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Introduction

Theme. A question asked by Dr Joao Araujo (Lisbon),
[e-mail 19 October 2006], and developments.

Notation
e X: a finite set; n:=|X|, we assume n > 3;
e T'(X) := monoid of all maps X — X;
o for t e T(X), rank(t) := |Image(t)|;
e (G is always a subgroup of Sym(X), contained in T(X).

Recall (or accept): G is transitive if (Vx,ye X)(Jge G) : 29 = vy.
Transitive group is primitive if there is no non-trivial proper
G-invariant partition of X .



Svynchronizing semigroups

Monoid M < T(X) is said to be synchronizing if there exists t* € M
with rank(t*) =1 (so t* is a constant map).

In fact interest is in subsets Ty C T(X) with M = (Tp).

Ask for w =tqto --- tp € M (all t; € Ty) such that rank(w) = 1.
Known as a reset word.

Comes from automata theory: X = set of states, Ty = set of
transition maps.

Cerny Conjecture: for a synchronizing automaton with n states
there is always a reset word of length k < (n — 1)2.



Svynchronizing groups, section-regular partitions

Araujo, Steinberg: Non-trivial group G is synchronizing if (G,t) is a
synchronizing semigroup for each t € T(X) \ Sym(X).

A partition (equivalence relation) p of X is section-regular if there
exists S C X such that S9Y9 is a section of p for all g € GG.
Equivalently: S is section of p9 for all g € G,
equivalently: SY is section of p! for all g,h € G.

Theorem [Araujo]. Non-trivial group G is synchronizing if and only
if there is Nno non-trivial proper section-regular partition for G.



First steps
Examples. Sym(X), Alt(X) are synchronizing.

Generally, any 2-homogeneous group (transitive on unordered pairs)
IS synchronizing.

Examples. If G is not transitive then G is not synchronizing.

If G is transitive but not primitive then G is not synchronizing.

Corollary. A synchronizing group is primitive.

Question [Araudjo]. Does the converse hold?



Examples.

Example. Sym(m) Wr Sym (k) in product action, degree mF, is
primitive if m > 3 and non-synchronizing if k& > 2.

Example. Sym(m) acting on pairs, degree %m(m— 1), is primitive if
m > 5 and is non-synchronizing when m is even.

Example. Many affine groups are primitive non-synchronizing—the
smallest is C3?.Cy (alias 3AGL(1,9)).

Note. O'Nan—Scott taxonomy of primitive groups provides guidance.
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A basic theorem

Theorem (MMN). Suppose G is transitive. A section-regular
partition is uniform (all classes have same size).

Then define the parameters of a section-regular partition to be
(n,r,s) where it has s parts each of size r, so rs =n.

Fact. If G is primitive then the parameters of a non-trivial proper
section-regular partition satisfy » > 2, s > 2.

Problem. What primitive groups G can have non-trivial proper
section-regular partitions with small » or small s? (E.q.
3<small <6.)



A contextual theorem: density, I

For this lecture only: define integer n to be primitive if there exists
G <Sym(n), G #Sym(n), Alt(n), G primitive.

Examples: if n is an odd prime, or if n=p -+ 1 where p is prime, or
if n=2m(m —1) or n=m? (with m > 3), then n is primitive.

Fact (mod CFSG) [Cameron, Neumann & Teague, 1982]. Define
e(x) ;= #{n < x| n is primitive}
Then
e(z) = 2m(z) + (1 + V2)vz + O(Vz/log z),

where 7w (x) is the prime number enumerator.

In particular, e(z) ~2z/logx as x — oo.



A contextual theorem: density, II

Theorem (mod CFSG) [MTMN]. Define eg(x) similarly to measure
the density of the set of degrees of primitive non-synchronizing
groups. Then

eo(z) = (1 + 1/vV2)v/a + O(Vz/ log z)



Separation
Theorem [[TMN et al. 1974]. Suppose G is transitive. Let R, S be
subsets of X. Let r:=|R|, s :=|5].
(1) if rs<n then d3ge G: RNSI=10;
(2) ifn=rsand Vge G: RNS9# 0 then Vge G: |RNSYI| = 1;

(3) ifVge G:|RNSY| =1 then n =rs.

Call G separating if for all R,S C X with |R| > 1, |S|>1, and
n = |R| x |S| there exists g € G such that RN SS9 =10.



Separating groups and synchronization

Observation: a separating group is synchronizing.

Question [MMN, January 2008]: do there exist transitive G which
are synchronizing but not separating?

Answer [Cameron, Schneider, Spiga]: Yes. Infinitely many. But not
easy to come by.
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Graphs, 1

Graphs are to be undirected, no multiple edges, no loops. Clique
number k is size of largest clique; independence number k is size of
largest co-clique; chromatic number .

Observation [Cameron]. (1) Group G is non-synchronizing if and
only if there is a G-invariant graph on X with k£ x x =n;

(2) Group G is non-separating if and only if there is a G-invariant
graph on X with kx k=n.
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Graphs, II

For a graph I define its core as image of an endomorphism of
minimal rank. Then core(l") is a minimal retract of I; it is unique
up to isomorphism.

Proposition [Cameron]. Let M <T(X), M £Sym(X). Then M is
not synchronizing if and only if there exists a non-trivial graph I
with vertex set X such that core(l") is complete and M < End(IN).

Cameron + Kazanidis, 2008: major progress towards classification
of primitive rank-3 groups as synchronizing or not. But hard
problems in finite geometry remain.
[Rank-3 means group is transitive both on edges and on non-edges
of a graph.]
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Spreading groups and QI-groups

Definition [Steinberg]. group G is spreading if for every non-empty
proper subset S of X and every t € T(X)\ Sym(X) thereis g€ G
such that |Sgt~1| > |S|.

Observation [Steinberg]. Cerny Conjecture is easy to prove for
TU{t} if T CSym(X) and (T) is a spreading group.

Definition. Group G is a QI-group if QX = 1 @ irreducible.

Theorem [Arnold 4+ Steinberg, 2006]. QI = spreading =
synchronizing.
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A role for representation theory

Facts. 2-homogeneous = QI
= spreading
= separating
= synchronizing
= primitive.

Big Question. Is it true that spreading = QI 7

Compare: G is 2-transitive & G is CI;
G is 2-homogeneous < G is RI.

Notes. The QI groups are classified [Saxl].
Other implications than 2nd are known not to be reversible [ITMN,

Cameron, Schneider, Spiga].
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Conclusion
There is much to be done: for example

Question. Can one classify the primitive non-synchronizing groups?

e.g. If G is of affine type G-regular partitions need not be affine;
e.d. What are those of affine type over [y 7

For example, is 2191He synchronizing?

e.g. Can we classify those with rank 3 (rank 4, rank 5, etc.)?
[Rank = number of orbits on ordered pairs.]

Question. Is every spreading group a QI-group—that is, is the
G-module QX almost irreducible?

Question. What does all this say for the original problems about
semigroups and automata?
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