SEMIGROUP NEAR-RINGS by

J. D. P. Meldrum

A near-ring is a generalization of a ring where two axioms are omitted: addition is not necessarily abelian and only one distributive law holds.

Definition 1.1. Let (R, +, .) be a set with two binary operations + and . satisfying

(i) (R, +) is a group, not necessarily abelian;

(ii) (R, .) is a semigroup;

(iii) (x+y)z = xz + yz for all $x, y, z \in R$.

A similar definition with (iii) replaced by the left distributive law gives rise to a left near-ring. We will be using only right near-rings. The standard example of a near-ring is given by the following.

Example 1.2. Let (G, +) be a group. Define M(G) to be the set of all functions from G to G with pointwise addition $((\alpha + \beta)(g) = \alpha(g) + \beta(g))$ for all $\alpha, \beta \in M(G), g \in G$ and composition of maps. Then (M(G), +, .) is a right near-ring and all near-rings can be embedded in a suitable M(G).

For more information on near-rings the following books are useful: Pilz [6], Meldrum [4], Clay [1] and Ferrero-Cotti [2]. In this account we wish to define and begin an investigation of semigroup near-rings. Group near-rings have been investigated starting with Le Riche, Meldrum and van der Walt [3] and several subsequent papers. By replacing the group involved by a semigroup we get a semigroup near-ring. Many of the early results about semigroup near-rings are proved in a very similar way to the group near-rings case and for those we will not give proofs in this account. First we set the scene with a series of definitions.

Definition 1.3. Let (R, +, .) be a near-ring. A subset A of R such that A is closed under addition and composition is called a subnear-ring. A subnear-ring B such that (B, +) is normal in (R, +) and

(i) $BR \subseteq B$ is a right ideal;

(ii) $r(x+b) - rx \in B$ for all $b \in B$, $r, x \in R$ is a left ideal;

(iii) if (i) and (ii) are satisfied then B is an ideal.

Definition 1.4. Let (R, +, .) be a near-ring. If (H, +) is a group and R can be embedded in M(H) then H is an R-module where the action of R on H is defined using the embedding.

If $K \subseteq H$ is a subgroup and $RK \subseteq K$ then K is a (R)-submodule. If $r(k+h) - rh \in K$ for all $k \in K$, $h \in H$, $r \in R$ and K is normal in H then K is an R-ideal of H.

The various definitions of ideals and modules parallel the use of these ideas in ring theory. In particular the ideas of *R*-homomorphisms and *R*-module homomorphisms parallel the ring case very closely.

We now turn to defining group near-rings and semigroup near-rings. The definitions may seem strange compared with the ring case but they have proved to be necessary in order for progress to be made.

Let R be a right near-ring with identity 1 and which is zero-symmetric (i. e. r0 = 0 = 0r for all $r \in R$). Let G be a multiplicative group with identity e. Denote by R^G the cartesian direct sum of |G| copies of (R, +) indexed by the elements of G. Define a set of functions in $M(R^G)$ by

$$[r,g]\mu(h) = r\mu(hg) \text{ for all } \mu \in R^G, \ h,g \in G, r \in R$$

$$(1.5)$$

Definition 1.6. The subnear-ring of $M(R^G)$, denoted by R[G] is the subnear-ring generated by

$$\{[r,g]; r \in R, g \in G\}.$$

Definition 1.7.Let S be a multiplicative semigroup with identity e. Define [r, s] as a function on \mathbb{R}^S by (1.5) with suitable change in notation. Then the subnear-ring of $M(\mathbb{R}^S)$ generated by

 $\{[r,s]; r \in R, s \in S\}.$

is denoted by R[S].

Definition 1.8. With the notation of the two previous definitions we call R[G] the group near-ring of R over G and R[S] the semigroup near-ring of R over S.

We will now list a number of elementary results about semigroup nearrings which parallel very closely the corresponding results about group nearrings. They will be given without proof but with a reference to the corresponding result in Le Riche, Meldrum and van der Walt [5].

Theorem 1.9. If R happens to be a ring, then R[S] is isomorphic to the standard semigroup ring constructed from R and S. (Theorem 2.4.)

We denote the restricted direct power of (R, +) by $R^{(S)}$.

Theorem 1.10. $R^{(S)}$ is a faithful R[S]-module. (Theorem 2.5.)

A key lemma is important in other contexts.

Lemma 1.11. Let $t \in S$, $\mu \in \mathbb{R}^S$, $A \in \mathbb{R}[S]$. Then there exists a finite set X, independent of μ , such that for all $X' \supseteq X$ we have $(A\mu)(t) = (A\mu|_{X'})(t)$, where $\mu|_{X'}$ is defined by $\mu|_{X'}(t) = \mu(t)$ if $t \in X'$, $\mu|_{X'}(t) = 0$ if $t \in S \setminus X'$. (Lemma 2.6.)

Note that $\mu|_{X'} \in R^{(S)}$.

Lemma 1.12. In R[S] the following rules apply for all values of the parameters.

(1) [r₁, s₁][r₂, s₂] = [r₁r₂, s₁s₂];
(2) [r₁, s] + [r₂, s] = [r₁ + r₂, s];
(3) [r, s] is zerosymmetric if and only if r is;
(4) [r, s] is distributive if and only if r is. (Lemma 2.7.)

An element $r \in R$ is distributive if and only if r(a+b) = ra + rb for all $a, b \in R$.

Corollary 1.13. The map $r \mapsto [r, e]$ is an embedding of R into R[S]and the map $s \mapsto [1, s]$ is an embedding of S into the semigroup (R[S], .). (Corollary 2.8.)

A near-ring R is dg (distributively generated) by X is (R, +) is generated by X and every element of X is distributive. (Definition 3.1.) We now turn to homomorphisms of the near-ring and the semigroup. We start with homomorphisms of the near-ring as it is much less complicated than the case of homomorphisms of the semigroup.

Let $\phi : R \to N$ be an epimorphism of near-rings. We wish to show that this leads to an epimorphism $\phi^* : R[S] \to N[S]$. Define $\overline{\phi}$ as an epimorphism from $R^S \to N^S$ given by

 $\overline{\phi}(\mu)(s) = \phi(\mu(s))$ for all $s \in S$. Then we have the following result.

Corollary 1.14. If $\overline{\phi}(\mu) = \overline{\phi}(\nu)$ for $\mu, \nu \in \mathbb{R}^S$, then $\overline{\phi}(A\mu) = \overline{\phi}(A\nu)$ for all $A \in \mathbb{R}[S]$. (Lemma 4.1)

Let $\tilde{\phi}$ be any right inverse of $\overline{\phi}$, so $\tilde{\phi} : N^S \to R^S$ and $\overline{\phi}\tilde{\phi}(\sigma) = \sigma$ for all $\sigma \in N^S$. We define $\phi^* : R[S] \to N[S]$ by

$$\phi^*(A)(\sigma) = \overline{\phi}(A\widetilde{\phi}(\sigma)) \text{ for all } \sigma \in N^S.$$
(1.15)

Note that ϕ^* does not depend on the particular right inverse ϕ of $\overline{\phi}$ chosen.

Theorem 1.16. If $\phi : R \to N$ is an epimorphism, then $\phi^* : R[S] \to N[S]$ is an epimorphism. (Theorem 4.2).

Let $\mathcal{A} = \operatorname{Ker} \phi$ then

 $\operatorname{Ker} \phi^* = \mathcal{A}^* := (\mathcal{A}^S : R^S) = \{A \in R[S]; A\mu \in \mathcal{A}^S \text{ for all } \mu \in R^S\}$ If \mathcal{A} is a left ideal of R then \mathcal{A}^S , the cartesian direct sum of |S| copies of $(\mathcal{A}, +)$ indexed by the elements of S is an R[S]-ideal of the R[S] module R^S , so \mathcal{A}^* is an ideal of R[S].

Corollary 1.17. For any ideal \mathcal{A} of R we have $(R/\mathcal{A})[S] \cong R[S]/\mathcal{A}^*$ (Corollary 4.3)

Theorem 1.18. The mapping ()* is an injection from the set of ideals of R into that of R[S]. Moreover

 $(\mathcal{A} \cap \mathcal{B})^* = \mathcal{A}^* \cap \mathcal{B}^*$ and $\mathcal{A}^* + \mathcal{B}^* \subseteq (\mathcal{A} + \mathcal{B})^*$. (Theorem 4.4.)

There is another way of associating an ideal in R[S] with an ideal \mathcal{A} in R: $\mathcal{A}^+ = \mathrm{Id}\langle \{[a, e]; a \in \mathcal{A} \rangle.$

Theorem 1.19. The mapping $()^+$ is an injection from the set of ideals of R into that of R[S]. Moreover

$$\mathcal{A}^+ \subseteq \mathcal{A}^*, (\mathcal{A} + \mathcal{B})^+ = \mathcal{A}^+ + \mathcal{B}^+, (\mathcal{A} \cap \mathcal{B})^+ \subseteq \mathcal{A}^+ \cap \mathcal{B}^+.$$
 (Theorem 4.5.)

The next step is to associate an ideal of R with an ideal in R[S]. This part differs from the treatment given in Le Riche, Meldrum and van der Walt [3].

Let \mathcal{A} be an ideal in R[S]. Define \mathcal{A}_* as an ideal in R by

$$\mathcal{A}_* = \mathrm{Id}\langle \{a \in R; \exists t \in S, \mu \in R^S, A \in \mathcal{A} \text{ such that } (A\mu)(t) = a \} \rangle.$$
(1.20)

 \mathcal{A}_* is certainly an ideal of R.

Lemma 1.21. For any ideal \mathcal{A} of R[S], \mathcal{A}_* is an ideal of R.

Theorem 1.22. For any ideal \mathcal{A} of R[S], $\mathcal{A} \subseteq (\mathcal{A}_*)^*$.

Proof. Let $A \in \mathcal{A}$, $\mu \in R[S]$. Then $(A\mu)(t) \in \mathcal{A}_*$ by (1.20). This holds for all $t \in S$. So $(A\mu) \in \mathcal{A}^S_*$ and A maps an arbitrary element of R^S into \mathcal{A}^S_* , i. e. $\mathcal{A} \subseteq (\mathcal{A}^S_* : R^S) = (\mathcal{A}_*)^*$.

This proof is quicker than the proof of the corresponding result in Le Riche, Meldrum and van der Walt [3], but has a much less satisfactory definition of \mathcal{A}_* .

The next situation to consider is that of epimorphisms of the semigroup. This is an area where the results and proofs will differ somewhat from the group near-ring case because the kernel of a semigroup homomorphism is a congruence and not a particular substructure.

So let θ be an epimorphism from S to a semigroup T. Let ρ be the kernel, ρ being a congruence on S. We want to relate $R^T = R^{S/\rho}$ to a semigroup near-ring and find its relation to R^S . It is possible to get a connection using only a right congruence. This parallels the group near-ring case where R^H is considered for a subgroup H of G, not necessarily a normal subgroup. Let ρ be a right congruence. Let $\mu \in \mathbb{R}^S$. Call μ a ρ -function if $(x, y) \in \rho$ implies $\mu(x) = \mu(y)$ for all $x, y \in S$ and denote by \mathbb{R}^S_{ρ} the set of all ρ -functions.

Definition 1.23. The right congruence ρ on S gives rise to ρ -functions and the set of ρ -functions is denoted by R_{ρ}^{S} .

The ρ -functions are just functions in \mathbb{R}^S which are constant on ρ -classes. To provide the background for the proof of the next result we need to define the complexity of an element of \mathbb{R}^S , the basis of a large number of induction arguments.

Definition 1.24. Let $A \in R[S]$. A generating sequence for A is a finite sequence A_1, A_2, \dots, A_n of elements of R[S] such that $A_n = A$ and for all $i, 1 \leq i \leq n$ one of the following three cases applies:

(i) $A_i = [r, s]$ for some $r \in R, s \in S$;

(ii) $A_i = A_k + A_\ell$ for some $k, \ell, 1 \le k, \ell < i$;

(iii) $A_i = A_k A_\ell$ for some $k, \ell, 1 \le k, \ell < i$.

The length of a generating sequence of minimal length for A will be called the complexity of A and be denoted by c(A).

It is obvious that $c(A) \ge 1$ for all $A \in R[S]$ and c(A) = 1 if and only if A = [r, s] for some $r \in R$, $s \in S$. If $c(A) \ge 1$ then either A = B + C or A = BC with c(B), c(C) < c(A).

Lemma 1.25. Using the notation in Definition 1.23, R_{ρ}^{S} is an R[S] module, a submodule of the left R[S] module R^{S} .

Proof. The elements of R_{ρ}^{S} are simply the maps $S \to R$ which are constant on the equivalence classes of ρ . So it is obvious that R_{ρ}^{S} is a subgroup of $(R^{S}, +)$ under addition. We have to show that if $\mu \in R_{\rho}^{S}$ and $A \in R[S]$ then $A\mu \in R_{\rho}^{S}$ and we can do this by induction on c(A). Let $(x, y) \in \rho$. If c(A) = 1, then A = [r, s] for some $r \in R, s \in S$ and so $([r, s]\mu)(x) = r\mu(xs)$ and $([r, s]\mu)(y) = r\mu(ys)$. Since ρ is a right congruence $(x, y) \in \rho$ implies $(xs, ys) \in \rho$ and so $\mu(xs) = \mu(ys)$ and $[r, s]\mu \in R_{\rho}^{S}$. Now suppose that the result holds for all $D \in R[S]$ with c(D) < c(A). Then A = B + C or A = BC with c(B), c(C) < c(A). In the former case we have

$$(A\mu)(x) = ((B+C)\mu)(x) = (B\mu+C\mu)(x) = (B\mu)(x) + (C\mu)(x)$$

= $(B\mu)(y) + (C\mu)(y) = ((B+C)(\mu))(y) = (A\mu)(y).$

using the induction hypothesis.

In the second case $A\mu = (BC)\mu = B(C\mu)$ and by the induction hypothesis $C\mu \in R^S_{\rho}$ so $A\mu \in R^S_{\rho}$ by a second application of the induction hypothesis. The induction is now complete.

So for each right congruence ρ , R_{ρ}^{S} is an R[S] submodule and R[S] acts on R_{ρ}^{S} but in general not faithfully. So we have the following definition.

Definition 1.26. With the notation given above the kernel of the action of R[S] on R_{ρ}^{S} is denoted by $\omega(\rho)$.

Note that $\omega(\rho)$ is a two sided ideal being the kernel of the near-ring homomorphism

$$f: R[S] \to M(R_{\rho}^S).$$

Lemma 1.27. If ρ is a congruence on S then there is a natural isomorphism between R_{ρ}^{S} and $R^{S/\rho}$.

Theorem 1.28. Let ρ be a congruence on S. Then $R[S]/\omega(\rho) \cong R[S/\rho].$

The kernel of the full congruence on S, generally denoted by Δ , is called the augmentation ideal and plays an important role in group rings and nearrings. So we will write Δ for $\omega(S)$. Note that R_S^S just has one factor R and the natural map $R[S] \to M(R_S^S)$ maps R[S] onto R. This is also brought out in the following argument.

Lemma 1.29. Let $\mu, \nu \in R[S]$ and let $x \in R$ be such that $\nu(s) = \mu(s)x$ for all $s \in S$. Then $(A\nu)(s) = ((A\mu)(s))x$ for all $s \in S$.

Proof A straightforward induction on c(A) since the near-ring is a right near-ring.

Define $f_{\omega} : R[S] \to R$ as follows: for any $d \in R$ we let ε_d denote the element of R_S^S such that $\varepsilon_d(s) = d$ for all $s \in S$. Then by lemmas 1.29 and 1.25 we see that for any $A \in R[S]$ there exists a unique (because $1 \in R$) $a \in R$ such that $A\varepsilon_d = \varepsilon_{ad}$ for all $d \in R$. Define $f_{\omega}(A) = a$. Then f_{ω} is an epimorphism and $\operatorname{Ker} f_{\omega} = \Delta$

Corollary 1.30. The augmentation map $f_{\omega} : R[S] \to R$ is an epimorphism with kernel Δ , so $R[S]/\Delta \cong R$.

There is a special set of generators for Δ mirroring the case of group rings and group near-rings.

Theorem 1.31. The augmentation ideal Δ is generated as an ideal by the set $\{[1, s] - [1, e]; s \in S\}$.

Proof. Let $\mathcal{J} = \mathrm{Id}\langle \{[1, s] - [1, e]; s \in S\}\rangle$. Then $\mathcal{J} \subseteq \Delta$ because $([1, s] - [1, e]\varepsilon_d = 0$ for all $s \in S, d \in R$. We need to prove the reverse inclusion. For any $r \in R, s \in S$ there are $I, I' \in \mathcal{J}$ such that

[r,s] = [r,e][1,s] = [r,e]([1,e]+I) = [r,e][1,e]+I' = [r,e]+I'.It is now a straightforward induction that if $A \in R[S]$, then A = [a,e]+Jfor some $a \in R$, $J \in \mathcal{J}$. So let $A \in \Delta$ and A = [a,e]+J, $J \in \mathcal{J}$. Then $A\varepsilon_1 = \varepsilon_a + 0$, i. e. a = 0 which means that $A \in \mathcal{J}$.

We now consider more properties of the ideals of the form $\omega(\rho)$.

Theorem 1.32. The mapping ω from the lattice of right congruences of S into the lattice of ideals of R[S] is an injection, isotone and $\omega(\rho \cap \sigma) \subseteq \omega(\rho) \cap \omega(\sigma)$.

Proof. Let $\rho \neq \sigma$, say $(t, u) \in \rho \setminus \sigma$. Let $\mu \in R_{\rho}^{S}$. Then $\mu(t) = \mu(u)$ and $([1,t] - [1,u])\mu(e) = \mu(t) - \mu(u) = 0$. But $(t, u) \notin \sigma$, so $\mu(t)$ and $\mu(u)$ can take different values. Hence $\mu \in R_{\rho}^{S} \setminus R_{\sigma}^{S}$ and ω is injective. If $\rho \subseteq \sigma$ then $R_{\sigma}^{S} \subseteq R_{\rho}^{S}$ so $\omega(\rho) = \operatorname{Ann}_{R[S]} R_{\rho}^{S} \subseteq \operatorname{Ann}_{R[S]} R_{\sigma}^{S} = \omega(\sigma)$ and ω is isotone and the last part follows immediately.

Bibliography

[1] Clay, J. R. Nearrings: Geneses and applications. Oxford, 1992.

[2] Cotti Ferrero, C. Ferrero, G. Nearrings. Some Developments Linked to Semigroups and Groups. Kluwer, Dordrecht, 2002.

[3] Le Riche, L. R., Meldrum J. D. P., Van der Walt, A. P. J. On Group Near-rings. Arch. Math. 52, 132-139, 1989.

[4] Meldrum, J. D. P. Near-rings and their links with groups. Res. Notes in Mathematics 134, Longman, London, 1985.

[5] Meldrum, J. D. P., Meyer, J. H. The augmentation ideal in group near-rings. Monatsh. Math. 156, 313-323, 2009.

[6] Pilz, G. Near-rings. 2nd Edition, North Holland, Amsterdam, 1983.

School of Mathematics, University of Edinburgh.

Postal Address: 87 Belgrave Road, Edinburgh EH12 6NH. email:meldrum.john@gmail.com