Semigroup Identities of Tropical Matrices

Zur Izhakian

Semigroup Identities

Let ${\mathcal A}$ be a countably infinite set of "letters" – an alphabet.

 $\mathcal{A}^+ := (\mathcal{A}^+, \circ)$ is the free semigroup generated by \mathcal{A} , where \circ is concatenation. Its elements are called words.

Def. A semigroup identity is a formal equality

 $\Pi: u = v,$

where u and v are elements (words) of the free semigroup A^+ . (For a monoid identity, we allow u and v to be the empty word.)

<ロト < 団 ト < 臣 ト < 臣 ト 三 2/35

Semigroup Identities

A semigroup $S := (S, \cdot)$ satisfies a semigroup identity $\Pi : u = v$, if $\varphi(u) = \varphi(v)$ for every morphism $\varphi : \mathcal{A}^+ \to S$.

Prop. A semigroup that satisfies an *n*-letter identity, $n \ge 2$, also satisfies a 2-letter identity of the same length.

For $\mathcal{A} = \{a, b\}$, S satisfies an identity $\Pi : u = v$, written $\langle u, v \rangle \in \mathrm{Id}(S)$, if

$$u \llbracket s', s'' \rrbracket = v \llbracket s', s'' \rrbracket, \qquad a := s', \ b := s'',$$

for any $s', s'' \in S$.

Semigroup Identities: Examples

- A commutative semigroup satisfies the identity $\Pi : ab = ba$, written $ab [\![s', s'']\!] = ba [\![s', s'']\!]$.
- Any idempotent semigroup satisfies the identity $\Pi: a^n = a^m$ for any $n, m \in \mathbb{N}$.
- The semigroup

$$S = \left\{ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \right\}$$

<ロ > < 団 > < 臣 > < 臣 > 王 > 2000 4/35

of 2×2 boolean matrices satisfies the identity $\Pi : a^2b^2 = b^2a^2$, written $a^2b^2 \llbracket s', s'' \rrbracket = b^2a^2 \llbracket s', s'' \rrbracket$.

Semigroup Identities: Groups

- Gromov's theory implies that every finitely generated group having polynomial growth satisfies a nontrivial semigroup identity (since it is virtually nilpotent).
- Shneerson gave examples that show that this does not hold for semigroups.

<ロト<団ト<臣ト<臣ト 5/35

Semigroup Identities: Semigroups

Qu. Given an identity $\Pi : u = v$ and a semigroup $S := (S, \cdot)$, does S satisfy the identity Π ?

Possible approach for solution:

Use a faithful linear representation

$$\rho: S \longrightarrow M_n(\mathbb{T}),$$

where $M_n(\mathbb{T})$ is the monoid of $n \times n$ tropical matrices, and then prove the identity for the image of S.

Qu. Does the monoid $M_n(\mathbb{T})$ satisfy a nontrivial identity?

The Tropical Semiring

A semiring $(R, +, \cdot)$ is a set R equipped with two binary operations + and \cdot , called addition and multiplication, such that (R, \cdot) is a monoid and (R, +) is a commutative monoid, with distributivity of multiplication over addition on both sides.

The **tropical semiring** $\mathbb{T} := \mathbb{R} \cup \{-\infty\}$ is the set of real numbers, equipped with the operations of maximum and summation

$$a \lor b := \max\{a, b\}, \quad a \cdot b := a + b,$$

providing respectively the addition and multiplication.

 $\mathbb{T} := (\mathbb{T}, \lor, \cdot)$ is a commutative idempotent semiring whose unit is "1" := 0 and whose zero is "0" := $-\infty$.

< □ > < @ > < E > < E > E 2/35

Matrices over the tropical semiring \mathbb{T} are defined in the standard way. They form the semiring $M_n(\mathbb{T})$, whose addition and multiplication are induced by the operations of \mathbb{T} .

The unit matrix of $M_n(\mathbb{T})$ is the matrix

$$I = \begin{pmatrix} 0 & \dots & -\infty \\ \vdots & \ddots & \vdots \\ -\infty & \dots & 0 \end{pmatrix}.$$

 $M_n(\mathbb{T})$ is referred to as a multiplicative monoid.

Any $n \times n$ tropical matrix $A := (a_{i,j})$ corresponds uniquely to the weighted digraph $G_A = (V, E)$ defined to have vertex set $V = \{1, \ldots, n\}$, and an edge $(i, j) \in E$ from i to j, of weight $a_{i,j}$, whenever $a_{i,j} \neq -\infty$.

For example:

$$A := \begin{pmatrix} a_{1,1} & a_{1,2} \\ -\infty & a_{2,2} \end{pmatrix} \quad \text{ corresponds to } \begin{array}{c} a_{1,1} & v_1 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

The (i, j)-entry of A^k gives the highest weight of a walk from i to j of length k.

The entries of a matrix product AB correspond to labeled-weighted walks on the digraph $G_{AB} = G_A \cup G_B$. For example:

$$\begin{pmatrix} a_{1,1} & a_{1,2} \\ -\infty & a_{2,2} \end{pmatrix} \begin{pmatrix} b_{1,1} & b_{1,2} \\ -\infty & b_{2,2} \end{pmatrix} \Rightarrow a_{1,1} & v_1 \\ b_{1,1} & v_1 \\ a_{1,2} & v_2 \\ b_{2,2} & v_2 & a_{2,2} \end{pmatrix}$$

- The trace $tr(A) = \sum_{i} a_{i,i}$ is the usual trace taken with respect to summation, although it corresponds to the tropical product of diagonal entries.
- The **permanent** of a matrix $A := (a_{i,j})$ is defined as:

$$per(A) = \bigvee_{\pi \in \mathcal{S}_n} \sum_{i} a_{i,\pi(i)},$$

where S_n is the set of all permutations over $\{1, \ldots, n\}$.

The weight of a permutation $\pi \in S_n$ is $\omega(\pi) = \sum_i a_{i,\pi(i)}$, so that $per(A) = \bigvee_{\pi \in S_n} \omega(\pi)$.

• A is nonsingular, if there exists a unique permutation $\tau_A \in S_n$ that reaches per(A); that is, $per(A) = \omega(\tau_A) = \sum_i a_{i,\tau_A(i)}$. Otherwise, A is said to be singular.

The permanent is not multiplicative!

Ex. Take the nonsingular matrix

$$A = \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix}$$
 for which $A^2 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

Then $per(A)^2 = 4$, $per(A^2) = 5$, and $per(A^2) \neq per(A)^2$.

Thm. (I., 2007) For any matrices $A, B \in M_n(\mathbb{T})$,

 $\operatorname{per}(AB) \ge \operatorname{per}(A)\operatorname{per}(B).$

<ロト < 団 ト < 臣 ト < 臣 ト 三 12/35

If AB is nonsingular, then per(AB) = per(A) per(B) and $\tau_{AB} = \tau_A \circ \tau_B$.

The tropical rank rk_{tr}(A) of A is the largest k for which A has a k × k nonsingular submatrix.

Equivalently, $rk_{tr}(A)$ is the maximal number of independent columns (or rows) of A for an adequate notion of independence.

• The factor rank $\operatorname{rk}_{\mathrm{fc}}(A)$ of A is the smallest k for which A can be written as A = BC with $B \in M_{n,k}$ and $C \in M_{k,n}$.

Equivalently, $\operatorname{rk}_{\operatorname{fc}}(A)$ is the minimal number of vectors whose tropical span contains the span of the columns (or rows) of A, or the minimal number of rank-one matrices A_i needed to write A additively as $A = \bigvee_i A_i$.

<ロト < 副 ト < 臣 ト < 臣 ト 三 2000 13/35 By definition, a matrix $A \in M_n(\mathbb{T})$ is nonsingular iff $\operatorname{rk}_{\operatorname{tr}}(A) = n$. Tropical nonsingularity (and dependence) does not coincide with spanning.

For example, the vectors

$$\mathbf{v}_1 = (0, 0, -\infty), \quad \mathbf{v}_2 = (0, -\infty, 0), \quad \mathbf{v}_3 = (-\infty, 0, 0),$$

<ロト < 団 ト < 臣 ト < 臣 ト 三 2000 14/35

are dependent, but none of them can be written in terms of the others.

It is well known that the above notions of rank do not coincide. Nevertheless, the inequality

$$\operatorname{rk}_{\operatorname{tr}}(A) \leqslant \operatorname{rk}_{\operatorname{fc}}(A)$$

holds for every $A \in M_n(\mathbb{T})$.

Thm. (I., Merlet, 2018)

 $\operatorname{rk}_{\operatorname{fc}}(A^t) \leqslant \operatorname{rk}_{\operatorname{tr}}(A)$

<ロト < 団 ト < 臣 ト < 臣 ト 三 · 少。〇 15/35

for any $A \in M_n(\mathbb{T})$ and $t \ge (n-1)^2 + 1$.

Tropical Linear Representation

A finite dimensional tropical linear representation of a semigroup $S:=(S,\cdot\)$ is a semigroup homomorphism

$$\rho: S \longrightarrow M_n(\mathbb{T}), \qquad \rho(s's'') = \rho(s')\rho(s''), \ \forall s', s'' \in S,$$

where $M_n(\mathbb{T})$ is realized as an associative semialgebra of linear operators acting on the space \mathbb{T}^n .

 ρ is a **faithful representation**, if it is injective.

To prove that S satisfies a semigroup identity $\Pi : u = v$:

- Find a faithful tropical linear representation ρ of S,
- Use "tropical techniques" to prove the semigroup identity for $\rho(S) \subset M_n(\mathbb{T}).$

<ロト < 聞 ト < 臣 ト < 臣 ト 三 2000 16/35

Proving Identities of Tropical Matrices

To prove that a matrix subsemigroup $\mathcal{M}_n \subset M_n(\mathbb{T})$ admits a given identity $\Pi : u = v$ we have different approaches:

- To use generic matrices whose entries are variables, treated as functions.
- To realize matrices as labeled-weighted digraphs, and to compare walks on such graphs.
- To consider matrices as linear operators and to analyze their actions on the space.

<ロト < 団 ト < 臣 ト < 臣 ト 三 2000 17/35

Identities of Matrices

A matrix semigroup $\mathcal{M}_n \subset M_n(\mathbb{T})$ satisfies the semigroup identity $\Pi : u = v$,

if
$$\varphi(u) = \varphi(v)$$
 for every morphism $\varphi : \mathcal{A}^+ \longrightarrow \mathcal{M}_n$,

written $u \llbracket A, B \rrbracket = v \llbracket A, B \rrbracket$ for any $A, B \in \mathcal{M}_n$.

Any semigroup identity $\Pi : u = v$ of $M_n(\mathbb{T})$

- is balanced the number of occurrences of each letter is the same in u and in v;
- is k-uniform each letter appears in u and v exactly k times;

<ロト<日、<日、<日、<日、<日、<日、<日、<日、<日、<日、<日、<日、<18/35

▶ is **uniform** – it is *k*-uniform for some *k*.

The Bicyclic Monoid

The **bicyclic monoid** $\mathcal{B} = \langle p, q \rangle$ is the monoid generated by two elements p and q, satisfying the relation

$$pq = e$$
.

Each element w of \mathcal{B} can be written uniquely as

$$w = q^i p^j, \qquad i, j \in \mathbb{Z}_+$$

 \mathcal{B} is faithfully represented by the map $\rho: \mathcal{B} \to M_2(\mathbb{T})$, given by

$$p \mapsto \begin{pmatrix} -1 & -1 \\ -\infty & 1 \end{pmatrix}, \quad q \mapsto \begin{pmatrix} 1 & -1 \\ -\infty & -1 \end{pmatrix}, \quad e \mapsto \begin{pmatrix} 0 & -2 \\ -\infty & 0 \end{pmatrix}.$$

◆□ → < □ → < Ξ → < Ξ → < Ξ → ○ 19/35 Thm. (Adjan 67) The bicyclic monoid \mathcal{B} satisfies the semigroup identity $ab^2a \ ab \ ab^2a = ab^2a \ ba \ ab^2a.$

Therefore, $M_2(\mathbb{T})$ has a nontrivial submonoid that admits a semigroup identity.

Combinatorial Approach

Given two matrices $A := (a_{i,j})$ and $B := (b_{i,j})$, we write

$$A \sim_{\text{diag}} B \iff a_{i,i} = b_{i,i}, \text{ for all } i = 1, \dots, n.$$

A and B are said to be **diagonally equivalent**, if $A \sim_{\text{diag}} B$. The products AB and BA of any two triangular matrices A and B is always diagonally equivalent:

$$AB \sim_{\text{diag}} BA.$$

<ロト < 団 ト < 臣 ト < 臣 ト 三 21/35

Rem. The digraph of a triangular matrix is acyclic.

Combinatorial Approach

Let x = ab and y = ba. The Adjan's identity

$$ab^2a \underline{ab} ab^2a = ab^2a \underline{ba} ab^2a.$$

can be written as

$$xy \underline{x} xy = xy y xy.$$

Let $X \sim_{\text{diag}} Y$ be diagonally equivalent matrices in $M_2(\mathbb{T})$. The (i, j)-entry of the matrix product $XY\underline{X}XY$ corresponds to a labeled walk $\gamma_{i,j}$ from i to j of highest weight and length 5 on $G_{XY\underline{X}XY}$.

Lem. (1., 2013) If the contribution of $G_{\underline{X}}$ to a walk $\gamma_{i,j}$ on $G_{XY\underline{X}XY}$ is not a loop, then there is another walk $\gamma'_{i,j}$ on $G_{XY\underline{X}XY}$ from *i* to *j* of the same length and the same weight for which the contribution of G_X is a loop.

2×2 Tropical Matrices

Thm. (I., Margolis, 2009) The submonoid $U_2(\mathbb{T})$ of upper triangular tropical matrices admits the Adjan's identity

$$ab^2a \underline{ab} ab^2a = ab^2a \underline{ba} ab^2a ,$$

i.e., $xy \underline{x} xy \llbracket AB, BA \rrbracket = xy \underline{y} xy \llbracket AB, BA \rrbracket$ for any $A, B \in U_2(\mathbb{T})$.

Thm. (I., Margolis, 2009) The monoid $M_2(\mathbb{T})$ admits the identity

$$a^{2}b^{4}a^{2} \underline{a^{2}b^{2}} a^{2}b^{4}a^{2} = a^{2}b^{4}a^{2} \underline{b^{2}a^{2}} a^{2}b^{4}a^{2} ,$$

i.e., $xy \underline{x} xy \llbracket A^2 B^2, B^2 A^2 \rrbracket = xy \underline{y} xy \llbracket A^2 B^2, B^2 A^2 \rrbracket$ for any $A, B \in M_2(\mathbb{T})$.

<ロト < 団 ト < 臣 ト < 臣 ト 三 23/35

Power Words

Let \mathcal{A} be a finite (nonempty) alphabet, and let $p, n \in \mathbb{N}_+$.

Def. (1., 2013) A (p, n)-power word $\widetilde{w}_{(p,n)}$ is a word in \mathcal{A}^+ such that:

- (a) Each letter $a_i \in \mathcal{A}$ may appear in $\widetilde{w}_{(p,n)}$ at most p-times sequentially, i.e., $a_i^q \nmid \widetilde{w}_{(p,n)}$ for any q > p and $a_i \in \mathcal{A}$;
- (b) Every word u ∈ A⁺ of length n that satisfies rule (a) is a factor of w̃_(p,n).

 $\widetilde{w}_{(p,n)}$ is called an n-power word, if p = n.

A (p, n)-power word is **uniform**, if it is uniform as a word.

A (p, n)-power word needs not be unique in \mathcal{A}^+ . Different (p, n)-power words may have different length, and they can be concatenated to a new (p, n)-power word.

<ロト < 団 ト < 臣 ト < 臣 ト 三 24/35

Power Words

Ex. Let
$$\mathcal{A} = \{x, y\}$$
.
1. The 2-power word $\widetilde{w}_{(2,2)} = x^2 y^2 x$ is not uniform, while

$$\widetilde{w}_{(2,2)} = yx^2y^2x$$

is uniform of length 6.

2. $\widetilde{w}_{(2,3)}=xy^2xyx^2y$ is a uniform (2,3) -power word of length 8. $\widetilde{w}_{(3,3)}=xy^3xyx^3y$

is a uniform 3-power word of length 10.

3. The word

$$\widetilde{w}_{(2,4)} = xyx^2y^2x^2yxy^2xyxy$$

is a uniform (2,4)-power word of length 16.

Semigroup Identities

Let $\widetilde{w}_{(p,n)}$ be a uniform $(p,n)\text{-power word over }\mathcal{A}=\{x,y\}$ such that the words

$$\widetilde{w}_{(p,n)} \ \underline{x} \ \widetilde{w}_{(p,n)}$$
 and $\widetilde{w}_{(p,n)} \ \underline{y} \ \widetilde{w}_{(p,n)}$

are both (p, n)-power words.

Define the 2-letter identity

$$\Pi_{(p,n)}: \quad \widetilde{w}_{(p,n)} \ \underline{x} \ \widetilde{w}_{(p,n)} = \widetilde{w}_{(p,n)} \ \underline{y} \ \widetilde{w}_{(p,n)}.$$

<ロト < 団 ト < 臣 ト < 臣 ト 三 2000 26/35

To refine $\Pi_{(p,n)}$ to a uniform identity, substitute x := ab and y := ba.

Semigroup Identities

Ex. Let
$$\mathcal{A} = \{x, y\}$$
.

1. Using the uniform 2-power word $\widetilde{w}_{(2,2)}=yx^2y^2x$, we obtain the identity

$$\Pi_{(2,2)}: \ yx^2y^2x \ \underline{x} \ yx^2y^2x = yx^2y^2x \ \underline{y} \ yx^2y^2x \ .$$

2. Taking the uniform 3-power word $\widetilde{w}_{(3,3)}=xy^3xyx^3y$, we obtain the identity

 $\Pi_{(3,3)}: \ xy^3xyx^3y \ \underline{x} \ xy^3xyx^3y = xy^3xyx^3y \ \underline{y} \ xy^3xyx^3y \ .$

<ロト < 団 ト < 臣 ト < 臣 ト 三 27/35

These identities become uniform by substituting x := ab, y := ba,

Triangular Matrices

Think of $\langle U \rangle = \widetilde{w}_{(n-1,n-1)} \llbracket X, Y \rrbracket$ as a word with letters $X, Y \in M_n(\mathbb{T})$, and let $G_{\langle Z \rangle}$ be the labeled-weighted digraph of $\langle Z \rangle = \langle U \rangle \underline{X} \langle U \rangle$.

The (i, j)-entry of the matrix Z corresponds to a labeled walk $\gamma_{i,j}$ on $G_{\langle Z \rangle}$ from i to j of highest weight and length $\ell(\langle Z \rangle)$.

Lem. (1., 2013) Let $X \sim_{\text{diag}} Y$ be diagonally equivalent matrices in $M_n(\mathbb{T})$. If the contribution of $G_{\underline{X}}$ to $\gamma_{i,j}$ is not a loop, then there is another walk $\gamma'_{i,j}$ from i to j on $G_{\langle Z \rangle}$ of the same length and the same weight for which the contribution of G_X is a loop.

<ロト < 団 ト < 臣 ト < 臣 ト 三 28/35

Tropical Triangular Matrices

Thm. (I., 2013) Any two diagonally equivalent matrices $X \sim_{\text{diag}} Y$ in $U_n(\mathbb{T})$ satisfy the identity:

 $\Pi_{(m,m)}: \ \widetilde{w}_{(m,m)} \ \underline{x} \ \widetilde{w}_{(m,m)} = \widetilde{w}_{(m,m)} \ \underline{y} \ \widetilde{w}_{(m,m)},$

where $\mathcal{A} = \{x, y\}$ and m = n - 1.

Ex. Diagonally equivalent matrices admit the following identities.
In U₂(T)

$$xy \underline{x} xy = xy y xy.$$

• In $U_3(\mathbb{T})$

$$yx^2y^2x \underline{x} yx^2y^2x = yx^2y^2x \underline{y} yx^2y^2x.$$

<ロト<団ト<臣ト<臣ト 29/35

Tropical Triangular Matrices

Thm. (I., 2013) The submonoid $U_n(\mathbb{T}) \subset M_n(\mathbb{T})$ of upper triangular tropical matrices satisfies the semigroup identity

$$\Pi_{(m,m)}: \ \widetilde{w}_{(m,m)} \ \underline{x} \ \widetilde{w}_{(m,m)} = \widetilde{w}_{(m,m)} \ \underline{y} \ \widetilde{w}_{(m,m)},$$

where $\mathcal{A} = \{x, y\}$, m = n - 1, by letting x = AB, y = BA, i.e.,

$$\widetilde{w}_{(m,m)} \ \underline{x} \ \widetilde{w}_{(m,m)} \ \llbracket AB, BA \, \rrbracket = \widetilde{w}_{(m,m)} \ \underline{y} \ \widetilde{w}_{(m,m)} \ \llbracket AB, BA \, \rrbracket \, .$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Nonsingular Matrix Subsemigroups

A matrix subsemigroup $\mathcal{M}_n \subset M_n(\mathbb{T})$ is **nonsingular**, if each $X \in \mathcal{M}_n$ is nonsingular.

Thm. (I., 2014) Any nonsingular subsemigroup $\mathcal{M}_n \subset M_n(\mathbb{T})$ of tropical matrices satisfies the semigroup identities

$$\Pi_{(m,m)}: \ \widetilde{w}_{(m,m)} \ \underline{x} \ \widetilde{w}_{(m,m)} = \widetilde{w}_{(m,m)} \ \underline{y} \ \widetilde{w}_{(m,m)},$$

where $\mathcal{A} = \{x, y\}$, m = n - 1, by letting $x = A^{n!}B^{n!}$, $y = B^{n!}A^{n!}$.

General Matrices

Lem. (Shitov, 2015) Let $A, B, C \in M_n(\mathbb{T})$ such that A = PQ, where $P \in M_{n \times k}(\mathbb{T})$, $Q \in M_{k \times n}(\mathbb{T})$, k < n, and let $w \in \{a, b\}^+$. Then

 $(wa) \llbracket AB, AC \rrbracket = P(w \llbracket QBP, QCP \rrbracket) QB.$

Thm. (I., Merlet, 2018) $\operatorname{rk}_{\operatorname{fc}}(A^t) \leq \operatorname{rk}_{\operatorname{tr}}(A)$ for any $A \in M_n(\mathbb{T})$ and $t \geq (n-1)^2 + 1$.

Thm. (I., Merlet, 2018) The monoid $M_n(\mathbb{T})$ satisfies a nontrivial semigroup identity for every $n \in \mathbb{N}$:

 $\langle ua, va \rangle \left[\left((qr)^t \right) \left[a^{\overline{n}}, b^{\overline{n}} \right], \left((qr)^t r \right) \left[a^{\overline{n}}, b^{\overline{n}} \right] \right],$

with $\overline{n} = \text{lcm}(1, ..., n)$, $\langle q, r \rangle \in \text{Id}(U_n(\mathbb{T}))$, $\langle u, v \rangle \in \text{Id}(M_{n-1}(\mathbb{T}))$. The length of this identity grows with n as $e^{Cn^2 + o(n^2)}$ for some $C \leq 1/2 + \ln(2)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Digraph View

Cor. (I., Merlet, 2018) For any labeled-weighted digraph G, having (parallel) arcs labeled by $\{a, b\}$, there exist two different labeling sequences $u, v \in \{a, b\}^+$, each determines a different labeled walk of length $\ell(u) = \ell(v)$ between any pair of vertices of G, but with the same highest weight

The Plactic Monoid

The **plactic monoid** \mathcal{P}_n is the presented monoid $\mathcal{A}_n^*/_{\equiv_{\mathrm{knu}}}$, i.e., the free monoid \mathcal{A}_n^* over an ordered alphabet \mathcal{A}_n modulo the congruence \equiv_{knu} determined by the **Knuth relations**

$$a c b = c a b \quad \text{if} \quad a \leq b < c ,$$

$$b a c = b c a \quad \text{if} \quad a < b \leq c .$$
(KNT)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thm. (I., 2016) \mathcal{P}_n has a tropical linear representation, which is faithful for n = 3.

Therefore, \mathcal{P}_3 admits a nontrivial semigroup identity, for example

$$\Pi_{(2,2)}: \ yx^2y^2x \ \underline{x} \ yx^2y^2x = yx^2y^2x \ \underline{y} \ yx^2y^2x$$

with x = pq, y = qp, for $p, q \in \mathcal{P}_3$.