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Motivation

Chomsky-Schützenberger Theorem (1963):
Let L be a language. Then the following are equivalent:

I L is context-free;

I L is accepted by a polycyclic monoid automaton of rank 2;

I L is accepted by a free group automaton of rank 2.

Greibach (1968): Let L be a language. Then the following are
equivalent:

I L is accepted by a bicyclic monoid automaton;

I L is accepted by a partially-blind one-counter automaton.



Motivation

Aims:

I To understand these theorems from a structure theoretical
point of view.

I To introduce the notion of a partially blind group automaton
with respect to a submonoid.

I To describe language classes accepted by automata over
bisimple F -inverse monoids with the help of partially blind
automata over their maximal group homomorphic image with
respect to a submonoid.

I To describe language classes accepted by automata over
bisimple strongly F ∗-inverse monoids with the help of partially
blind automata over their universal group homomorphic image
with respect to a submonoid.



Notation

Σ: finite set of symbols called an alphabet.

Σ∗: set of finite sequences of symbols elements of which
are called words.

L ⊆ Σ∗: language over Σ.

|w |a: number of occurrences of the letter a in the word w .



Notation

M: Inverse monoid

≤: Natural partial order on M:

s ≤ t ⇐⇒ s = et, e ∈ E (M).

σ: Minimum group congruence

sσt ⇐⇒ ∃u ∈ M such that u ≤ s and u ≤ t.

W (M, α): Let A be a choice of generators for a monoid M with
α : A∗ → M. The identity language for M with
respect to A is

W (M, α) = {w ∈ A∗ | α(w) = 1}.



E -unitary and F -inverse monoids

An inverse monoid M is E -unitary if

e ≤ s, e ∈ E (M) =⇒ s ∈ E (M).

It is well known that

M is E -unitary ⇐⇒ Kerσ = E (M).

An inverse monoid M is F -inverse if each σ-class contains a unique
maximal element.



Strongly E ∗-unitary monoids

Szendrei:
An inverse monoid M is E ∗-unitary if and only if

e ≤ s, 0 6= e ∈ E (M) =⇒ s ∈ E (M).

Bullman-Fleming, Fountain, Gould [1999]:
An inverse monoid M with zero is strongly E ∗-unitary if and only if
there exists a function θ : S → G 0 such that

I sθ = 0 ⇐⇒ s = 0;

I sθ = 1 ⇐⇒ s ∈ E (M);

I if st 6= 0, then (st)θ = sθtθ.

We call θ an 0-restricted idempotent-pure pre-homomorphism.



Strongly E ∗-unitary monoids

Bullman-Fleming, Fountain, Gould [1999]:
Let S be an inverse semigroup with zero. Then S is strongly
E ∗-unitary if and only if S ∼=M0(G ,X ,Y).



Strongly F ∗-inverse monoids

An inverse monoid M is F ∗-inverse if for each 0 6= s ∈ M, there
exists a unique element m ∈ M such that s ≤ m.

An inverse monoid M is strongly F ∗-inverse if M is F ∗-inverse and
strongly E ∗-unitary.



Finite state automata

Definition
A Finite State Automaton A is a tuple A = (Q,Σ, δ, q0,F ), where

I Q is a finite set of states;

I Σ is an alphabet;

I δ : Q × (Σ ∪ {ε})→ P(Q) transition relation;

I q0 ∈ Q is the initial state;

I F ⊆ Q is the set of final states.



Finite state automata

We can think of a FSA as a finite directed graph, where

I the set of vertices Q are the states of the automaton;

I q0 is a distinguished vertex called an initial state;

I F ⊆ Q terminal states;

I edges are labelled by elements of Σ ∪ {ε}.

A word w ∈ Σ∗ is accepted by the automaton A if there exists a
path from the initial vertex to a final vertex whose label is w . The
language accepted by A is

L(A) = {w ∈ Σ∗ | w is accepted by A}.



Finite state automata

Example

Consider A = ({q0, q1}, {a, b}, δ, q0, {q1}):

q0start q1

a,b

a,b

Then
L(A) = {w ∈ {a, b}+ | |w | = 2k + 1}.



Extended finite automata - Valence automata -
M-automata

A extended finite automaton over M is a finite state automaton
AM whose edges are labelled by elements of Σ∗ ×M.

A word is accepted by AM if there exists a path from the initial
vertex to a final vertex, whose label is (w , 1).

The language LA(M) in Σ∗ accepted by AM consists of all words
w ∈ Σ∗ that are accepted by AM .

We let L(M) denote the family of languages that are accepted by
M-automata.



M-automata

Example

Let M = Z =< a >, Σ = {x , y} and AM :

q0start q1

(x , a)

(ε, 1)

(y , a−1)

LA(M) = {xnyn | n ≥ 0}.



Partially blind one-counter automata: Greibach 1968

Consider a path p in a Z-automaton:

q0 q1 q2 qn−1 qn
(x1,a1) (x2,a2) . . . (xn,an)

Let
l2(pi ) = a1 + a2 + . . .+ ai , (1 ≤ i ≤ n)

A word is accepted by a partially blind automaton, if there exists a
path p from the initial vertex to a final vertex whose label is (w , 0)
and is such that l2(pi ) ≥ 0 for all 1 ≤ i ≤ |p|.

In case the counter would go negative, no further transitions are
defined and the machine is blocked.



Partially blind one-counter automata: Greibach 1968

We will denote the family of languages accepted by a partially
blind one-counter automaton A by L(Z|Z+).



General results

Proposition[Kambites 2009]
Let M and N be monoids and assume that M is generated by a
finite set X . Then W (M,X ) ∈ L(N) if and only if L(N) ⊆ L(M).

Proposition[Render, Kambites 2010]
For every monoid M there is a simple or 0-simple monoid N such
that L(M) = L(N).

Proposition[Render, Kambites 2010]
Let M be a monoid. Then either L(M) = L(G ), where G is a
group or L(M) contains the partially blind one-counter languages.



Examples

monoid M L(M)

finite monoid regular

bicyclic monoid P1 partially blind languages

polycylic monoid Pn, n ≥ 2 context free languages

free group Fn, n ≥ 2 context free languages

Zn blind n-counter languages



Bicyclic and polycyclic monoids

Bicylic monoid: P1 Polycyclic monoid: P2

bisimple 0-bisimple

F -inverse strongly F ∗-inverse

σ : P1 → Z φ : P2 → F 0
2 suitable homomorphism

L(P1) = L(Z|Z+) L(P2) = L(F2)

Kambites: “The polycyclic monoid automaton apparently makes
fundamental use of its ability to fail, by reaching a zero
configuration of the register monoid. Since the free group has no
zero, the free group automaton seems to have no such capability,
and appears to be blind in a much more fundamental way.”



Partially blind automata over G with respect to M

Let G be a group and M be a submonoid of G .

A partially blind automaton A over G with respect to M is a
G -automaton in which a word w is accepted if

I there exists a path p from the initial vertex to a final vertex,
whose label is (w , 1)

I l2(pi ) ∈ M for all 1 ≤ i ≤ |p|.
We let

LA(G |M)

denote the language accepted by such an automaton.
We let L(G |M) denote the family of languages accepted by
partially blind automata over G with respect to M.



Example: Bicyclic monoid

The bicyclic monoid is given by the monoid presentation

P1 =< a, b : ab = 1 > .

The identity language of P1 is:

W (P1) = {w ∈ {a, b}+ : |w |a = |w |b, if w = uv then |u|a ≥ |u|b}.



Bicyclic monoid: P-representation
Let G = Z, X = Z and Y = Z−. Let αm : ek → ek+m.

α5

1 = e0

ba = e−1

b2a2 = e−2

b3a3 = e−3

b4a4 = e−4

b5a5 = e−5

b6a6 = e−6

e6

e5

e4

e3

e2

e1

e0

e−1

e−2

e−3

e−4

e−5

e−6



Bicyclic monoid: P-representation

P(Z,X ,Y) = {(e, g) ∈ Y × G | g−1
e ∈ Y}

ϕ : P1 → P(Z,X ,Y); a 7→ (e0, 1) b 7→ (e−1,−1)



Bicyclic monoid: Identity language

Observation: Let

w ≡ (f0, h0)(f1, h1) . . . (fn, hn),

where (fi , hi ) ∈ {(e0, 1), (e−1,−1)}.
Then

w = (e, 0) ⇐⇒ f0 = e0

h0 + . . .+ hn = 0

h0 + . . .+ hi ∈ Z+ (1 ≤ i ≤ n − 1)



Bicyclic monoid: L(P1) = L(Z|Z+)

Replace each arrow

ri ri+1
(xi ,(fi ,hi ))

with

ri ri+1
(xi ,hi )

and vica versa.



Bisimple E -unitary inverse semigroups

Theorem [Clifford,Reilly,McAlister 1968]
Let S be an E -unitary bisimple inverse monoid and R be the
R-class of 1. Then

I S = R−1R;

I R is a cancellative submonoid;

I principal left-ideals of R form a semilattice under intersection;

I R can be embedded in S/σ.



Bisimple E -unitary inverse semigroups

Theorem [McAlister 1974]
Let S be an E -unitary bisimple inverse monoid and R be the
R-class of 1. Let G = S/σ. Let

X = {Rg | g ∈ G} and Y = {Ra | a ∈ R}

and define a transitive action of G on Y by hRg = Rgh−1. Let

P(G ,X ,Y) = {(Ra, g) ∈ Y × G | Rag ∈ Y}

with
(Ra, g)(Rb, h) = (Ra ∩ gRb, gh).

Then
S ∼= P(G ,X ,Y); a−1b 7→ (Ra, a−1b).



Bisimple E -unitary inverse semigroups

Observation:

(R, 1) = (Ra1, g1)(Ra2, g2) . . . (Ran, gn) =⇒1 = a1

1 = g1 . . . gn

g1 . . . gi ∈ R

(1 ≤ i ≤ n)

Conjecture [P Davidson, ED]: Let S is a bisimple F -inverse
semigroup and let R denote the R-class of 1. Then
L(S) = L(S/σ|R/σ).



Polycyclic monoids

The polycyclic monoid of rank 2 is defined by the monoid
presentation

P2 =< a, b, a−1, b−1 | aa−1 = bb−1 = 1, ab−1 = ba−1 = 0 for i 6= j > .

Properties of P2:

I combinatorial;

I 0-bisimple;

I strongly F ∗-unitary;

I θ : P2 → F 0
2 idempotent pure pre-homomorphism;

I θ : u−1v 7→ red(u−1v), 0 7→ 0.

We let Σ = {a, b}.



Polycyclic monoid: identity language

Proposition [Schützenberger, Chomsky, Corson]
For all nonempty word w ∈ A∗, if w ∈W (P2), then either

I w = uv , where u, v ∈W \ {∅}, or

I w = aWa−1 or w = bWb−1.

Note: W is the language of properly matched arrangements of
parenthesis and brackets:

a = ( a−1 =) b = [ b−1 =]

(restricted Dyck language)



Polycyclic monoids: P∗-representation

Y:

Σ∗

Σ∗a

Σ∗aa

Σ∗aaa Σ∗baa

Σ∗ba

Σ∗aba Σ∗bba

Σ∗b

Σ∗ab

Σ∗aab Σ∗bab

Σ∗bb

Σ∗abb Σ∗bbb

+{∅}



Polycyclic monoids: P∗-representation



Polycyclic monoids: P∗-representation
Action of G on X :

gΣ∗u = Σ∗ug−1.



Polycyclic monoids: P∗-representation

McAlister 0-triple:
(F2, X , Y) :

I X is a partially ordered set;

I Y is a subsemilattice and order ideal of X ;

I GY = X ;

I gY ∩ Y 6= ∅ for all g ∈ G ;

I X has a smallest element: ∅.

P(G ,X ,Y) = {(A, g) ∈ Y × G : Ag ∈ Y}.



Polycyclic monoids: P∗-representation

ϕ :P2 → P0(G ,X ,Y) = P(G ,X ,Y)/({∅} × G )

u−1v 7→ (Σ∗u, u−1v), 0 7→ 0

a 7→ (Σ∗, a), b 7→ (Σ∗, b)

a−1 7→ (Σ∗a, a−1), b−1 7→ (Σ∗b, b−1)



Polycyclic monoid: Identity language

Observation: Let

w ≡ (f0, h0)(f1, h1) . . . (fn, hn),

where (fi , hi ) ∈ {(Σ∗, a), (Σ∗, b), (Σ∗a, a−1), (Σ∗b, b−1)}.
Then

w = (Σ∗, 1) ⇐⇒ f0 = Σ∗

h0h1 . . . hn = 1

h0 . . . hi ∈ Σ∗ (1 ≤ i ≤ n − 1)



Polycylic monoid: L(P2) = L(F2|Σ∗)

Replace each arrow

ri ri+1
(xi ,(Σ∗ai ,hi ))

with

ri ri+1
(xi ,hi )

and vica versa.



0-bisimple strongly E ∗-unitary inverse semigroups

Theorem [Lawson 1999]
Let S be a 0-bisimple strongly E ∗-unitary inverse monoid and R be
the R-class of 1.Then

I S∗ = R−1R;

I R is a cancellative submonoid;

I principal left-ideals of R are either disjoint or intersect in a
principal left ideal;

I R can be embedded in a group.



0-bisimple strongly E ∗-unitary inverse semigroups

Theorem [Jiang]
Let M be an 0-bisimple strongly E ∗-unitary inverse monoid and R
be the R-class of 1. Let θ : M → G 0 be a suitable homomorphism.
Let

Y = {Ra | a ∈ R}∪{∅} and X = {Ag | A ∈ Y, g ∈ G}∪{∅}

and define a transitive action of G on X by hAg = Agh−1. Then
(G ,X ,Y) is a McAlister 0-triple and we can construct

P(G ,X ,Y) = {(Ra, g) ∈ Y × G | Rag ∈ Y}

with
(Ra, g)(Rb, h) = (Ra ∩ gRb, gh).

Then
S ∼= P0(G ,X ,Y); a−1b 7→ (Ra, a−1b).



0-bisimple strongly E ∗-unitary inverse semigroups

Observation:

(R, 1) = (Ra1, g1)(Ra2, g2) . . . (Ran, gn) =⇒1 = a1

1 = g1 . . . gn

g1 . . . gi ∈ R

(1 ≤ i ≤ n)

Conjecture [P Davidson, ED]: Let S be a 0-bisimple strongly
F ∗-inverse monoid and let R denote the R-class of 1. Let G be a
fundamental group of M. Then L(S) = L(G |R).



Semidirect products

Observation: Let Y be a semilattice and G be a group acting on
Y on the left by automorphisms. Assume that S = Y o G is
finitely generated. Then, for any maximal element e ∈ Y , we have
that L(S , {e}) = L(G ).



Further questions

I Understand the relationship between the language classes
L(G ) and L(G |M).

I Understand properties of languages in L(G |M).

I Understand the relationship between L(S) and L(S/σ), where
S is an E -unitary or strongly E ∗-unitary inverse semigroup.

I Understand if L(S) can be described in terms of L(S/σ|M)
for arbitrary E -unitary inverse semigroups.



Thank you for listening!
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