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by
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A near-ring is a generalization of a ring where two axioms are omitted:

addition is not necessarily abelian and only one distributive law holds.

Definition 1.1. Let (R,+, .) be a set with two binary operations + and

. satisfying

(i) (R,+) is a group, not necessarily abelian;

(ii) (R, .) is a semigroup;

(iii) (x+ y)z = xz + yz for all x, y, z ∈ R.

A similar definition with (iii) replaced by the left distributive law gives

rise to a left near-ring. We will be using only right near-rings. The standard

example of a near-ring is given by the following.

Example 1.2. Let (G,+) be a group. Define M(G) to be the set of all

functions from G to G with pointwise addition ( (α + β)(g) = α(g) + β(g)

for all α, β ∈M(G), g ∈ G ) and composition of maps. Then (M(G),+, .) is

a right near-ring and all near-rings can be embedded in a suitable M(G).

For more information on near-rings the following books are useful: Pilz

[6], Meldrum [4], Clay [1] and Ferrero-Cotti [2]. In this account we wish

to define and begin an investigation of semigroup near-rings. Group near-

rings have been investigated starting with Le Riche, Meldrum and van der

Walt [3] and several subsequent papers. By replacing the group involved by

a semigroup we get a semigroup near-ring. Many of the early results about

semigroup near-rings are proved in a very similar way to the group near-rings

case and for those we will not give proofs in this account. First we set the

scene with a series of definitions.

Definition 1.3. Let (R,+, .) be a near-ring. A subset A of R such that

A is closed under addition and composition is called a subnear-ring.

A subnear-ring B such that (B,+) is normal in (R,+) and

(i) BR ⊆ B is a right ideal;

(ii) r(x+ b)− rx ∈ B for all b ∈ B, r, x ∈ R is a left ideal;
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(iii) if (i) and (ii) are satisfied then B is an ideal.

Definition 1.4. Let (R,+, .) be a near-ring. If (H,+) is a group and R

can be embedded in M(H) then H is an R-module where the action of R on

H is defined using the embedding.

If K ⊆ H is a subgroup and RK ⊆ K then K is a (R)-submodule. If

r(k + h)− rh ∈ K for all k ∈ K, h ∈ H, r ∈ R and K is normal in H then

K is an R-ideal of H.

The various definitions of ideals and modules parallel the use of these ideas

in ring theory. In particular the ideas of R-homomorphisms and R-module

homomorphisms parallel the ring case very closely.

We now turn to defining group near-rings and semigroup near-rings. The

definitions may seem strange compared with the ring case but they have

proved to be necessary in order for progress to be made.

Let R be a right near-ring with identity 1 and which is zero-symmetric (i.

e. r0 = 0 = 0r for all r ∈ R). Let G be a multiplicative group with identity

e. Denote by RG the cartesian direct sum of |G| copies of (R,+) indexed by

the elements of G. Define a set of functions in M(RG) by

[r, g]µ(h) = rµ(hg) for all µ ∈ RG, h, g ∈ G, r ∈ R (1.5)

Definition 1.6.The subnear-ring ofM(RG), denoted byR[G] is the subnear-

ring generated by

{[r, g]; r ∈ R, g ∈ G}.

Definition 1.7.Let S be a multiplicative semigroup with identity e. De-

fine [r, s] as a function on RS by (1.5) with suitable change in notation. Then

the subnear-ring of M(RS) generated by

{[r, s]; r ∈ R, s ∈ S}.
is denoted by R[S].

Definition 1.8.With the notation of the two previous definitions we call

R[G] the group near-ring of R over G and R[S] the semigroup near-ring of

R over S.
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We will now list a number of elementary results about semigroup near-

rings which parallel very closely the corresponding results about group near-

rings. They will be given without proof but with a reference to the corre-

sponding result in Le Riche, Meldrum and van der Walt [5].

Theorem 1.9. If R happens to be a ring, then R[S] is isomorphic to the

standard semigroup ring constructed from R and S. (Theorem 2.4.)

We denote the restricted direct power of (R,+) by R(S).

Theorem 1.10. R(S) is a faithful R[S]-module. (Theorem 2.5.)

A key lemma is important in other contexts.

Lemma 1.11. Let t ∈ S, µ ∈ RS, A ∈ R[S]. Then there exists a finite set

X, independent of µ, such that for all X ′ ⊇ X we have (Aµ)(t) = (Aµ|X′)(t),

where µ|X′ is defined by µ|X′(t) = µ(t) if t ∈ X ′, µ|X′(t) = 0 if t ∈ S \ X ′.
(Lemma 2.6.)

Note that µ|X′ ∈ R(S).

Lemma 1.12. In R[S] the following rules apply for all values of the

parameters.

(1) [r1, s1][r2, s2] = [r1r2, s1s2];

(2) [r1, s] + [r2, s] = [r1 + r2, s];

(3) [r, s] is zerosymmtric if and only if r is;

(4) [r, s] is distributive if and only if r is. (Lemma 2.7.)

An element r ∈ R is distributive if and only if

r(a+ b) = ra+ rb for all a, b ∈ R.

Corollary 1.13. The map r 7→ [r, e] is an embedding of R into R[S]

and the map s 7→ [1, s] is an embedding of S into the semigroup (R[S], .).

(Corollary 2.8.)

A near-ring R is dg (distributively generated) by X is (R,+) is generated

by X and every element of X is distributive. (Definition 3.1.)
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We now turn to homomorphisms of the near-ring and the semigroup. We

start with homomorphisms of the near-ring as it is much less complicated

than the case of homomorphisms of the semigroup.

Let φ : R → N be an epimorphism of near-rings. We wish to show that

this leads to an epimorphism φ∗ : R[S]→ N [S]. Define φ as an epimorphism

from RS → NS given by

φ(µ)(s) = φ(µ(s)) for all s ∈ S.

Then we have the following result.

Corollary 1.14. If φ(µ) = φ(ν) for µ, ν ∈ RS, then φ(Aµ) = φ(Aν) for

all A ∈ R[S]. (Lemma 4.1)

Let φ̃ be any right inverse of φ, so φ̃ : NS → RS and φφ̃(σ) = σ for all

σ ∈ NS. We define φ∗ : R[S]→ N [S] by

φ∗(A)(σ) = φ(Aφ̃(σ)) for all σ ∈ NS. (1.15)

Note that φ∗ does not depend on the particular right inverse φ̃ of φ chosen.

Theorem 1.16. If φ : R→ N is an epimorphism, then φ∗ : R[S]→ N [S]

is an epimorphism. (Theorem 4.2).

Let A = Kerφ then

Kerφ∗ = A∗ := (AS : RS) = {A ∈ R[S];Aµ ∈ AS for all µ ∈ RS}
If A is a left ideal of R then AS, the cartesian direct sum of |S| copies of

(A,+) indexed by the elements of S is an R[S]-ideal of the R[S] module RS,

so A∗ is an ideal of R[S].

Corollary 1.17. For any ideal A of R we have

(R/A)[S] ∼= R[S]/A∗ (Corollary 4.3)

Theorem 1.18. The mapping ( )∗ is an injection from the set of ideals

of R into that of R[S]. Moreover

(A ∩ B)∗ = A∗ ∩ B∗ and A∗ + B∗ ⊆ (A+ B)∗. (Theorem 4.4.)
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There is another way of associating an ideal in R[S] with an ideal A in R:

A+ = Id〈{[a, e]; a ∈ A〉.

Theorem 1.19. The mapping ( )+ is an injection from the set of ideals

of R into that of R[S]. Moreover

A+ ⊆ A∗, (A+ B)+ = A+ + B+, (A ∩ B)+ ⊆ A+ ∩ B+. (Theorem 4.5.)

The next step is to associate an ideal of R with an ideal in R[S]. This part

differs from the treatment given in Le Riche, Meldrum and van der Walt [3].

Let A be an ideal in R[S]. Define A∗ as an ideal in R by

A∗ = Id〈{a ∈ R;∃t ∈ S, µ ∈ RS, A ∈ A such that (Aµ)(t) = a}〉. (1.20)

A∗ is certainly an ideal of R.

Lemma 1.21. For any ideal A of R[S], A∗ is an ideal of R.

Theorem 1.22. For any ideal A of R[S], A ⊆ (A∗)∗.

Proof. Let A ∈ A, µ ∈ R[S]. Then (Aµ)(t) ∈ A∗ by (1.20). This holds

for all t ∈ S. So (Aµ) ∈ AS∗ and A maps an arbitrary element of RS into AS∗ ,
i. e. A ⊆ (AS∗ : RS) = (A∗)∗.

This proof is quicker than the proof of the corresponding result in Le Riche,

Meldrum and van der Walt [3], but has a much less satisfactory definition of

A∗.

The next situation to consider is that of epimorphisms of the semigroup.

This is an area where the results and proofs will differ somewhat from the

group near-ring case because the kernel of a semigroup homomorphism is a

congruence and not a particular substructure.

So let θ be an epimorphism from S to a semigroup T . Let ρ be the kernel,

ρ being a congruence on S. We want to relate RT = RS/ρ to a semigroup

near-ring and find its relation to RS. It is possible to get a connection using

only a right congruence. This parallels the group near-ring case where RH is

considered for a subgroup H of G, not necessarily a normal subgroup.
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Let ρ be a right congruence. Let µ ∈ RS. Call µ a ρ-function if (x, y) ∈ ρ
implies µ(x) = µ(y) for all x, y ∈ S and denote by RS

ρ the set of all ρ-

functions.

Definition 1.23. The right congruence ρ on S gives rise to ρ-functions

and the set of ρ-functions is denoted by RS
ρ .

The ρ-functions are just functions in RS which are constant on ρ-classes.

To provide the background for the proof of the next result we need to define

the complexity of an element of RS, the basis of a large number of induction

arguments.

Definition 1.24. Let A ∈ R[S]. A generating sequence for A is a finite

sequence A1, A2, · · · , An of elements of R[S] such that An = A and for all

i, 1 ≤ i ≤ n one of the following three cases applies:

(i) Ai = [r, s] for some r ∈ R, s ∈ S;

(ii) Ai = Ak + A` for some k, `, 1 ≤ k, ` < i;

(iii) Ai = AkA` for some k, `, 1 ≤ k, ` < i.

The length of a generating sequence of minimal length for A will be called

the complexity of A and be denoted by c(A).

It is obvious that c(A) ≥ 1 for all A ∈ R[S] and c(A) = 1 if and only if

A = [r, s] for some r ∈ R, s ∈ S. If c(A) ≥ 1 then either A = B + C or

A = BC with c(B), c(C) < c(A).

Lemma 1.25. Using the notation in Definition 1.23, RS
ρ is an R[S]

module, a submodule of the left R[S] module RS.

Proof. The elements of RS
ρ are simply the maps S → R which are con-

stant on the equivalence classes of ρ. So it is obvious that RS
ρ is a subgroup

of (RS,+) under addition. We have to show that if µ ∈ RS
ρ and A ∈ R[S]

then Aµ ∈ RS
ρ and we can do this by induction on c(A). Let (x, y) ∈ ρ. If

c(A) = 1, then A = [r, s] for some r ∈ R, s ∈ S and so ([r, s]µ)(x) = rµ(xs)

and ([r, s]µ)(y) = rµ(ys). Since ρ is a right congruence (x, y) ∈ ρ implies

(xs, ys) ∈ ρ and so µ(xs) = µ(ys) and [r, s]µ ∈ RS
ρ . Now suppose that the

result holds for all D ∈ R[S] with c(D) < c(A). Then A = B+C or A = BC

with c(B), c(C) < c(A). In the former case we have
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(Aµ)(x) = ((B + C)µ)(x) = (Bµ+ Cµ)(x) = (Bµ)(x) + (Cµ)(x)

= (Bµ)(y) + (Cµ)(y) = ((B + C)(µ))(y) = (Aµ)(y).

using the induction hypothesis.

In the second case Aµ = (BC)µ = B(Cµ) and by the induction hypothesis

Cµ ∈ RS
ρ so Aµ ∈ RS

ρ by a second application of the induction hypothesis.

The induction is now complete.

So for each right congruence ρ, RS
ρ is an R[S] submodule and R[S] acts

on RS
ρ but in general not faithfully. So we have the following definition.

Definition 1.26. With the notation given above the kernel of the action

of R[S] on RS
ρ is denoted by ω(ρ).

Note that ω(ρ) is a two sided ideal being the kernel of the near-ring ho-

momorphism

f : R[S]→M(RS
ρ ).

Lemma 1.27. If ρ is a congruence on S then there is a natural isomor-

phism between RS
ρ and RS/ρ.

Theorem 1.28. Let ρ be a congruence on S. Then

R[S]/ω(ρ) ∼= R[S/ρ].

The kernel of the full congruence on S, generally denoted by ∆, is called

the augmentation ideal and plays an important role in group rings and near-

rings. So we will write ∆ for ω(S). Note that RS
S just has one factor R and

the natural map R[S]→M(RS
S) maps R[S] onto R. This is also brought out

in the following argument.

Lemma 1.29. Let µ, ν ∈ R[S] and let x ∈ R be such that ν(s) = µ(s)x

for all s ∈ S. Then

(Aν)(s) = ((Aµ)(s))x for all s ∈ S.

Proof A straightforward induction on c(A) since the near-ring is a right

near-ring.
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Define fω : R[S] → R as follows: for any d ∈ R we let εd denote the

element of RS
S such that εd(s) = d for all s ∈ S. Then by lemmas 1.29 and

1.25 we see that for any A ∈ R[S] there exists a unique (because 1 ∈ R)

a ∈ R such that Aεd = εad for all d ∈ R. Define fω(A) = a. Then fω is an

epimorphism and Kerfω = ∆

Corollary 1.30. The augmentation map fω : R[S] → R is an epimor-

phism with kernel ∆, so R[S]/∆ ∼= R.

There is a special set of generators for ∆ mirroring the case of group rings

and group near-rings.

Theorem 1.31. The augmentation ideal ∆ is generated as an ideal by

the set {[1, s]− [1, e]; s ∈ S}.

Proof. Let J = Id〈{[1, s]− [1, e]; s ∈ S}〉. Then J ⊆ ∆ because ([1, s]−
[1, e]εd = 0 for all s ∈ S, d ∈ R. We need to prove the reverse inclusion. For

any r ∈ R, s ∈ S there are I, I ′ ∈ J such that

[r, s] = [r, e][1, s] = [r, e]([1, e] + I) = [r, e][1, e] + I ′ = [r, e] + I ′.

It is now a straightforward induction that if A ∈ R[S], then A = [a, e] + J

for some a ∈ R, J ∈ J . So let A ∈ ∆ and A = [a, e] + J , J ∈ J . Then

Aε1 = εa + 0, i. e. a = 0 which means that A ∈ J .

We now consider more properties of the ideals of the form ω(ρ).

Theorem 1.32. The mapping ω from the lattice of right congruences of

S into the lattice of ideals of R[S] is an injection, isotone and ω(ρ ∩ σ) ⊆
ω(ρ) ∩ ω(σ).

Proof. Let ρ 6= σ, say (t, u) ∈ ρ \ σ. Let µ ∈ RS
ρ . Then µ(t) = µ(u) and

([1, t] − [1, u])µ(e) = µ(t) − µ(u) = 0. But (t, u) /∈ σ, so µ(t) and µ(u) can

take different values. Hence µ ∈ RS
ρ \ RS

σ and ω is injective. If ρ ⊆ σ then

RS
σ ⊆ RS

ρ so ω(ρ) = AnnR[S]R
S
ρ ⊆ AnnR[S]R

S
σ = ω(σ) and ω is isotone and

the last part follows immediately.
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