Valence automata over E-unitary inverse semigroups

Erzsi Dombi

30 May 2018

Outline

Motivation

Notation and introduction

Valence automata

Bicyclic and polycyclic monoids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Motivation

Chomsky-Schützenberger Theorem (1963):

Let *L* be a language. Then the following are equivalent:

- L is context-free;
- L is accepted by a polycyclic monoid automaton of rank 2;
- ► *L* is accepted by a free group automaton of rank 2.

Greibach (1968): Let L be a language. Then the following are equivalent:

- L is accepted by a bicyclic monoid automaton;
- L is accepted by a partially-blind one-counter automaton.

Motivation

Aims:

- To understand these theorems from a structure theoretical point of view.
- To introduce the notion of a partially blind group automaton with respect to a submonoid.
- To describe language classes accepted by automata over bisimple *F*-inverse monoids with the help of partially blind automata over their maximal group homomorphic image with respect to a submonoid.
- To describe language classes accepted by automata over bisimple strongly F*-inverse monoids with the help of partially blind automata over their *universal group* homomorphic image with respect to a submonoid.

Notation

- Σ : finite set of symbols called an *alphabet*.
- Σ^* : set of finite sequences of symbols elements of which are called *words*.
- $L \subseteq \Sigma^*$: language over Σ .
 - $|w|_a$: number of occurrences of the letter *a* in the word *w*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Notation

M: Inverse monoid

 \leq : Natural partial order on *M*:

$$s \le t \quad \iff \quad s = et, \ e \in E(M)$$

 σ : Minimum group congruence

$$s\sigma t \iff \exists u \in M \text{ such that } u \leq s \text{ and } u \leq t.$$

 $W(M, \alpha)$: Let A be a choice of generators for a monoid M with $\alpha : A^* \to M$. The *identity language* for M with respect to A is

$$W(M,\alpha) = \{ w \in A^* \mid \alpha(w) = 1 \}.$$

E-unitary and F-inverse monoids

An inverse monoid M is E-unitary if

$$e \leq s, e \in E(M) \implies s \in E(M).$$

It is well known that

$$M$$
 is E -unitary \iff Ker $\sigma = E(M)$.

An inverse monoid M is *F*-inverse if each σ -class contains a unique maximal element.

Strongly E^* -unitary monoids

Szendrei:

An inverse monoid M is E^* -unitary if and only if

$$e \leq s, \ 0 \neq e \in E(M) \implies s \in E(M).$$

Bullman-Fleming, Fountain, Gould [1999]:

An inverse monoid M with zero is *strongly* E^* -*unitary* if and only if there exists a function $\theta: S \to G^0$ such that

•
$$s\theta = 0 \iff s = 0;$$

•
$$s\theta = 1 \iff s \in E(M);$$

• if
$$st \neq 0$$
, then $(st)\theta = s\theta t\theta$.

We call θ an 0-restricted idempotent-pure pre-homomorphism.

Bullman-Fleming, Fountain, Gould [1999]:

Let S be an inverse semigroup with zero. Then S is strongly E^* -unitary if and only if $S \cong \mathcal{M}_0(G, \mathcal{X}, \mathcal{Y})$.

An inverse monoid M is F^* -inverse if for each $0 \neq s \in M$, there exists a unique element $m \in M$ such that $s \leq m$.

An inverse monoid M is strongly F^* -inverse if M is F^* -inverse and strongly E^* -unitary.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finite state automata

Definition

A Finite State Automaton A is a tuple $A = (Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set of states;
- Σ is an alphabet;
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow \mathcal{P}(Q)$ transition relation;
- $q_0 \in Q$ is the *initial state*;
- $F \subseteq Q$ is the set of *final states*.

Finite state automata

We can think of a FSA as a finite directed graph, where

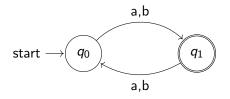
- ▶ the set of vertices *Q* are the states of the automaton;
- q₀ is a distinguished vertex called an initial state;
- $F \subseteq Q$ terminal states;
- edges are labelled by elements of $\Sigma \cup \{\epsilon\}$.

A word $w \in \Sigma^*$ is accepted by the automaton \mathcal{A} if there exists a path from the initial vertex to a final vertex whose label is w. The language accepted by \mathcal{A} is

 $L(\mathcal{A}) = \{ w \in \Sigma^* \mid w \text{ is accepted by } \mathcal{A} \}.$

Finite state automata

Example Consider $\mathcal{A} = (\{q_0, q_1\}, \{a, b\}, \delta, q_0, \{q_1\})$:



Then

$$L(\mathcal{A}) = \{ w \in \{a, b\}^+ \mid |w| = 2k + 1 \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Extended finite automata - Valence automata - *M*-automata

A extended finite automaton over M is a finite state automaton \mathcal{A}_M whose edges are labelled by elements of $\Sigma^* \times M$.

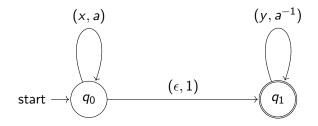
A word is accepted by A_M if there exists a path from the initial vertex to a final vertex, whose label is (w, 1).

The language $L_{\mathcal{A}}(M)$ in Σ^* accepted by \mathcal{A}_M consists of all words $w \in \Sigma^*$ that are accepted by \mathcal{A}_M .

We let $\mathcal{L}(M)$ denote the family of languages that are accepted by M-automata.

M-automata

Example Let $M = \mathbb{Z} = \langle a \rangle$, $\Sigma = \{x, y\}$ and \mathcal{A}_M :

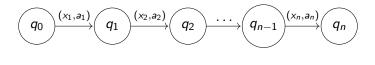


 $L_{\mathcal{A}}(M) = \{x^n y^n \mid n \ge 0\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Partially blind one-counter automata: Greibach 1968

Consider a path p in a \mathbb{Z} -automaton:



Let

$$l_2(p_i) = a_1 + a_2 + \ldots + a_i, \ (1 \le i \le n)$$

A word is accepted by a partially blind automaton, if there exists a path p from the initial vertex to a final vertex whose label is (w, 0) and is such that $l_2(p_i) \ge 0$ for all $1 \le i \le |p|$.

In case the counter would go negative, no further transitions are defined and the machine is blocked.

Partially blind one-counter automata: Greibach 1968

We will denote the family of languages accepted by a partially blind one-counter automaton \mathcal{A} by $\mathcal{L}(\mathbb{Z}|\mathbb{Z}^+)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

General results

Proposition[Kambites 2009]

Let M and N be monoids and assume that M is generated by a finite set X. Then $W(M, X) \in \mathcal{L}(N)$ if and only if $\mathcal{L}(N) \subseteq \mathcal{L}(M)$.

Proposition[Render, Kambites 2010]

For every monoid M there is a simple or 0-simple monoid N such that $\mathcal{L}(M) = \mathcal{L}(N)$.

Proposition[Render, Kambites 2010]

Let M be a monoid. Then either $\mathcal{L}(M) = \mathcal{L}(G)$, where G is a group or $\mathcal{L}(M)$ contains the partially blind one-counter languages.

Examples

monoid <i>M</i>	$\mathcal{L}(M)$
finite monoid	regular
bicyclic monoid P_1	partially blind languages
polycylic monoid P_n , $n \ge 2$	context free languages
free group F_n , $n \ge 2$	context free languages
\mathbb{Z}^n	blind <i>n</i> -counter languages

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

Bicyclic and polycyclic monoids

Bicylic monoid: P_1	Polycyclic monoid: P_2
bisimple	0-bisimple
<i>F</i> -inverse	strongly F^* -inverse $\phi:P_2 o F_2^0$ suitable homomorphism
$\sigma: P_1 \to \mathbb{Z}$	$\phi: P_2 \rightarrow F_2^0$ suitable homomorphism
$\mathcal{L}(P_1) = \mathcal{L}(\mathbb{Z} \mathbb{Z}^+)$	$\mathcal{L}(P_2) = \mathcal{L}(F_2)$

Kambites: "The polycyclic monoid automaton apparently makes fundamental use of its ability to fail, by reaching a zero configuration of the register monoid. Since the free group has no zero, the free group automaton seems to have no such capability, and appears to be *blind* in a much more fundamental way."

Partially blind automata over G with respect to M

Let G be a group and M be a submonoid of G.

A partially blind automaton A over G with respect to M is a G-automaton in which a word w is accepted if

there exists a path p from the initial vertex to a final vertex, whose label is (w, 1)

•
$$l_2(p_i) \in M$$
 for all $1 \le i \le |p|$.

We let

$L_{\mathcal{A}}(G|M)$

denote the language accepted by such an automaton. We let $\mathcal{L}(G|M)$ denote the family of languages accepted by partially blind automata over G with respect to M.

Example: Bicyclic monoid

The bicyclic monoid is given by the monoid presentation

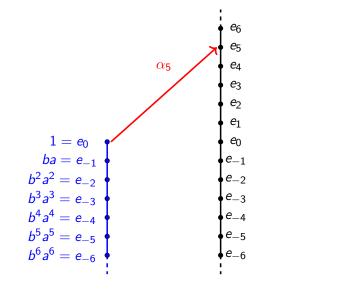
$$P_1 = < a, b : ab = 1 > .$$

The identity language of P_1 is:

$$W(P_1) = \{ w \in \{a, b\}^+ : |w|_a = |w|_b, \text{ if } w = uv \text{ then } |u|_a \ge |u|_b \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bicyclic monoid: *P*-representation Let $G = \mathbb{Z}$, $\mathcal{X} = \mathbb{Z}$ and $\mathcal{Y} = \mathbb{Z}^-$. Let $\alpha_m : e_k \to e_{k+m}$.



▲ロ → ▲ 圖 → ▲ 圖 → ▲ 圖 → ● ▲ ④ ▲ ④

Bicyclic monoid: P-representation

$$P(\mathbb{Z},\mathcal{X},\mathcal{Y}) = \{(e,g) \in \mathcal{Y} \times G \mid {}^{g^{-1}}e \in \mathcal{Y}\}$$

$$arphi: \mathcal{P}_1
ightarrow \mathcal{P}(\mathbb{Z}, \mathcal{X}, \mathcal{Y}); \; \textit{a} \mapsto (\textit{e}_0, 1) \; \textit{b} \mapsto (\textit{e}_{-1}, -1)$$

Bicyclic monoid: Identity language

Observation: Let

$$w \equiv (f_0, h_0)(f_1, h_1) \dots (f_n, h_n),$$

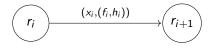
where $(f_i, h_i) \in \{(e_0, 1), (e_{-1}, -1)\}$. Then

$$egin{aligned} w = (e,0) & \iff f_0 = e_0 \ & h_0 + \ldots + h_n = 0 \ & h_0 + \ldots + h_i \in \mathbb{Z}^+ & (1 \leq i \leq n-1) \end{aligned}$$

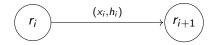
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bicyclic monoid: $\mathcal{L}(P_1) = \mathcal{L}(\mathbb{Z}|\mathbb{Z}^+)$

Replace each arrow



with



and vica versa.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Bisimple E-unitary inverse semigroups

Theorem [Clifford, Reilly, McAlister 1968]

Let S be an E-unitary bisimple inverse monoid and R be the $\mathcal{R}\text{-}{\rm class}$ of 1. Then

- $S = R^{-1}R;$
- R is a cancellative submonoid;
- ▶ principal left-ideals of *R* form a semilattice under intersection;

• R can be embedded in S/σ .

Bisimple *E*-unitary inverse semigroups

Theorem [McAlister 1974]

Let S be an E-unitary bisimple inverse monoid and R be the \mathcal{R} -class of 1. Let $G = S/\sigma$. Let

$$\mathcal{X} = \{ Rg \mid g \in G \}$$
 and $\mathcal{Y} = \{ Ra \mid a \in R \}$

and define a transitive action of G on \mathcal{Y} by ${}^{h}Rg = Rgh^{-1}$. Let

$$P(G, \mathcal{X}, \mathcal{Y}) = \{(Ra, g) \in \mathcal{Y} \times G \mid Rag \in \mathcal{Y}\}$$

with

$$(Ra,g)(Rb,h) = (Ra \cap {}^{g}Rb,gh).$$

Then

$$S \cong P(G, \mathcal{X}, \mathcal{Y}); a^{-1}b \mapsto (Ra, a^{-1}b).$$

Bisimple *E*-unitary inverse semigroups

Observation:

$$(R,1) = (Ra_1, g_1)(Ra_2, g_2) \dots (Ra_n, g_n) \Longrightarrow 1 = a_1$$
$$1 = g_1 \dots g_n$$
$$g_1 \dots g_i \in R$$
$$(1 \le i \le n)$$

Conjecture [P Davidson, ED]: Let *S* is a bisimple *F*-inverse semigroup and let *R* denote the *R*-class of 1. Then $\mathcal{L}(S) = \mathcal{L}(S/\sigma|R/\sigma)$.

Polycyclic monoids

The polycyclic monoid of rank 2 is defined by the monoid presentation

 $P_2 = \langle a, b, a^{-1}, b^{-1} | aa^{-1} = bb^{-1} = 1, ab^{-1} = ba^{-1} = 0$ for $i \neq j > .$

Properties of P₂:

- combinatorial;
- 0-bisimple;
- strongly F*-unitary;
- $\theta: P_2 \to F_2^0$ idempotent pure pre-homomorphism;

•
$$\theta: u^{-1}v \mapsto \operatorname{red}(u^{-1}v), 0 \mapsto 0.$$

We let $\Sigma = \{a, b\}$.

Polycyclic monoid: identity language

Proposition [Schützenberger, Chomsky, Corson] For all nonempty word $w \in A^*$, if $w \in W(P_2)$, then either

•
$$w = uv$$
, where $u, v \in W \setminus \{\emptyset\}$, or

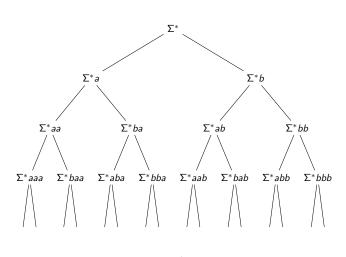
•
$$w = aWa^{-1}$$
 or $w = bWb^{-1}$.

Note: W is the language of properly matched arrangements of parenthesis and brackets:

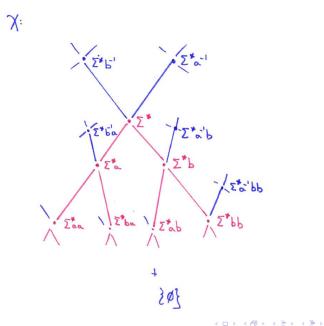
$$a = ($$
 $a^{-1} =)$ $b = [$ $b^{-1} =]$

(restricted Dyck language)

Polycyclic monoids: *P**-representation

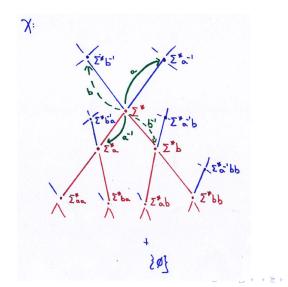


Polycyclic monoids: *P**-representation



Polycyclic monoids: P^* -representation Action of G on \mathcal{X} :

 $^{g}\Sigma^{*}u = \Sigma^{*}ug^{-1}.$



Polycyclic monoids: P*-representation

McAlister 0-triple:

$$(F_2, \mathcal{X}, \mathcal{Y})$$
:

- X is a partially ordered set;
- \mathcal{Y} is a subsemilattice and order ideal of \mathcal{X} ;
- $G\mathcal{Y} = \mathcal{X};$
- $g\mathcal{Y} \cap \mathcal{Y} \neq \emptyset$ for all $g \in G$;
- \mathcal{X} has a smallest element: \emptyset .

$$P(G, \mathcal{X}, \mathcal{Y}) = \{(A, g) \in \mathcal{Y} \times G : Ag \in \mathcal{Y}\}.$$

Polycyclic monoids: *P**-representation

$$arphi : P_2 o P_0(G, \mathcal{X}, \mathcal{Y}) = P(G, \mathcal{X}, \mathcal{Y})/(\{\emptyset\} \times G)$$

 $u^{-1}v \mapsto (\Sigma^* u, u^{-1}v), \quad 0 \mapsto 0$

$$egin{aligned} &a\mapsto (\Sigma^*,a), \ \ b\mapsto (\Sigma^*,b) \ &a^{-1}\mapsto (\Sigma^*a,a^{-1}), \ \ b^{-1}\mapsto (\Sigma^*b,b^{-1}) \end{aligned}$$

Polycyclic monoid: Identity language

Observation: Let

$$w \equiv (f_0, h_0)(f_1, h_1) \dots (f_n, h_n),$$

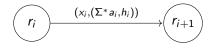
where $(f_i, h_i) \in \{(\Sigma^*, a), (\Sigma^*, b), (\Sigma^* a, a^{-1}), (\Sigma^* b, b^{-1})\}.$
Then

$$egin{aligned} w &= (\Sigma^*,1) \iff f_0 = \Sigma^* \ &h_0h_1\dots h_n = 1 \ &h_0\dots h_i \in \Sigma^* \ (1 \leq i \leq n-1) \end{aligned}$$

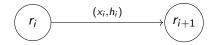
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Polycylic monoid: $\mathcal{L}(P_2) = \mathcal{L}(F_2|\Sigma^*)$

Replace each arrow



with



and vica versa.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

0-bisimple strongly E^* -unitary inverse semigroups

Theorem [Lawson 1999]

Let S be a 0-bisimple strongly E^* -unitary inverse monoid and R be the \mathcal{R} -class of 1.Then

- $S^* = R^{-1}R;$
- R is a cancellative submonoid;
- principal left-ideals of R are either disjoint or intersect in a principal left ideal;

► *R* can be embedded in a group.

0-bisimple strongly E^* -unitary inverse semigroups

Theorem [Jiang]

Let M be an 0-bisimple strongly E^* -unitary inverse monoid and R be the \mathcal{R} -class of 1. Let $\theta: M \to G^0$ be a suitable homomorphism. Let

 $\mathcal{Y} = \{ Ra \mid a \in R \} \cup \{ \emptyset \}$ and $\mathcal{X} = \{ Ag \mid A \in \mathcal{Y}, g \in G \} \cup \{ \emptyset \}$

and define a transitive action of G on \mathcal{X} by ${}^{h}Ag = Agh^{-1}$. Then $(G, \mathcal{X}, \mathcal{Y})$ is a McAlister 0-triple and we can construct

$$\mathsf{P}(\mathsf{G},\mathcal{X},\mathcal{Y}) = \{(\mathsf{\textit{Ra}},\mathsf{g}) \in \mathcal{Y} imes \mathsf{G} \mid \mathsf{\textit{Rag}} \in \mathcal{Y}\}$$

with

$$(Ra,g)(Rb,h) = (Ra \cap {}^{g}Rb,gh).$$

Then

$$S \cong P_0(G, \mathcal{X}, \mathcal{Y}); a^{-1}b \mapsto (Ra, a^{-1}b).$$

0-bisimple strongly E^* -unitary inverse semigroups

Observation:

$$(R,1) = (Ra_1, g_1)(Ra_2, g_2) \dots (Ra_n, g_n) \Longrightarrow 1 = a_1$$
$$1 = g_1 \dots g_n$$
$$g_1 \dots g_i \in R$$
$$(1 \le i \le n)$$

Conjecture [P Davidson, ED]: Let S be a 0-bisimple strongly F^* -inverse monoid and let R denote the \mathcal{R} -class of 1. Let G be a fundamental group of M. Then $\mathcal{L}(S) = \mathcal{L}(G|R)$.

Observation: Let Y be a semilattice and G be a group acting on Y on the left by automorphisms. Assume that $S = Y \rtimes G$ is finitely generated. Then, for any maximal element $e \in Y$, we have that $\mathcal{L}(S, \{e\}) = \mathcal{L}(G)$.

Further questions

- ► Understand the relationship between the language classes L(G) and L(G|M).
- Understand properties of languages in $\mathcal{L}(G|M)$.
- Understand the relationship between L(S) and L(S/σ), where S is an E-unitary or strongly E*-unitary inverse semigroup.
- ► Understand if L(S) can be described in terms of L(S/σ|M) for arbitrary E-unitary inverse semigroups.

Thank you for listening!

<□ > < @ > < E > < E > E のQ @