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The Pei Huisheng Problem

Throughout, X will be a finite non-empty set.

Let T (X ) = XX , the semigroup of all maps from X to X under
composition.

We will write “semigroup style”: transformation are “applied” on the
right of arguments (such as in (x)t), and we compose left to right,
i.e. (x)f ◦ g = ((x)f )g .

Let P be a partition of X . We let T (X ,P) be the subset of T (X )
consisting of all transformations that preserve P, i.e. those f ∈ T (X )
that satisfy (x , y) ∈ P ⇒ (xf , yf ) ∈ P.

T (X ,P) is clearly a subsemigroup of T (X ), in fact, it is the
endomorphism monoid of the relational structure (X ;P).

We are concerned with determining ranks of semigroups, i.e. the sizes
of the smallest generating sets.
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The Pei Huisheng Problem

Pei Huisheng Problem

Original Pei Huisheng Problem: Let X be a finite non-empty set, and
P a uniform partition of X . Determine the rank of T (X ,P).

Solved by Araújo and Schneider in 2009.

General Pei Huisheng Problem: Let X be a finite non-empty set, and
P an arbitray partition of X . Determine the rank of T (X ,P).

Solution published in the Mathematical Proceedings of the Cambridge
Philosophical Society in 2015.

First paper on transformation semigroups published in the
proceedings in 20 years (according to João).
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The Pei Huisheng Problem

The main result

Theorem

If |X | ≥ 4, then the rank of T (X ,P) is given by

max{2, 2p + q + g(t)}+

(
p + q

2

)
+ 2p + q + g ′(t)− 1 + l + h(p, q, t),

where (with ∼ being the equivalence relation “has the same cardinality”)

t = |{P ∈ P} : |P| = 1}|.
q = |{[P] ∈ (P/ ∼) : |P| ≥ 2, |[P]| = 1}|,
p = |{[P] ∈ (P/ ∼) : |P| ≥ 2, |[P]| ≥ 2}|,
l is the number of values s for which P has a block of size s ≥ 2, but
no block of size s − 1,

g(0) = g(1) = 0 and g(t) = 1 for t ≥ 2,

g ′(0) = 0 and g ′(t) = 1 for t ≥ 1.

h(p, q, 0) = 0, h(p, q, 1) = p + q and h(p, q, t) = p + q + 1, if t ≥ 2.
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The Pei Huisheng Problem

The main result simplified

Theorem

Let |X | ≥ 4, and P a non-trivial partition of X without singleton parts.
Then the rank of T (X ,P) is given by(

p + q

2

)
+ 4p + 2q − 1 + l

where

q is the number of values s for which P has a unique block of size s,

p is the number of values s for which P has at least two blocks of
size s,

l is the number of values s for which P has a block of size s, but no
block of size s − 1.
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The Pei Huisheng Problem

Splitting the problem

For f ∈ T (X ,P) let f̄ ∈ T (P) be given by

([x ])f̄ = (x)f for all [x ] ∈ P.

This is well defined, as f preserves P.

Consider the following subsets of T (X ,P) :
1 The set S(X ,P) of all permutations in P,
2 The set Σ(X ,P) of all f ∈ T (X ,P) such that f̄ is a permutation.

Both T (X ,P) \ S(X ,P) and T (X ,P) \ Σ(X ,P) are ideals.

Hence S(X ,P) must be generated by elements from S(X ,P) (and
analog for Σ(X ,P)).

For any semigroup S and any X ⊆ S , we define rank(S : X ), the
relative rank of S over X , as the cardinality of the smallest set W for
which S = 〈X ∪W 〉.
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The Pei Huisheng Problem

Splitting the problem

Our result states that under the given conditions

rank(T (X ,P)) =

(
p + q

2

)
+ 4p + 2q − 1 + l

= 2p + q︸ ︷︷ ︸
rank(S(X ,P))

+ p + q − 1 + l︸ ︷︷ ︸
rank(Σ(X ,P):S(X ,P))

+

(
p + q

2

)
+ p︸ ︷︷ ︸

rank(T (X ,P):Σ(X ,P))

where

q is the number of values s for which P has a unique block of size s,

p is the number of values s for which P has at least two blocks of
size s,

l is the number of values s for which P has a block of size s, but no
block of size s − 1.
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The rank of S(X ,P)

Lemma

Let P be a partition of a set X where the distinct sizes of the P-blocks
that appear more than once are denoted ni , i = 1, . . . , p, and mi denotes
the number of blocks of size ni . Let li , i = 1, . . . , q be the distinct sizes of
P-blocks that appear exactly once. Then the group of units S(X ,P) of
T (X ,P) is isomorphic to

(Sn1 o Sm1)× · · · × (Snp o Smp)× S1 × · · · × Sq.

Theorem

Let n1, . . . , nk ,m1, . . . ,mk , l1, . . . , lu be integers such that they are all at
least 2 and let

W = (Sn1 o Sm1)× · · · × (Snp o Smp)× Sl1 × · · · × Slq .

If p ≥ 1 or q ≥ 2, then the rank of W is 2p + q.
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The rank of S(X ,P)

The rank of W is at least 2p + q

Consider G = Sni o Smi .

This group has a quotient G ′ isomorphic to C2 o Sm.

G ′ can be viewed as the permutation module of Sm over the two
element field.

By standard results from representation theory, this module has a
submodule of dimension mi − 1.

Viewing G ′ as a group again, it follows that G ′ (and hence G ) has a
quotient isomorphic to C2 × Smi .

By factoring out {e} × Ami , we conclude that G has a quotient
isomorphic to C2 × C2.

As every Sli has a quotient isomorphic to C2, it follows that W has a

quotient isomorphic to C 2p+q
2 .

C 2p+q
2 cannot be generated by less than 2p + q generators, and thus

neither can W .
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The rank of S(X ,P)

A generating set for W

Lemma

If q ≥ 2, then Sl1 × · · · × Slq has rank q.
Concretely, for i ∈ {1, . . . , q − 1} define

wi = (e, . . . , e,
i -th component

(1, 2) ,
(i + 1)-th component

zi+1 , e, . . . , e)

and also define
wq = (z1, e, . . . , e, (1, 2)),

where zi is the odd permutation in {(1, 2, . . . , li ), (2, 3, . . . , li )}.
Then Sl1 × · · · × Slq = 〈w1, . . . ,wq〉 .
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The rank of S(X ,P)

A generating set for W

Lemma (Araújo, Schneider)

If m, n ≥ 2, then Sn o Sm = 〈x , y〉, where

x =

{
(e, (1, 2), e, . . . , e)(1, 2, . . . ,m) if either n or m is odd
(e, (1, 2), e, . . . , e)(2, 3, . . . ,m) otherwise

y = ((1, 2, . . . , n), e, . . . , e)(1, 2).

Together, the two lemmas show that S(X ,P) = 2q + p, except when
p = 1.

The remaining case can be handled by similar arguments.
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The rank of Σ(X ,P) over S(X ,P)

Recall that Σ(X ,P) is the set of transformations in T (X ,P) which
induce a permutation on the blocks of P.

We next want to show that rank(Σ(X ,P) : S(X ,P))

= p + q − 1︸ ︷︷ ︸
Block Switching

+ l︸︷︷︸
Image reducing

,

where

q is the number of values s for which P has a unique block of size s,
p is the number of values s for which P has at least two blocks of size
s,
l is the number of values s for which P has a block of size s, but no
block of size s − 1.
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The rank of Σ(X ,P) over S(X ,P)

Block switching

Let l1 < l2 < · · · < lp+q be the distinct sizes of blocks in P.

For i ≤ p + q − 1, let Bi be the set of all mappings f ∈ Σ(X ,P) such
that

1 f maps a block of size li injectively to a block of size li+1,
2 f maps a block of size li+1 surjectively onto a block of size li ,
3 f maps every other block bijectively to a block of the same size.

Lemma

If 〈S(X ,P),U〉 = Σ(X ,P) for some U ⊆ Σ(X ,P), then Bi ∩ U 6= ∅ for
every i ≤ p + q − 1.
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The rank of Σ(X ,P) over S(X ,P)

Block switching

Let f be an element of Bi , for i = 1, . . . , p + q − 1

Note that the map f has a defect of li+1 − li .

Let B be the li -block of f that is mapped “upwards”.

Now suppose that f = g1 . . . gs with generators from S(X ,P) and U

Eventually, some gj must map Bg1 . . . gj−1 to a block B ′ of different
size k

If k < li , then B is not mapped injectively, so k > li .

If k > li+1, then k − li elements of B ′ would not be in the image of
g1 . . . gj , and so the defect of f would exceed li+1 − li .

Hence k = li+1, and gi maps B to a block of size li+1.

Applying similar size considerations to the other blocks of P, we can
show that gj ∈ Bi .
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The rank of Σ(X ,P) over S(X ,P)

Image reducing

Let l1 < l2 < · · · < lp+q be the distinct sizes of blocks in P.

For i ≤ p + q, let Ci be the set of all mappings f ∈ Σ(X ,P) such that

1 f maps every block to a block of the same size
2 f has a defect of 1.

Lemma

Let 〈S(X ,P),U〉 = Σ(X ,P) for some U ⊆ Σ(X ,P).
If i = 1, . . . , p + q is such that P has no block of size li − 1, then
Ci ∩ U 6= ∅.
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The rank of Σ(X ,P) over S(X ,P)

Image reducing

Let B be a block of size li , where i is as in the lemma.

Let f ∈ Σ(X ,P) be the function that maps one element of B to
another element of B, and is the identity otherwise.
Suppose that f = h1 · · · hm with hi ∈ S(X ,P) ∪ U.
Let z be the smallest index for which the image of h1 · · · hz does not
contain a block B ′ of size li , and let B ′′ be the block for which
(B ′′)hz = B ′.
If |B ′′| < li then hz and hence f would have a defect of at least 2, as
there is no block of size li − 1.
If |B ′′| > li , then hz ∈ Σ(X ,P) must map another block “upwards”.
This would result in a second block not being contained in the image
of f , and a defect of more than 1.
Hence |B ′′| = li , and by minimality of hz , the mapping from B ′′ to B ′

is not injective.
Image size now show that all remaining blocks are mapped bijectively.
So hz ∈ Ci .
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The rank of Σ(X ,P) over S(X ,P)

The lower bound

It remains to show that we can generate Σ(X ,P) from S(X ,P) and a set
of representatives of the relevant Bi and Ci .

Assume first that li − li−1 = 1. Let h be a generator from Bi−1. Then
we can generate an element of Ci in the form hgh for a suitable
g ∈ S(X ,P).

This means that restricted to each block B, we have all permutations
and a map of defect 1. From these functions, we can generate T (B).

Let f ∈ Σ(X ,P). In order to establish that f can be obtained from
our generators, it suffices to show that we can recover the
permutation f̄ of the blocks of P in such a way that no block dips
“too low”.

This means that at every stage of the process, the image of any block
B must have size at least min{|B|, |Bf |}.
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The rank of T (X ,P) over Σ(X ,P)

We next want to show that rank(T (X ,P) : Σ(X ,P))

=

(
p + q

2

)
︸ ︷︷ ︸

Combining different sizes

+ p︸ ︷︷ ︸
Combining same sizes

,

where

q is the number of values s for which P has a unique block of size s,

p is the number of values s for which P has at least two blocks of
size s.
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The rank of T (X ,P) over Σ(X ,P)

Combining

Let l1 < l2 < · · · < lp+q be the distinct sizes of blocks in P.

For 1 ≤ i < j ≤ p + q, let Ai ,j be the set of all mappings
f ∈ Σ(X ,P) such that

1 f maps exactly two blocks together, which are of sizes li and lj ,
2 f maps every other block injectively.

Note that this implies that every block - other the mentioned block of
size li - is mapped bijectively to a block of the same size.

Lemma

If 〈Σ(X ,P),U〉 = T (X ,P) for some U ⊆ Σ(X ,P), then Ai ,j ∩ U 6= ∅ for
all 1 ≤ i < j ≤ p + q.
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The rank of T (X ,P) over Σ(X ,P)

Combining

Let i < j and f such that f maps block B of size li to block B ′ of size
lj , and is the identity everywhere else.

Now suppose that f = g1 . . . gs with generators from Σ(X ,P) and U

Let gk be the first generator not from Σ(X ,P).

As f is injective on each block, g1 . . . gk−1 can only permute blocks of
the same size.

So |Bg1 . . . gk−1| = li , and |B ′g1 . . . gk−1| = lj .

As gk /∈ Σ(X ,P), it must map at least two blocks together. This can
only be Bg1 . . . gk−1, and B ′g1 . . . gk−1.

Counting image sizes, we see that these must be mapped together to
a block of size lj .

By considering image sizes, we can check that gk ∈ Ai ,j .
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The rank of T (X ,P) over Σ(X ,P)

Combining

Let l1 < l2 < · · · < lp+q be the distinct sizes of blocks in P.

Let 1 ≤ i ≤ p + q be such that P has at least two blocks of size li .
Let Ai be the set of all mappings f ∈ Σ(X ,P) such that

1 f maps exactly two blocks together, which are both of sizes li ,
2 f maps every other block injectively.

Lemma

If 〈Σ(X ,P),U〉 = T (X ,P) for some U ⊆ Σ(X ,P), then Ai ∩ U 6= ∅ for
all 1 ≤ i ≤ p + q for which P has multiple blocks of size li .

The main theorem now follows once we can show that we can generate
T (X ,P) from Σ(X ,P) and a set of representatives of the relevant sets
Ai ,j and Ai .
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