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Introduction

Theme. A question asked by Dr João Araújo (Lisbon),
[e-mail 19 October 2006], and developments.

Notation

• X : a finite set; n := |X|, we assume n > 3;

• T (X) := monoid of all maps X → X ;

• for t ∈ T (X), rank(t) := |Image(t)|;

• G is always a subgroup of Sym(X), contained in T (X).

Recall (or accept): G is transitive if (∀x, y ∈ X)(∃g ∈ G) : xg = y .
Transitive group is primitive if there is no non-trivial proper
G-invariant partition of X .
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Synchronizing semigroups

Monoid M 6 T (X) is said to be synchronizing if there exists t∗ ∈M
with rank(t∗) = 1 (so t∗ is a constant map).

In fact interest is in subsets T0 ⊆ T (X) with M = 〈T0〉.

Ask for w = t1t2 · · · tk ∈M (all ti ∈ T0) such that rank(w) = 1.
Known as a reset word.

Comes from automata theory: X = set of states, T0 = set of
transition maps.

Černý Conjecture: for a synchronizing automaton with n states
there is always a reset word of length k 6 (n− 1)2.
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Synchronizing groups, section-regular partitions

Araújo, Steinberg: Non-trivial group G is synchronizing if 〈G, t〉 is a

synchronizing semigroup for each t ∈ T (X) \ Sym(X).

A partition (equivalence relation) ρ of X is section-regular if there

exists S ⊆ X such that Sg is a section of ρ for all g ∈ G.

Equivalently: S is section of ρg for all g ∈ G;

equivalently: Sg is section of ρh for all g, h ∈ G.

Theorem [Araújo]. Non-trivial group G is synchronizing if and only

if there is no non-trivial proper section-regular partition for G.

3



First steps

Examples. Sym(X), Alt(X) are synchronizing.

Generally, any 2-homogeneous group (transitive on unordered pairs)

is synchronizing.

Examples. If G is not transitive then G is not synchronizing.

If G is transitive but not primitive then G is not synchronizing.

Corollary. A synchronizing group is primitive.

Question [Araújo]. Does the converse hold?
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Examples.

Example. Sym(m) Wr Sym(k) in product action, degree mk , is

primitive if m > 3 and non-synchronizing if k > 2.

Example. Sym(m) acting on pairs, degree 1
2m(m− 1), is primitive if

m > 5 and is non-synchronizing when m is even.

Example. Many affine groups are primitive non-synchronizing—the

smallest is C3
2 .C4 (alias 1

2AGL(1,9)).

Note. O’Nan–Scott taxonomy of primitive groups provides guidance.
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A basic theorem

Theorem (ΠMN). Suppose G is transitive. A section-regular
partition is uniform (all classes have same size).

Then define the parameters of a section-regular partition to be
(n, r, s) where it has s parts each of size r , so r s = n.

Fact. If G is primitive then the parameters of a non-trivial proper
section-regular partition satisfy r > 2, s > 2.

Problem. What primitive groups G can have non-trivial proper
section-regular partitions with small r or small s? (E.g.
3 6 small 6 6.)
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A contextual theorem: density, I

For this lecture only: define integer n to be primitive if there exists
G 6 Sym(n), G 6= Sym(n), Alt(n), G primitive.

Examples: if n is an odd prime, or if n = p+ 1 where p is prime, or
if n = 1

2m(m− 1) or n = m2 (with m > 3), then n is primitive.

Fact (mod CFSG) [Cameron, Neumann & Teague, 1982]. Define

e(x) := #{n 6 x | n is primitive}
Then

e(x) = 2π(x) + (1 +
√

2)
√
x+O(

√
x/ logx) ,

where π(x) is the prime number enumerator.

In particular, e(x) ∼ 2x/ logx as x→∞.
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A contextual theorem: density, II

Theorem (mod CFSG) [ΠMN]. Define e0(x) similarly to measure

the density of the set of degrees of primitive non-synchronizing

groups. Then

e0(x) = (1 + 1/
√

2)
√
x+O(

√
x/ logx) .
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Separation

Theorem [ΠMN et al. 1974]. Suppose G is transitive. Let R, S be

subsets of X . Let r := |R|, s := |S|.

(1) if rs < n then ∃g ∈ G : R ∩ Sg = ∅;

(2) if n = rs and ∀g ∈ G : R ∩ Sg 6= ∅ then ∀g ∈ G : |R ∩ Sg| = 1;

(3) if ∀g ∈ G : |R ∩ Sg| = 1 then n = rs.

Call G separating if for all R,S ⊆ X with |R| > 1, |S| > 1, and

n = |R| × |S| there exists g ∈ G such that R ∩ Sg = ∅.
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Separating groups and synchronization

Observation: a separating group is synchronizing.

Question [ΠMN, January 2008]: do there exist transitive G which

are synchronizing but not separating?

Answer [Cameron, Schneider, Spiga]: Yes. Infinitely many. But not

easy to come by.
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Graphs, I

Graphs are to be undirected, no multiple edges, no loops. Clique

number k is size of largest clique; independence number k is size of

largest co-clique; chromatic number χ.

Observation [Cameron]. (1) Group G is non-synchronizing if and

only if there is a G-invariant graph on X with k × χ = n;

(2) Group G is non-separating if and only if there is a G-invariant

graph on X with k × k = n.
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Graphs, II

For a graph Γ define its core as image of an endomorphism of
minimal rank. Then core(Γ) is a minimal retract of Γ; it is unique
up to isomorphism.

Proposition [Cameron]. Let M 6 T (X), M 66 Sym(X). Then M is
not synchronizing if and only if there exists a non-trivial graph Γ
with vertex set X such that core(Γ) is complete and M 6 End(Γ).

Cameron + Kazanidis, 2008: major progress towards classification
of primitive rank-3 groups as synchronizing or not. But hard
problems in finite geometry remain.
[Rank-3 means group is transitive both on edges and on non-edges
of a graph.]

12



Spreading groups and QI-groups

Definition [Steinberg]. group G is spreading if for every non-empty

proper subset S of X and every t ∈ T (X) \ Sym(X) there is g ∈ G
such that |Sgt−1| > |S|.

Observation [Steinberg]. Černý Conjecture is easy to prove for

T ∪ {t} if T ⊆ Sym(X) and 〈T 〉 is a spreading group.

Definition. Group G is a QI-group if QX = 1⊕ irreducible.

Theorem [Arnold + Steinberg, 2006]. QI ⇒ spreading ⇒
synchronizing.
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A role for representation theory

Facts. 2-homogeneous ⇒ QI
⇒ spreading
⇒ separating
⇒ synchronizing
⇒ primitive.

Big Question. Is it true that spreading ⇒ QI ?

Compare: G is 2-transitive ⇔ G is CI ;
G is 2-homogeneous ⇔ G is RI .

Notes. The QI groups are classified [Saxl].
Other implications than 2nd are known not to be reversible [ΠMN,
Cameron, Schneider, Spiga].
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Conclusion

There is much to be done: for example

Question. Can one classify the primitive non-synchronizing groups?
e.g. If G is of affine type G-regular partitions need not be affine;
e.g. What are those of affine type over F2 ?

For example, is 2101He synchronizing?
e.g. Can we classify those with rank 3 (rank 4, rank 5, etc.)?

[Rank = number of orbits on ordered pairs.]

Question. Is every spreading group a QI-group—that is, is the
G-module QX almost irreducible?

Question. What does all this say for the original problems about
semigroups and automata?
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