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Part 1: Group Extension Theory
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Split extensions of groups

Let N G H
k e

s
be a split extension of groups.

There is a bijection f : N ×H → G given by f(n, h) = k(n)s(h).

We may equip N ×H with a group multiplication making f as iso.

Let kϕ(h, n) = s(h)k(n)s(h)−1 and notice that

kϕ(h, n)s(h) = s(h)k(n).

The multiplication is given by (n1, h1)(n2, h2) = (n1ϕ(h1, n2), h1h2).

f((n1, h1)(n2, h2)) = f(n1ϕ(h1, n2), h1h2)

= k(n1)kϕ(h1, n2)s(h1)s(h2)

= k(n1)s(h1)k(n1)s(h2)

= f(n1, h1)f(n2, h2).
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Semidirect products of groups

The map ϕ is a group action of H on N .

Given any action ϕ we may construct the semidirect product N oϕ H

with multiplication as discussed.

Semidirect products naturally give split extensions N G H
k e

s
with k(n) = (n, 1), e(n, h) = h and s(h) = (1, h).

They provide a full characterization of split extensions in this way.
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Group extensions with abelian kernel

Suppose we have a group extension N G H
k e

, where N is

abelian.

The map e is guaranteed to be a surjection and so we may consider a

set theoretic splitting s (that preserves unit).

Again each element g may be written uniquely as g = k(n)se(g).

Now if e(g1) = e(g2) then g1 = k(n1)se(g1) and

g2 = k(n2)se(g2) = k(n2)se(g1).

Thus we have the k(n1)k(n2)
−1g2 = k(n1)se(g1) = g1.

Hence if e(g1) = e(g2) there exists a unique n ∈ N such that

g1 = k(n)g2.
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Factor sets

We would like to carry out the semidirect product construction in this

new setting. However, we did use that s(h1h2) = s(h1)s(h2).

Notice that e(s(h1h2)) = e(s(h1)s(h2)) and so there exists a unique

element χ(h1, h2) such that kχ(h1, h2)s(h1h2) = s(h1)s(h2).

We may again define ϕ(h, n) = s(h)k(n)s(h)−1. Surprisingly this is

again an action. (The proof makes use of the abelian kernel).

We may then define the crossed product N oχ
ϕ H with underlying set

N ×H and multiplication

(n1, h1)(n2, h2) = (n1ϕ(h1, n2)χ(h1, h2), h1h2).

f((n1, h1)(n2, h2)) = k(n1)kϕ(h1, n2)kχ(h1, h2)s(h1h2) =

k(n1)kϕ(h1, n2)s(h1)s(h2) = k(n1)s(h1)k(n2)s(h2) =

f(n1, h1)f(n2, h2). 6



Second cohomology group

Factor sets χ : H ×H → N may be defined generally relative to an

action ϕ.

1. χ(1, h) = 1 = χ(h, 1),

2. χ(x, y)χ(xy, z) = ϕ(x, χ(y, z))χ(x, yz)

The associated crossed product forms an extension

N N oχ
ϕ H H

k e
where k(n) = (n, 1) and e(n, h) = h.

These do not form a full characterisation as χ depends on the choice

of splitting.

They have a natural abelian group structure. Quotienting by the

subgroup of inner factor sets yields a full characterization.

This induces a Baer sum on the set of extensions.
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Part 1: Monoid Extensions
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Schreier split extensions

Given a split extension of monoids N G H
k e

s
can we extract

an action?

In general no. In the group setting me made use of conjugation.

Schreier split extensions N G H
k e

s
satisfy that each g may

be written uniquely as k(n)se(g).

Thus there exists a unqiue element ϕ(h, n) ∈ N such that

s(h)k(n) = kϕ(h, n)se(s(h)k(n)) = kϕ(h, n)s(h).

These give an action ϕ and in the group setting we only ever used that

ϕ(h, n)s(h) = s(h)k(n).

The entire argument carries through.
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Special Schreier extensions

A monoid extension N G H
k e

is special Schreier if whenever

e(g1) = e(g2) there exists a unique n such that g1 = k(n)g2.

If s is a set theoretic splitting of e, then there exists a χ(h1, h2) such

that s(h1)s(h2) = kχ(h1, h2)s(h1h2).

When N is an abelian group we can extract an action ϕ of H on N .

The argument now completely carries through.

Okay, but what about other extensions?
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λ-semidirect products

Given two inverse semigroups H and N and an action of H on N we

may form the λ-semidirect product N oϕ H.

It has underlying set {(n, h) ∈ N ×H : ϕ(hh−1, n) = n} and

multiplication

(n1, h1)(n2, h2) = (ϕ(h1h2(h1h2)
−1, n1)ϕ(h1, n2), h1h2)

These form a split extension N N oϕ H H
k e

s
where

k(n) = (n, 1), e(n, h) = h and s(h) = (1, h)*

Now suppose (n, h) ∈ N oϕ H, we have

k(n)s(h) = (n, 1)(1, h) = (ϕ(hh−1, n), h) = (n, h).

However any n′ satisfying that ϕ(hh−1, n′) = n would also give

k(n′)s(h) = (n, h).
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Leech’s normal extensions

Leech consider extensions N G H
k e

in which gN = Ng for

all g and where H is the monoid of cosets.

These are not in general special Schreier. Consider

Z Z ∪ {∞} 2
k e

where k(n) = n, e(n) = > and e(∞) = ⊥.

Since everything is commutative it is clearly Leech normal.

But e(∞) = e(∞) and yet k(n) +∞ =∞ = k(n′) +∞.

Again we have a failure of uniqueness.
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Weakly Schreier split extensions

Let N G H
k e

s
be a split extension of monoids. When we

require that for each g there exists a (not necessarily unique) n such

that g = k(n) · se(g) we call the extension weakly Schreier.

Weakly Schreier extensions may be characterized by a generalization of

a semidirect product.

The map t : N ×H → G is now only a surjection.

We may thus quotient N ×H by the equivalence relation

(n, h) ∼ (n′, h′) ⇐⇒ k(n)s(h) = k(n′)s(h′).

This induces a bijection t : N ×H/∼ → G and the quotient then

inherits a multiplication from G.

We call the combination of this equivalence relation and data

specifying the multiplication a relaxed action. 13



Admissible equivalence relations

The equivalence relation E satisfies the following properties.

0. (n1, h1) ∼ (n2, h2) implies h1 = h2,

1. (n1, 1) ∼ (n2, 1) implies n1 = n2,

2. (n1, h) ∼ (n2, h) implies (nn1, h) ∼ (nn2, h),

3. (n1, h) ∼ (n2, h) implies (n1, hh
′) ∼ (n2, hh

′).

By condition 0 we may view E as an H-indexed equivalence relation.

If H has the divisibility order then the the map from H into

equivalence relations

1. Preserves bottom,

2. Selects right conguences,

3. Preserves order.

Any such equivalence relation we call an H-relaxtion of N .
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Compatible actions

We know that there exist ϕ(h, n) ∈ N such that

kϕ(h, n)s(h) = s(h)k(n).

The function ϕ may be characterised as follows.

Let ϕ : H ×N → N be a function.

1. ϕ(h, nn′) ∼h ϕ(h, n) · ϕ(h, n′),
2. ϕ(hh′, n) ∼hh′ ϕ(h, ϕ(h′, n)),
3. ϕ(h, 1) ∼h 1,

4. ϕ(1, n) ∼1 n,

5. n1 ∼h n2 implies n1ϕ(h, n) ∼h n2ϕ(h, n),
6. n ∼h′ n′ implies ϕ(h, n) ∼hh′ ϕ(h, n′),

Some of these actions give the same multiplication so we quotient

them by ϕ1 ∼ ϕ2 ⇐⇒ ϕ1(h, n) ∼h ϕ2(h, n) for all h ∈ H and

n ∈ N . 15



Relaxed actions

We call an H-relaxation E and a compatible action ϕ, a relaxed action

action (E, [ϕ]).

The idea is that in the group setting we were able to verify a number

of identities involving the action by right multiplying equations by s(h)

and then cancelling later.

We cannot do this for monoids and so the H-relaxation remembers

the s(h).

This is sufficient to generalise all of the previous cases.
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Characterizing weakly Schreier extensions

Let (E, [ϕ]) be a relaxed action of H on N .

Theorem

The set N ×H/E equipped with multiplication

[n1, h1] · [n2, h2] = [n1ϕ(h1, n2), h1h2],

is a monoid.

Theorem

The diagram

N N ×H/E H
k e

s

where k(n) = [n, 1], e([n, h]) = h and s(h) = [1, h], is a weakly

Schreier extension.
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Cosetal extensions

We can construct a theory associated to relaxed actions in the obvious

way.

A (right) cosetal extension N G H
k e

is an extension in which

if e(g) = e(g′) then there exists an n such that k(n)g = g′.

These are precisely the monoid extensions in which H is the monoid of

right cosets of N .

These generalise special Schreier extensions, Leech’s extensions of

groups by monoids, Fulp and Steppe’s central monoid extensions.

Each cosetal extension has an associated relaxed action.
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Extracting the equivalence relation

Let N G H
k e

be a cosetal extension and s a set theoretic

splitting of e.

We may define an H-indexed equivalence relation where

n ∼h n′ ⇐⇒ k(n)s(h) = k(n′)s(h). This is an H-relaxation of N .

If s′ is another splitting then e(s(h)) = e(s′(h)) and so there exists an

a such that k(a)s(h) = s′(h).

Now if k(n)s(h) = k(n′)s(h) then consider the following calculation.

k(n)s′(h) = k(n)k(a)s(h)

= k(a)k(n)s(h)

= k(a)k(n′)s(h)

= k(n′)s′(h).
19



Extracting the action

For the action note that e(s(h)) = h = e(s(h)k(n)) thus there exist

ϕ(h, n) such that kϕ(h, n)s(h) = s(h)k(n).

For any choice of these ϕ(h, n) they form a compatible action relative

to the equivalence relation discussed.

To see that ϕ(h, nn′) ∼h ϕ(h, n)ϕ(h, n′) observe

ϕ(h, nn′)s(h) = s(h)k(nn′)

= s(h)k(n)k(n′)

= ϕ(h, n)s(h)k(n′)

= ϕ(h, n)ϕ(h, n′)s(h).

All choices of ϕ(h, n) give compatible actions which are equivalent.
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Relaxed factor sets

Cosetal extensions may then be characterised by a relaxed action and a

class of relaxed factor sets.

These are function g : H ×H → N satisfying that

g(x, y)g(xy, z) ∼xyz ϕ(x, g(y, z))g(x, yz)

The set of these relaxed factor sets form a group.

Quotienting by an appropriate notion of relaxed inner factor set gives

the second cohomology group H2(N,H,E, ϕ).

Its elements correspond to cosetal extensions with associated relaxed

action (E,ϕ).
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