8] by defining suitable normal forms since finiteness plays no role in Higgins’s
proof. This shows that C is in fact embedded in G. �

Example 7.9. Free monoids on n generators are Rees monoids. The group con-
structed according to the above theorem is the free group on n generators.

Remark 7.10. Alternative ways of proving the above theorem are suggested by
the results of Cohn [6] and von Karger [38, 39] though we do not pursue these here.

Remark 7.11. The connection between our work and that of Higgins will be
clarified in the next section, but we anticipate what we do there by outlining the
connection phrased in our language. Higgins uses the relations g · x = x · φx(g)
in two directions to construct the fundamental groupoid of a diagram of partial
isomorphisms. We, on the other hand, use these relations in one direction only
to construct a Rees category. It is then evident that the Rees category sits inside
the fundamental groupoid. What is perhaps surprising is that these cancellative
categories can be abstractly characterized.

8. A categorical approach to Bass-Serre theory

We shall now explain the connection between the theory we have developed and
the theory of graphs of groups. Our references for this theory are [36] and [41]. We
start with an observation. A graph of groups equipped with a given orientation is
essentially the same thing as a diagram of partial isomorphisms where the directed
graph underlying it is finite and weakly connected in the sense that as a graph
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it is connected. Essentially, graphs of groups represent partial isomorphisms by
means of relations and so are unoriented. We shall call the diagrams of partial
isomorphisms that arise from graphs of groups equipped with an orientation Serre
diagrams of partial isomorphisms.

Let C be a category. A zig-zag joining the identity e to the identity f is deter-
mined by a sequence of identities e = e1, . . . , en = f such that for each consecutive
pair of identities ei and ei+1 we have that either eiCei+1 or ei+1Cei is non-empty.
We say that a category C is connected if any two identities e, f ∈ Co are joined by
a zig-zag.

A skeletal Rees category C is called a Serre category if it satisfies the following
conditions.

(S1): The number of identities in C is finite and nonzero.
(S2): In each hom-set, the number of J -classes of atoms is finite.
(S3): C is connected.

The following theorem is now immediate from the above definitions and what
we proved in the previous section.

Theorem 8.1 (Graphs of groups as categories).

(1) There is a correspondence between graphs of groups with a given orientation
and Serre diagrams of partial isomorphisms.

(2) There is a correspondence between Serre diagrams of partial isomorphisms
and Serre categories.

(3) The fundamental groupoid of a graph of groups with a given orientation is
isomorphic to the universal groupoid of the Serre category constructed from
the diagram of partial isomorphisms associated with the oriented graph of
groups.

(4) The universal groupoid of a Serre category is connected.

The following two examples are the basic building blocks of Bass-Serre theory.

Examples 8.2.

(1) HNN extensions. These are constructed from Rees monoids. If we make
the additional assumption that the monoid has the property that any two
atoms are J -related, then the universal groups are precisely HNN exten-
sions with one stable letter. This case was the subject of our paper [24]
and motivated the work of the current paper.

(2) Amalgamated free products. The building blocks of these are (G,H)-
bisets X where G and H are both groups.3 We say that such a biset is
irreducible if there exists x ∈ X such that GxH = X. There is a bijective
correspondence between conjugacy classes of partial isomorphisms from G
to H and isomorphism classes of irreducible, bifree (G,H)-bisets. Consider
now any irreducible, bifree biset (G,X,H). Choose and fix x ∈ X. Let
A = G+

x , B = H−x and θ = φx be the associated partial isomorphism. We
may regard (G,X,H) as a cancellative category with two identities in the
following way. We let the identity of G, 1G say, be one of the identities
and the identity of H, 1H say, the other. Thus we take the disjoint union
G∪X∪H. The products in G and H are the group products. The product

3Recall that a biset is a set on which groups act on the left and right and whose actions
associate.
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gx is the action and the product xh is the action. We denote by C the
above biset regarded as a category in this way. Then C is a Rees category
and is in fact a Serre category. In this case, the tensor product cosntruction
is essentially degenerate. The universal groupoid of C is connected and any
vertex group is isomorphic to G ∗θ H the amalgamated free product of G
and H via the identifying partial isomorphism θ.

We have not yet explained how the Bass-Serre tree can be constructed within
our theory. That can best be understood by translating our categorical approach
into an inverse semigroup theoretic one which we do in the next section.

9. An inverse semigroup approach to Bass-Serre theory

In this section, we shall describe how our categorical approach to Bass-Serre
theory can be transformed into an approach using inverse semigroups and ordered
groupoids.

This section was also motivated by the papers [4, 11, 17, 18, 19, 23].

9.1. Ordered groupoids. A groupoid G is said to be ordered if it is equipped
with a partial order ≤ that satisfies the following conditions:

(OG1): If g ≤ h then g−1 ≤ h−1.
(OG2): If g ≤ h and g′ ≤ h′ and ∃gg′ and ∃hh′ then gg′ ≤ hh′.
(OG3): If e ≤ gg−1 then there exists a unique element (e|g) such that (e|g) ≤ g

and (e|g)(e|g)−1 = e.
(OG4): If e ≤ g−1g then there exists a unique element (g|e) such that (g|e) ≤ g

and (g|e)−1(g|e) = e.

Let G be an ordered groupoid and let g, h ∈ G. Suppose that e = g−1g ∧ hh−1

exists in the poset (Go,≤). Define g • h = (g|e)(e|h). Then g • h is called the
pseudoproduct of g and h. This partially defined product is associative when this
makes sense.

If S is an inverse semigroup and s, t ∈ S, define the restricted product of s and t
to be st if s−1s = tt−1 and undefined otherwise. Every inverse semigroup can be
regarded as an ordered groupoid with respect to its restricted product and natural
partial order; if the inverse semigroup has a zero, we shall discard that zero in
forming the associated ordered groupoid. In this way, inverse semigroup theory
can be viewed as being part of the theory of ordered groupoids. For more on the
connections between inverse semigroup theory and ordered groupoid theory, see
[16].

9.2. The maximum enlargement theorem. The goal of this section is simply
to state this theorem. We refer the reader to Chapter 8 of [16] for the details.
We first make some definitions. Let G be an ordered subgroupoid of an ordered
groupoid H. We say that H is an enlargement of G if the following hold:

(E1): Go is an order ideal of Ho.
(E2): If x ∈ H and x−1x, xx−1 ∈ G then x ∈ G.
(E3): If e ∈ Ho then there exists x ∈ H such that xx−1 = e and x−1x ∈ G.

A functor θ : H → K between groupoids is said to be star injective if θ(h1) =
θ(h2) and h1h

−1
1 = h2h

−1
2 implies that h1 = h2. Such a functor is said to be a

covering functor if, in addition, whenever e ∈ H is an identity such that θ(e) = kk−1

there exists h ∈ H such that e = hh−1 and θ(h) = k.
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Theorem 9.1 (Ehresmann’s Maximum enlargement theorem). Let θ : H → K be
an ordered star injective functor. Then there is an ordered groupoid G, an ordered
covering functor Θ: G→ K, and an ordered embedding ι : H → G such that Θι = θ
and G is an enlargement of ι(H).

Although it is not immediately obvious from the statement of the theorem, there
is a sense in which this construction is universal. An ordered pair (ι′,Θ′) is called an
extension of θ to a covering if Θ′ : G→ K is an ordered covering functor, ι′ : H → G′

is an ordered embedding, and Θ′ι′ = θ. It is easy to describe a category in which
the objects are such extensions. This category has an initial object: namely, (ι,Θ).
It is therefore the ‘best’ way of extending θ to a covering.

Example 9.2. We give a simple example of such an enlargement. Let H be
an ordered groupoid whose underlying groupoid is totally disconnected and let
θ : H → K be an ordered star injective functor to the group K. We let G be the
enlargement as above. To ease notation, we assume that ι is the identity function.
We shall describe in more concrete terms the poset of identities Go. Observe first
that since θ is star injective, each local group Ge is embedded in K as a subgroup.
We denote its image by G′e. Put

X =
⋃
e∈Ho

{e} ×K/G′e.

Define a relation ≤ on this set by

(e, g1G
′
e) ≤ (f, g2G

′
f )⇔ e ≤ f and g−1

1 g2 ∈ G′e.
It is easy to check that this is a partial order on X.

Let e be an arbitrary identity in G. Since H is totally disconnected, there
is a unique identity e ∈ Ho and some element x ∈ G such that xx−1 = e and
x−1x = e. We map e to the pair (e,Θ(x)G′e). Suppose that y ∈ G such that
yy−1 = e and y−1y = e. Then x−1y ∈ Ge and so Θ(x−1y) ∈ G′e. It follows that
(e,Θ(x)G′e) = (e,Θ(y)G′e). We have therefore defined a function from Go to X.

Suppose that e ≤ f in Go. Let x ∈ G be such that xx−1 = f and x−1x = f ∈ Ho.
We may form the corestriction y = e|y ≤ x. Observe that yy−1 = e and y−1y =
e ≤ f . By the order ideal property, we have that e ∈ Ho. We therefore have that

f 7→ (f,Θ(x)G′f ) and e 7→ (e,Θ(y)G′f .

By construction e ≤ f . Now y ≤ x and so Θ(y)−1Θ(x) = Θ(y)−1Θ(y) ∈ G′e. Thus
our map is order-preserving and so injective.

Consider now the element (e, gG′e) of X. There is a unique element x ∈ G such
that x−1x = x and Θ(x) = g. Put e = xx−1. Then under our mapping define
above we have that e 7→ (e, gG′e). Thus our mapping is surjective.

Finally, suppose that (e, g1G
′
e) ≤ (f, g2G

′
f ). Then e ≤ f and g−1

1 g2 ∈ G′e. First,

there is a unique x ∈ G such that x−1x = f and Θ(x) = g2. Put f = xx−1. Put
y = x|e. Then y−1y = e and y ≤ x. Define e = yy−1. Clearly e ≤ f . The element
e is mapped to (e,Θ(y)Ge′) = (e,Θ(x)G′e) = (e, g1G

′
e), as required. It follows that

the mapping we have defined is an order isomorphism.
The construction of the poset X is part of Theorem II.12.18 of [2]. We have

shown that its construction is a special case of the maximum enlargement theorem.
In fact, the ordered groupoid G is a semidirect product of X under the obvious
group action by K. This action is again part of Theorem II.12.18.
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9.3. The inverse semigroup associated with a skeletal Rees category. The
theory on which this section is based is developed in detail in [13], so most of the
proofs will simply be sketched. The goal is to show how skeletal left Rees categories
can be converted first into ordered groupoids and then, via the pseudoproduct, into
inverse semigroups. We begin with the general construction we shall base our work
upon.

Lemma 9.3. With each left cancellative category C, we may associate an ordered
groupoid G(C).

Proof. This is a standard construction described in [19]. We shall therefore sketch
out the proof here. For definitions related to ordered groupoids see [16]. The
elements of our ordered groupoid are equivalence classes [a, b] where the class [a, b]
consists of all ordered pairs (a, b) where r(a) = r(b) where (a, b) ≡ (a′, b′) if and only
if (a, b) = (a′, b′)u where u ∈ G the groupoid of invertible elements of C. Define the
domain of [a, b] to be [a, a] and the range of [a, b] to be [b, b]. Suppose that [a, b][c, d]
is defined. Then b = cu for an isomorphism u. Define [a, b][c, d] = [a, du]. This
turns G(C) into a groupoid where [a, b]−1 = [b, a]. The identities are the elements of
the form [a, a] and so are in bijective correspondence with the non-empty principal
right ideals aC. The elements are therefore arrows

[a, a]
[a,b]−→ [b, b].

Define [a, b] ≤ [c, d] if and only if (a, b) = (c, d)p. This turns G(C) into a poset.
Observe that [c, c] ≤ [a, a], [b, b] if and only if cC ⊆ aC ∩ bC. It follows that
[a, a] ∧ [b, b] exists if and only if aC ∩ bC = cC for some c ∈ C in which case
[a, a] ∧ [b, b] = [c, c].

The groupoid G(C) equipped with the above order becomes an ordered groupoid
as follows. If [c, c] ≤ [b, b], where c = bp, define

[a, b]|[c, c] = [ap, c]

and if [c, c] ≤ [a, a], where c = bp, define

[c, c]|[a, b] = [c, bp].

The pseudoproduct • of [a, b] and [c, d] is defined if and only if bC ∩ cC 6= ∅ and
bC ∩ cC = wC for some w ∈ C. If w = bx = cy then [a, b] • [c, d] = [ax, dy]. �

In the light of the above characterization of the pseudoproduct, we make the
following definition. A Leech category is a left cancellative category C such that if
aC ∩ bC 6= ∅ then aC ∩ bC = cC for some c ∈ C. In this case, the ordered groupoid
G(C) has the property that if a pair of identities has a lower bound then it has
meet.

An inverse semigroup with zero is said to be E∗-unitary if the elements above
non-zero idempotents are themselves idempotents.

Lemma 9.4. With each Leech category, we may associate an inverse semigroup
with zero S(C).

(1) This inverse semigroup is E∗-unitary if and only if C is cancellative.
(2) This semigroup has the additional property that every non-zero idempotent

is beneath a unique maximal idempotent.
(3) If the Leech category is skeletal, then each D-class contains a unique max-

imal idempotent.
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Proof. The set S(C) is the set G(C) with a zero adjoined. The non-zero product is
the pseudoproduct.

The proof of (1) is straightforward.
(2). Consider the idempotents of the form [e, e] where e is an identity of C. If

[e, e] ≤ [a, a] then e = ap for some p. But C is left cancellative and so a is invertible
with inverse p. It follows that [e, e] = [a, a]. Thus the idempotents [e, e] where
e ∈ Co are maximal idempotents. Observe that [a, a] ≤ [d(a),d(a)]. Thus every
non-zero idempotent lies beneath a maximal idempotent; in fact, a unique one.

(3). It is easy to check that [a, a] D [r(a), r(a)]. Thus each D-class contains a
maximal idempotent. Observe that [e, e] D [f, f ] if and only if e and f are isomor-
phic. It follows that if C is skeletal then each D-class contains a unique maximal
idempotent. �

We say that an inverse semigroup with zero is a reduced Leech semigroup if it
satisfies the following conditions:

(RLS1): Each non-zero idempotent is beneath a unique maximal idempotent.
(RLS2): Each D-class contains a unique maximal idempotent.

A reduced Leech semigroup is called a reduced Perrot semigroup if it satisfies two
further conditions:

(PS1): If e and f are idempotents such that ef 6= 0 then either e ≤ f or
f ≤ e.

(PS2): If e is a non-zero idempotent then the set of idempotents f such that
e ≤ f is finite.

We have therefore proved the following.

Proposition 9.5. Let C be a skeletal Leech category. Then S(C) is a reduced Leech
semigroup. If, in addition, C is a left Rees category, then S(C) is a reduced Perrot
semigroup.

In [13], it is proved that there is a correspondence between skeletal left Rees
categories and reduced Perrot semigroups so that in passing between the language
of categories and the language of inverse semigroups there is no loss of information.

Remark 9.6. If we start with a left Rees monoid C then it is automatically skeletal.
The associated inverse semigroup S (C) has one non-zero D-class and so is 0-
bisimple. The maximal idempotent is just the identity element and so S(C) is a
0-bisimple inverse monoid. In other words, left Rees monoids are associated with
the 0-bisimple Perrot monoids.

Let S be an inverse semigroup with zero. We write S∗ = S \ {0}. Let G be a
groupoid. A function ψ : S∗ → G is called a prehomomorphism if st 6= 0 implies
that ψ(s)ψ(t) is defined and that ψ(st) = ψ(s)ψ(t). Such a prehomomorphism is
said to be idempotent pure if ψ(s) an identity implies that s is an idempotent. An
inverse semigroup is said to be strongly E∗-unitary if it admits an idempotent pure
prehomomorphism to a groupoid.

Remark 9.7. In the case of inverse semigroups not having a zero, it is usual to
refer to E-unitary rather than E∗-unitary semigroups.

Lemma 9.8. Let C be a skeletal Leech category and let S be its associated reduced
Leech semigroup. Let G be a groupoid.
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(1) Functors θ : C → G correspond to prehomomorphisms θ̄ : S(C)∗ → G.
(2) Those functors θ, satisfying the additional condition θ(a) = θ(b) and r(a) =

r(b) imply that a = b, correspond to idempotent pure prehomomorphisms θ̄.
(3) θ is an injective functor if and only if θ̄ is star injective and maximal

idempotent separating.

Proof. (1). Let θ : C → G be a functor to a groupoid. Define θ̄ : S(C)∗ → G
by θ̄[a, b] = θ(a)θ(b)−1. This is a well-defined function. It is easy to check that if
[a, b]•[c, d] 6= 0 then θ̄([a, b]•[c, d]) = θ̄([a, b])θ̄([c, d]). Thus θ̄ is a prehomomorphism
to the groupoid.

Let ψ : S∗ → G be a prehomomorphism. Define ψ′ : C(S)→ G by ψ′(e, a) = ψ(a).
Then it is easy to check that ψ′ is a functor.

(2). Let θ : C → G be such a functor. Suppose that θ̄[a, b] = θ(a)θ(b)−1 = e, an
identity. Then a = b. But r(a) = r(b) and so by assumption a = b and so [a, b] is
an idempotent.

Let ψ : S∗ → G be idempotent pure. Let (e, a) and (f, b) be such that a−1a =
b−1b and ψ′(e, a) = ψ′(f, b). Then ψ(a) = ψ(b). Now ab−1 6= 0 and so ψ(ab−1) =
ψ(a)ψ(a)−1. By assumption ab−1 is an idempotent. Similarly a−1b is an idempo-
tent. Thus a and b are compatible and L -related and so equal.

(3). Suppose that ψ : S∗ → G is idempotent pure and maximal idempotent
separating. Let ψ′(e, a) = ψ′(f, b). Then ψ(a) = ψ(b). Observe that aa−1 ≤ e and
so ψ(aa−1) = ψ(e). Similarly, ψ(bb−1) = ψ(f). It follows that ψ(e) = ψ(f) and so
since ψ separates maximal identities we have that e = f . By assumption a−1a and
b−1b are maximal idempotents. It follows once again that a−1a = b−1b. We now
use the fact that ψ is idempotent pure to deduce that a = b. We have therefore
shown that (e, a) = (f, b), as required. �

It is a consequence of this section, that if we start with a skeletal Rees cate-
gory C embedded in its universal groupoid G, then we may construct a strongly
E∗-unitary inverse semigroup S(C) equipped with an idempotent pure prehomo-
morphism γ : S(C)∗ → G which is maximal idempotent separating.

9.4. Bass-Serre theory and the maximum enlargement theorem. All the
Perrot semigroups in this section will be reduced.

Let C be a Serre category. We call the associated inverse semigroup S(C) the
Serre semigroup. From Section 7, the category C is embedded in its universal
groupoid G in such a way that Co = Go. We shall now see how this embedding
yields a natural interpretation for the Serre tree that can be constructed from the
original graph of groups. This will be obtained by using the Serre inverse semigroup.

Let C be a skeletal Rees category embedded in its universal groupoid G. We
are mainly interested in the case where C is a Serre category but we can prove our
results more generally. Define

X = {gC : g ∈ G} and Y = {aC : a ∈ C}.
Clearly, Y ⊆ X. We regard X as a poset under subset inclusion. The set X is
equipped with a map X → Go given by gC 7→ d(g). This enables us to define a
groupoid action G ∗X → X given by g · hC = ghC if r(g) = d(h).

Lemma 9.9.

(1) G · Y = X.
(2) Y is an order ideal of X.
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Proof. (1). Let gC ∈ X. Let e = r(g). Then eC ∈ Y and g · eC is defined and
equals gC.

(2). Let gC ⊆ aC where aC ∈ Y . Then g = ad where d ∈ C and so g ∈ C giving
gC ∈ Y , as required. �

We may use this data to build an inverse semigroup with zero S equipped with
an idempotent pure prehomomorphism γ : S∗ → G. The non-zero elements of
this semigroup will be the ordered pairs (aC, g) where g−1aC ∈ Y . The prod-
uct (aC, g)(bC, h) is defined as follows: if aC ∩ gbC = ∅ then the product is defined
to be zero; if aC ∩ gbC 6= ∅ then (aC, g)(bC, h) = (aC ∩ gbC, gh).

Proposition 9.10. With the above definitions, S is an E∗-unitary Perrot semi-
group equipped with an idempotent pure prehomomorphism γ to the groupoid G. In
fact, S is isomorphic to the Serre inverse semigroup S(C).

Proof. Let (aC, g), (bC, h) ∈ S and suppose that aC ∩ gbC 6= ∅. By definition,
(aC, g)(bC, h) = (aC ∩ gbC, gh). We need to prove that the righthand side is an
element of S. By assumption, g−1a = c and h−1b = d for some c, d ∈ C. Thus
(aC, g) = (aC, ac−1) and (bC, h) = (bC, bd−1). By assumption, aC ∩ gbC is non-
empty. It follows that ax = gby for some x and y in C. But a = gc and so
gcx = gby. By left cancellation, we have that cx = by. Hence cC ∩ bC 6= ∅. By
assumption, cC ∩ bC = pC for some p. Thus p = cw = bz for some w, z ∈ C. We
now claim that aC ∩ gbC = awC. Let g1 = aa1 = gbb1. Then gca1 = gbb1 and so
ca1 = bb1 by left cancellation. It follows that ca1 = bb1 = pd1. Thus a1 = wd1 and
b1 = zd1. Hence g1 = awd1 ∈ awC. To prove the reverse inclusion, observe that
aw = ac−1cw = gcw = gbz. We have therefore proved that

(aC, g)(bC, h) = (awC, gh).

We now calculate (gh)−1awC. Observe that

(gh)−1aw = (ac−1bd−1)−1aw = db−1ca−1aw = db−1cw = db−1bz = dz

and the result is proved.
We now prove that (aC, ac−1)(bC, bd−1) is non-zero if and only if cC ∩ bC 6= ∅.

Only one direction remains to be proved. We are given elements (aC, ac−1) and
(bC, bd−1). Suppose that cC ∩ bC 6= ∅. We shall prove that aC ∩ ac−1bC 6= ∅. by
assumption, cC ∩ bC = pC and so p = cw = bz. Thus ac−1cw = ac−1bz. It follows
that aw = (ac−1b)z and so aC ∩ ac−1bC 6= ∅, as required.

We shall assume for the time being that S is a semigroup.
Observe that a necessary condition for (aC, ab−1) to be an idempotent is that

ab−1 be an identity but it is easy to check that this is also sufficient. It follows
that the idempotents in S are the elements of the form (aC,d(a)). We calculate the
product (aC,d(a))(bC,d(b)). By definition, this is non-zero if and only if aC∩bC 6=
∅. In particular, we need that d(a) = d(b) = e, say. Suppose that aC ∩ bC = pC
and that p = aw = bz. Then (aC,d(a))(bC,d(b)) = (aC ∩ bC, e) = (pC, e). Thus
the semilattice of idempotents of S is isomorphic to the poset of principal right
ideals of C together with the emptyset set. A (von Neumann) inverse of (aC, ab−1)
is (bC, ba−1). Hence S is inverse.

Let (aC, ab−1) be a non-zero element of S. We map it to ab−1 and denote the map
by γ. It is immediate that the only elements mapping to identities are idempotents.
Suppose that (aC, g)(bC, h) is defined where g = ac−1 and h = bd−1. Then we have
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seen that cC ∩ bC 6= ∅. Hence d(c) = d(b). Thus the product gh is defined in the
groupoid.

It remains to prove that S is a semigroup. We could prove the associativity of
the multiplication directly. Instead, we shall prove it by a different route. We prove
that the partial binary operation we have constructed is in fact the pseudoproduct
of the ordered groupoid G(C). It follows that the inverse semigroup S is nothing
other than the Serre inverse semigroup. Recall that the elements of our ordered
groupoid are equivalence classes [a, b] where the class [a, b] consists of all ordered
pairs (a, b) where r(a) = r(b) where (a, b) ≡ (a′, b′) if and only if (a, b) = (a′, b′)u
where u ∈ G the groupoid of invertible elements of C. We next establish a bijection
between the non-zero elements of S and G(C). Let (aC, g) ∈ S. Then g−1a = b for
some b ∈ C. Consider the element [a, b]. Then ab−1 = gbb−1 = g. We therefore
map

(aC, g) 7→ [a, b]

where g = ab−1. Suppose that (aC, ab−1) and (cC, cd−1) are such that [a, b] = [c, d].
then (a, b) = (c, d)u where u is an isomorphism. It follows that aC = cC and that
ab−1 = cu(du)−1 = cd−1. Thus (aC, ab−1) = (cC, cd−1). The map is therefore
injective and it is immediate that it is surjective.

It is now easy to check that the pseudoproduct [a, b] • [c, d] exists if and only if
aC ∩ ab−1cC 6= ∅ and that the partial product in S maps to the pseudoproduct in
G. The pseudoproduct is known to be associative whenever it makes sense. Thus
S is an inverse semigroup.

The maximal idempotents are those of the form (d(a)C,d(a)). It is immediate
that each idempotent lies beneath a unique maximal idempotent. Let (aC,d(a)) be
an arbitrary non-zero idempotent. Then (aC,d(a)) D (r(a)C, r(a)) via the element
(aC, a). Observe that (eC, e) D (fC, f) if and only if e = f . There is therefore a
bijection between the maximal idempotents of S and the identities in the category
C which in turn correspond to the maximal principal right ideals of C.

The fact that the inverse semigroup S is E∗-unitary follows from the fact that
C is right cancellative as well as cancellative. �

Remark 9.11. The above result gives a structural description of the Serre inverse
semigroup in terms of a groupoid acting on a partially ordered set. It is therefore
a description that generalizes the familiar P -theorem in inverse semigroup theory.

The inverse semigroup S only contains an implicit use of the poset X. However,
there is a procedure for revealing it that we now describe which is well-known in
inverse semigroup theory. To do this, we work in the category of ordered groupoids
and ordered functors.

Consider the set of all ordered pairs, X ∗ G, of the form (hC, g) where h, g ∈ G
where d(g) = d(h). Observe that S ⊆ X ∗ G. Define (gC, h)−1 = (h−1gC, h−1),
d(gC, h) = (gC,d(h)), and r(gC, h) = (h−1gC, r(h)). Define a partial product

(g1C, g2)(h1C, h2) = (g1C, g2h2)

when r(g1C, g2) = d(h1C, h2) and a partial order by (g1C, g2) ≤ (h1C, h2) if and
only if g2 = h2 and g1C ⊆ h1C. Then X ∗ G is an ordered groupoid. Define
Γ: X ∗ G → G by Γ(gC, h) = h. Then Γ is an ordered covering functor. We have
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the following commutative diagram

X ∗ G

Γ

!!
S

ι

OO

γ
// G

where ι : S → X ∗ G is an embedding. By Lemma 9.9, it follows that X ∗ G is an
enlargement of S. We therefore may make the following deduction from [16].

Theorem 9.12. The covering functor Γ arises from the idempotent pure functor
γ by an application of the maximum enlargement theorem.

If we restrict our attention to the case where C is a Serre category then we may
say more about the structure of the poset X. Define π : X → Go by π(gC) = d(g).
Observe that if gC ∩ hC 6= ∅ then d(g) = d(h). We write Xe = π−1(e). Clearly
X =

⊔
e∈Go Xe. Observe that if e and f are identities and k : f → e is invertible,

then there is an order isomorphism between Xe and Xf given by gC 7→ kgC. Our
reference for the construction of Serre trees is [41]. We choose a co-ordinatization
for C as in Section 7 and so a basis for C consisting of the atoms that arise. If

f
a=kx→ i is such an atom and e

g→ f then we draw an edge labelled by x from gC
to gaC.

Lemma 9.13. For each e ∈ Go, the set Xe with the edges as defined is an orienta-
tion of the Serre tree rooted at e.

Proof. Suppose that g, h ∈ G are such that gC = hC. We need to show that g = hg′

where g′ ∈ C and a is invertible. By assumption, g = ha and h = gb where a, b ∈ C.
But a = h−1g. It follows that a is an invertible element of C. It is particualrly easy
in this formulation to show that the graph we have constructed is a tree. �

Remark 9.14. We therefore see that the Serre tree arises as part of the struc-
ture obtained by applying the maximum enlargement theorem to the Serre inverse
semigroup of the graph of groups and its associated idempotent pure prehomomor-
phism. The connection we have made with the maximum enlargement theorem is
intriguing. It suggests that the perspectives of geometric group theory might prove
useful in inverse semigroup theory particularly in connection with the theory of
E∗-unitary and strongly E∗-unitary inverse semigroups.

The classical theory of E-unitary inverse semigroups [29] can be viewed from
the perspective of group actions. The starting point is a group G acting by order
automorphisms on a poset X. We are given a subset Y ⊆ X such that GY = X.
Thus Y is a fundamental domain, not necessarily strict. The set Y is assumed
to be an order ideal and a meet semilattice under the induced order. Finally,
for each g ∈ G we have that gY ∩ Y 6= ∅. Under these conditions (G,X, Y ) is
called a McAlister triple. From this data, one can construct an inverse semigroup
P (G,X, Y ). We can view this as local data about the action. The original group
action (G,X) can be constructed via the group S/σ, where σ is the minumum group
congruence on S; this can be seen as a generalization of a colimit. The poset X
can be recaptured using the maximum enlargement theorem applied to the natural
map S → S/σ and working in the category of ordered groupoids. In the monoid
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case, McAlister’s original proof of these results is described using the theory of
cancellative categories and groupoids of fractions [11].

When the inverse semigroup has a zero, the situation is much more complicated
and interesting. All strongly E∗-unitary inverse semigroups are E∗-unitary but the
converse is not true in general. In categorical terms, being E∗-unitary is equivalent
to a category being cancellative, whereas being strongly E∗-unitary is equivalent to
that category being embeddable in a groupoid. In the case of inverse semigroups
without zero, being E-unitary and being strongly E-unitary are equivalent. The
distinction between E∗-unitary and strongly E∗-unitary is a theme in [2], though
expressed in different language, and similarly in [5].

9.5. From inverse semigroups to graphs of groups. In this section, we shall
show how to pass from a reduced Perrot semigroup to a diagram of partial homo-
morphisms.

We shall start by working in an arbitrary inverse semigroup S. Let e and f be
non-zero idempotents. Recall that in an inverse semigroup, we have that f ≤J e if
f D e′ ≤ e for some idempotent e′. Let a ∈ S such that a−1a = f and aa−1 ≤ e.
We shall define a partial homomorphism φa from He to Hf . Define

(He)
+
a = {g ∈ He : gaa−1 = aa−1g}

and define

φa : (He)
+
a → Hf by φa(g) = a−1ga.

Lemma 9.15. With the above definitions, we have that (He)
+
a is a subgroup and

φa is a homomorphism. If S is E∗-unitary then φa is injective.

Proof. We prove first that (He)
+
a ≤ He. Since aa−1 ≤ e we have that e ∈ (He)

+
a .

Suppose that g, h ∈ (He)
+
a . Then ghaa−1 = gaa−1h = aa−1gh. Finally, suppose

that g ∈ (He)
+
a . Then it is immediate that g−1 ∈ (He)

+
a .

Let g ∈ (He)
+
a . We prove that φa(g) ∈ Hf . We have that

(a−1ga)−1a−1ga = f and a−1ga(a−1ga)−1 = f.

Let g, h ∈ (He)
+
a . Then

φa(gh) = a−1gha = a−1(aa−1)gha = a−1g(aa−1)ha = φa(g)φb(h),

as required.
Suppose that S is now assumed E∗-unitary and that φa(g) = f . Then a−1ga = f .

Thus afa−1 ≤ g. But afa−1 is a non-zero idempotent if f is and so g is an
idempotent, by assumption. Thus φa is injective. �

With the above notation we define (Hf )−a to be the image of φa.
In the case of Perrot semigroups, we would choose e and f to be maximal idem-

potents and the element a would be chosen as an atom such that a−1a = f and
aa−1 ≤ e.

We now link these results to the Perrot semigroup S(C) where C is a skeletal

left Rees category. We may identify atoms as those elements (e, x) where e
x→ f

and x is an atom in C. We have that

H[e,e] = {[g, e] : g ∈ Ge}.

The element [x, f ] is such that [x, f ][x, f ]−1 = [x, x] ≤ [e, e] and [x, f ]−1[x, f ] =
[f, f ].
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Let g ∈ (Ge)
+
x . Then gx = xh for some h. We have that [g, e][x, x] = [gx, x] =

[xh, x]. Thus
[g, e][x, x][g, e]−1 = [xh, xh] = [x, x].

On the other hand, if g ∈ Ge is such that

[g, e][x, x][g, e]−1 = [x, x]

then gx = xh for some group element h.
We have therefore constructed the diagram of partial homomorphisms directly

from the Perrot semigroup. In the case where the Perrot semigroup is E∗-unitary,
we get a diagram of partial isomorphisms. This diagram determines the Perrot
semigroup upto isomorphism.

9.6. Concluding remarks. Andrew Duncan (Newcastle, UK) has pointed out
that there are some interesting parallels between our theory and Stallings theory
of pregroups as described in [9]. We do not know, at this point, whether we can
derive that theory from ours.

All cancellative equidivisible categories may be embedded in groupoids; see [38]
although a direct proof using the ideas of [12] would be useful. Motivated by group
theory, one might consider the structure of such categories equipped with other
kinds of length functors.

Finally, it may be of interest to investigate the structure of the tight completions
of Serre inverse semigroups via the theory developed in [22].
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[33] J.-F. Perrot, Contribution a l’étude des monöıdes syntactiques et de certains groupes associés
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