The Solution of the Generalized Pei Huisheng Problem

Wolfram Bentz

University of Hull

Joint work with João Araújo (Universade Aberta/CEMAT), James Mitchell (University of St Andrews), and Csaba Schneider (Universidade Federal de Minas Gerais)

York Semigroup York, November 4, 2015

◆□▶ ◆□▶ ◆□▶ ◆□▶

æ

Wolfram Bentz (CAUL)

Generalized Pei Huisheng Problem

November 4, 2015 2 / 21

★ロト ★課 と ★注 と ★注 と 一注

• Throughout, X will be a finite non-empty set.

3

イロト イヨト イヨト イヨト

- Throughout, X will be a finite non-empty set.
- Let $T(X) = X^X$, the semigroup of all maps from X to X under composition.

▲ 同 ▶ → 三 ▶

- Throughout, X will be a finite non-empty set.
- Let $T(X) = X^X$, the semigroup of all maps from X to X under composition.
- We will write "semigroup style": transformation are "applied" on the right of arguments (such as in (x)t), and we compose left to right, i.e. (x)f ∘ g = ((x)f)g.

- Throughout, X will be a finite non-empty set.
- Let $T(X) = X^X$, the semigroup of all maps from X to X under composition.
- We will write "semigroup style": transformation are "applied" on the right of arguments (such as in (x)t), and we compose left to right, i.e. (x)f ∘ g = ((x)f)g.
- Let P be a partition of X. We let T(X, P) be the subset of T(X) consisting of all transformations that preserve P, i.e. those f ∈ T(X) that satisfy (x, y) ∈ P ⇒ (xf, yf) ∈ P.

- Throughout, X will be a finite non-empty set.
- Let $T(X) = X^X$, the semigroup of all maps from X to X under composition.
- We will write "semigroup style": transformation are "applied" on the right of arguments (such as in (x)t), and we compose left to right, i.e. (x)f ∘ g = ((x)f)g.
- Let P be a partition of X. We let T(X, P) be the subset of T(X) consisting of all transformations that preserve P, i.e. those f ∈ T(X) that satisfy (x, y) ∈ P ⇒ (xf, yf) ∈ P.
- T(X, P) is clearly a subsemigroup of T(X), in fact, it is the endomorphism monoid of the relational structure (X; P).

- 3

- Throughout, X will be a finite non-empty set.
- Let $T(X) = X^X$, the semigroup of all maps from X to X under composition.
- We will write "semigroup style": transformation are "applied" on the right of arguments (such as in (x)t), and we compose left to right, i.e. (x)f ∘ g = ((x)f)g.
- Let P be a partition of X. We let T(X, P) be the subset of T(X) consisting of all transformations that preserve P, i.e. those f ∈ T(X) that satisfy (x, y) ∈ P ⇒ (xf, yf) ∈ P.
- T(X, P) is clearly a subsemigroup of T(X), in fact, it is the endomorphism monoid of the relational structure (X; P).
- We are concerned with determining ranks of semigroups, i.e. the sizes of the smallest generating sets.

イロト 不得 トイヨト イヨト 二日

3

<ロ> (日) (日) (日) (日) (日)

• Original Pei Huisheng Problem: Let X be a finite non-empty set, and \mathcal{P} a *uniform* partition of X. Determine the rank of T(X, P).

3

(日) (周) (三) (三)

- Original Pei Huisheng Problem: Let X be a finite non-empty set, and \mathcal{P} a *uniform* partition of X. Determine the rank of T(X, P).
- Solved by Araújo and Schneider in 2009.

- 4 同 6 4 日 6 4 日 6

- Original Pei Huisheng Problem: Let X be a finite non-empty set, and \mathcal{P} a *uniform* partition of X. Determine the rank of T(X, P).
- Solved by Araújo and Schneider in 2009.
- General Pei Huisheng Problem: Let X be a finite non-empty set, and \mathcal{P} an *arbitray* partition of X. Determine the rank of T(X, P).

- 4 同 6 4 日 6 4 日 6

- Original Pei Huisheng Problem: Let X be a finite non-empty set, and \mathcal{P} a *uniform* partition of X. Determine the rank of T(X, P).
- Solved by Araújo and Schneider in 2009.
- General Pei Huisheng Problem: Let X be a finite non-empty set, and \mathcal{P} an *arbitray* partition of X. Determine the rank of T(X, P).
- Solution published in the Mathematical Proceedings of the Cambridge Philosophical Society in 2015.

- Original Pei Huisheng Problem: Let X be a finite non-empty set, and \mathcal{P} a *uniform* partition of X. Determine the rank of T(X, P).
- Solved by Araújo and Schneider in 2009.
- General Pei Huisheng Problem: Let X be a finite non-empty set, and \mathcal{P} an *arbitray* partition of X. Determine the rank of T(X, P).
- Solution published in the Mathematical Proceedings of the Cambridge Philosophical Society in 2015.
- First paper on transformation semigroups published in the proceedings in 20 years

- 3

- Original Pei Huisheng Problem: Let X be a finite non-empty set, and \mathcal{P} a *uniform* partition of X. Determine the rank of T(X, P).
- Solved by Araújo and Schneider in 2009.
- General Pei Huisheng Problem: Let X be a finite non-empty set, and \mathcal{P} an *arbitray* partition of X. Determine the rank of T(X, P).
- Solution published in the Mathematical Proceedings of the Cambridge Philosophical Society in 2015.
- First paper on transformation semigroups published in the proceedings in 20 years (according to João).

- 3

The main result

Theorem

If $|X| \ge 4$, then the rank of $T(X, \mathcal{P})$ is given by

$$\max\{2, 2p + q + g(t)\} + {p + q \choose 2} + 2p + q + g'(t) - 1 + l + h(p, q, t),$$

where (with \sim being the equivalence relation "has the same cardinality")

•
$$t = |\{P \in \mathcal{P}\} : |P| = 1\}|.$$

•
$$q = |\{[P] \in (\mathcal{P}/\sim) : |P| \ge 2, |[P]| = 1\}|,$$

•
$$p = |\{[P] \in (\mathcal{P}/\sim) : |P| \ge 2, |[P]| \ge 2\}|,$$

 I is the number of values s for which P has a block of size s ≥ 2, but no block of size s − 1,

•
$$g(0) = g(1) = 0$$
 and $g(t) = 1$ for $t \ge 2$,

- g'(0) = 0 and g'(t) = 1 for $t \ge 1$.
- h(p,q,0) = 0, h(p,q,1) = p + q and h(p,q,t) = p + q + 1, if $t \ge 2$.

Wolfram Bentz (CAUL)

The main result simplified

Theorem

Let $|X| \ge 4$, and \mathcal{P} a non-trivial partition of X without singleton parts. Then the rank of $T(X, \mathcal{P})$ is given by

$$\binom{p+q}{2} + 4p + 2q - 1 + I$$

where

- q is the number of values s for which \mathcal{P} has a unique block of size s,
- p is the number of values s for which P has at least two blocks of size s,
- I is the number of values s for which P has a block of size s, but no block of size s − 1.

Wolfram Bentz (CAUL)

Generalized Pei Huisheng Problem

November 4, 2015 6 / 21

- 2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• For $f \in T(X, \mathcal{P})$ let $\overline{f} \in T(\mathcal{P})$ be given by

 $([x])\overline{f} = (x)f$ for all $[x] \in P$.

• For
$$f \in T(X, \mathcal{P})$$
 let $\overline{f} \in T(\mathcal{P})$ be given by

 $([x])\overline{f} = (x)f$ for all $[x] \in P$.

• This is well defined, as f preserves \mathcal{P} .

- 32

(日) (周) (三) (三)

• For
$$f \in T(X, \mathcal{P})$$
 let $\overline{f} \in T(\mathcal{P})$ be given by

 $([x])\overline{f} = (x)f$ for all $[x] \in P$.

- This is well defined, as f preserves \mathcal{P} .
- Consider the following subsets of $T(X, \mathcal{P})$:

- 3

(日) (周) (三) (三)

• For
$$f \in T(X, \mathcal{P})$$
 let $\overline{f} \in T(\mathcal{P})$ be given by

 $([x])\overline{f} = (x)f$ for all $[x] \in P$.

- This is well defined, as f preserves \mathcal{P} .
- Consider the following subsets of $T(X, \mathcal{P})$:

1 The set $S(X, \mathcal{P})$ of all permutations in \mathcal{P} ,

- 3

• For
$$f \in T(X, \mathcal{P})$$
 let $\overline{f} \in T(\mathcal{P})$ be given by

 $([x])\overline{f} = (x)f$ for all $[x] \in P$.

- This is well defined, as f preserves \mathcal{P} .
- Consider the following subsets of $T(X, \mathcal{P})$:
 - **1** The set $S(X, \mathcal{P})$ of all permutations in \mathcal{P} ,
 - **2** The set $\Sigma(X, \mathcal{P})$ of all $f \in T(X, \mathcal{P})$ such that \overline{f} is a permutation.

・ 同 ト ・ ヨ ト ・ ヨ ト

• For
$$f \in T(X, \mathcal{P})$$
 let $\overline{f} \in T(\mathcal{P})$ be given by

 $([x])\overline{f} = (x)f$ for all $[x] \in P$.

- This is well defined, as f preserves \mathcal{P} .
- Consider the following subsets of $T(X, \mathcal{P})$:

1 The set $S(X, \mathcal{P})$ of all permutations in \mathcal{P} ,

2 The set $\Sigma(X, \mathcal{P})$ of all $f \in T(X, \mathcal{P})$ such that \overline{f} is a permutation.

• Both $T(X, \mathcal{P}) \setminus S(X, \mathcal{P})$ and $T(X, \mathcal{P}) \setminus \Sigma(X, \mathcal{P})$ are ideals.

- 3

• For
$$f \in T(X, \mathcal{P})$$
 let $\overline{f} \in T(\mathcal{P})$ be given by

 $([x])\overline{f} = (x)f$ for all $[x] \in P$.

- This is well defined, as f preserves \mathcal{P} .
- Consider the following subsets of $T(X, \mathcal{P})$:
 - **1** The set $S(X, \mathcal{P})$ of all permutations in \mathcal{P} ,

2 The set $\Sigma(X, \mathcal{P})$ of all $f \in T(X, \mathcal{P})$ such that \overline{f} is a permutation.

- Both $T(X, \mathcal{P}) \setminus S(X, \mathcal{P})$ and $T(X, \mathcal{P}) \setminus \Sigma(X, \mathcal{P})$ are ideals.
- Hence S(X, P) must be generated by elements from S(X, P) (and analog for Σ(X, P)).

- 3

• For
$$f \in T(X, \mathcal{P})$$
 let $\overline{f} \in T(\mathcal{P})$ be given by

 $([x])\overline{f} = (x)f$ for all $[x] \in P$.

- This is well defined, as f preserves \mathcal{P} .
- Consider the following subsets of $T(X, \mathcal{P})$:
 - **1** The set $S(X, \mathcal{P})$ of all permutations in \mathcal{P} ,

2 The set $\Sigma(X, \mathcal{P})$ of all $f \in T(X, \mathcal{P})$ such that \overline{f} is a permutation.

- Both $T(X, \mathcal{P}) \setminus S(X, \mathcal{P})$ and $T(X, \mathcal{P}) \setminus \Sigma(X, \mathcal{P})$ are ideals.
- Hence S(X, P) must be generated by elements from S(X, P) (and analog for Σ(X, P)).
- For any semigroup S and any X ⊆ S, we define rank(S : X), the relative rank of S over X, as the cardinality of the smallest set W for which S = (X ∪ W).

- 3

・ロン ・聞と ・ ほと ・ ほと

Our result states that under the given conditions

$$\mathsf{rank}(\mathit{T}(X,\mathcal{P})) = inom{p+q}{2} + 4p + 2q - 1 + I$$

3

(日) (周) (三) (三)

Our result states that under the given conditions

$$\mathsf{rank}(T(X,\mathcal{P})) = egin{pmatrix} p+q \\ 2 \end{pmatrix} + 4p + 2q - 1 + I$$

$$=\underbrace{2p+q}_{\mathsf{rank}(S(X,\mathcal{P}))}+\underbrace{p+q-1+l}_{\mathsf{rank}(\Sigma(X,\mathcal{P}):S(X,\mathcal{P}))}+\underbrace{\binom{p+q}{2}+p}_{\mathsf{rank}(T(X,P):\Sigma(X,\mathcal{P}))}$$

where

- q is the number of values s for which \mathcal{P} has a unique block of size s,
- *p* is the number of values *s* for which *P* has at least two blocks of size *s*,
- *I* is the number of values *s* for which *P* has a block of size *s*, but no block of size *s* − 1.

Lemma

Let \mathcal{P} be a partition of a set X where the distinct sizes of the \mathcal{P} -blocks that appear more than once are denoted n_i , i = 1, ..., p, and m_i denotes the number of blocks of size n_i . Let l_i , i = 1, ..., q be the distinct sizes of \mathcal{P} -blocks that appear exactly once. Then the group of units $S(X, \mathcal{P})$ of $T(X, \mathcal{P})$ is isomorphic to

 $(S_{n_1} \wr S_{m_1}) \times \cdots \times (S_{n_p} \wr S_{m_p}) \times S_1 \times \cdots \times S_q.$

Lemma

Let \mathcal{P} be a partition of a set X where the distinct sizes of the \mathcal{P} -blocks that appear more than once are denoted n_i , i = 1, ..., p, and m_i denotes the number of blocks of size n_i . Let l_i , i = 1, ..., q be the distinct sizes of \mathcal{P} -blocks that appear exactly once. Then the group of units $S(X, \mathcal{P})$ of $T(X, \mathcal{P})$ is isomorphic to

$$(S_{n_1} \wr S_{m_1}) \times \cdots \times (S_{n_p} \wr S_{m_p}) \times S_1 \times \cdots \times S_q.$$

Theorem

Let $n_1, \ldots, n_k, m_1, \ldots, m_k, l_1, \ldots, l_u$ be integers such that they are all at least 2 and let

$$W = (S_{n_1} \wr S_{m_1}) \times \cdots \times (S_{n_p} \wr S_{m_p}) \times S_{l_1} \times \cdots \times S_{l_q}.$$

If $p \ge 1$ or $q \ge 2$, then the rank of W is 2p + q.

Wolfram Bentz (CAUL)

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

• Consider
$$G = S_{n_i} \wr S_{m_i}$$
.

æ

<ロ> (日) (日) (日) (日) (日)

- Consider $G = S_{n_i} \wr S_{m_i}$.
- This group has a quotient G' isomorphic to $C_2 \wr S_m$.

- 3

イロト イポト イヨト イヨト

- Consider $G = S_{n_i} \wr S_{m_i}$.
- This group has a quotient G' isomorphic to $C_2 \wr S_m$.
- G' can be viewed as the permutation module of S_m over the two element field.

- 3

- Consider $G = S_{n_i} \wr S_{m_i}$.
- This group has a quotient G' isomorphic to $C_2 \wr S_m$.
- G' can be viewed as the permutation module of S_m over the two element field.
- By standard results from representation theory, this module has a submodule of dimension $m_i 1$.

- 3

- Consider $G = S_{n_i} \wr S_{m_i}$.
- This group has a quotient G' isomorphic to $C_2 \wr S_m$.
- G' can be viewed as the permutation module of S_m over the two element field.
- By standard results from representation theory, this module has a submodule of dimension $m_i 1$.
- Viewing G' as a group again, it follows that G' (and hence G) has a quotient isomorphic to $C_2 \times S_{m_i}$.

イロト イポト イヨト イヨト 二日

- Consider $G = S_{n_i} \wr S_{m_i}$.
- This group has a quotient G' isomorphic to $C_2 \wr S_m$.
- G' can be viewed as the permutation module of S_m over the two element field.
- By standard results from representation theory, this module has a submodule of dimension $m_i 1$.
- Viewing G' as a group again, it follows that G' (and hence G) has a quotient isomorphic to $C_2 \times S_{m_i}$.
- By factoring out $\{e\} \times A_{m_i}$, we conclude that G has a quotient isomorphic to $C_2 \times C_2$.

イロト 不得 トイヨト イヨト 二日
The rank of W is at least 2p + q

- Consider $G = S_{n_i} \wr S_{m_i}$.
- This group has a quotient G' isomorphic to $C_2 \wr S_m$.
- G' can be viewed as the permutation module of S_m over the two element field.
- By standard results from representation theory, this module has a submodule of dimension $m_i 1$.
- Viewing G' as a group again, it follows that G' (and hence G) has a quotient isomorphic to $C_2 \times S_{m_i}$.
- By factoring out {e} × A_{mi}, we conclude that G has a quotient isomorphic to C₂ × C₂.
- As every S_{l_i} has a quotient isomorphic to C_2 , it follows that W has a quotient isomorphic to C_2^{2p+q} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

The rank of W is at least 2p + q

- Consider $G = S_{n_i} \wr S_{m_i}$.
- This group has a quotient G' isomorphic to $C_2 \wr S_m$.
- G' can be viewed as the permutation module of S_m over the two element field.
- By standard results from representation theory, this module has a submodule of dimension $m_i 1$.
- Viewing G' as a group again, it follows that G' (and hence G) has a quotient isomorphic to $C_2 \times S_{m_i}$.
- By factoring out {e} × A_{m_i}, we conclude that G has a quotient isomorphic to C₂ × C₂.
- As every S_{l_i} has a quotient isomorphic to C_2 , it follows that W has a quotient isomorphic to C_2^{2p+q} .
- C_2^{2p+q} cannot be generated by less than 2p+q generators, and thus neither can W.

Wolfram Bentz (CAUL)

A generating set for \boldsymbol{W}

Lemma

If $q \ge 2$, then $S_{l_1} \times \cdots \times S_{l_q}$ has rank q. Concretely, for $i \in \{1, \dots, q-1\}$ define

 $w_i = (e, \dots, e, \begin{array}{c} \textit{i-th component} & (i+1)\textit{-th component} \\ (1,2) & , \begin{array}{c} z_{i+1} & , e, \dots, e \end{pmatrix}$

and also define

$$w_q = (z_1, e, \ldots, e, (1, 2)),$$

where z_i is the odd permutation in $\{(1, 2, \dots, l_i), (2, 3, \dots, l_i)\}$. Then $S_{l_1} \times \dots \times S_{l_q} = \langle w_1, \dots, w_q \rangle$.

A generating set for W

Lemma (Araújo, Schneider)

If $m, n \geq 2$, then $S_n \wr S_m = \langle x, y \rangle$, where

$$x = \begin{cases} (e, (1, 2), e, \dots, e)(1, 2, \dots, m) & \text{if either } n \text{ or } m \text{ is odd} \\ (e, (1, 2), e, \dots, e)(2, 3, \dots, m) & \text{otherwise} \end{cases}$$

$$y = ((1, 2, \dots, n), e, \dots, e)(1, 2).$$

• Together, the two lemmas show that $S(X, \mathcal{P}) = 2q + p$, except when p = 1.

3

くほと くほと くほと

A generating set for W

Lemma (Araújo, Schneider)

If $m, n \geq 2$, then $S_n \wr S_m = \langle x, y \rangle$, where

$$x = \begin{cases} (e, (1, 2), e, \dots, e)(1, 2, \dots, m) & \text{if either } n \text{ or } m \text{ is odd} \\ (e, (1, 2), e, \dots, e)(2, 3, \dots, m) & \text{otherwise} \end{cases}$$

$$y = ((1, 2, \dots, n), e, \dots, e)(1, 2).$$

- Together, the two lemmas show that $S(X, \mathcal{P}) = 2q + p$, except when p = 1.
- The remaining case can be handled by similar arguments.

くほと くほと くほと

 Recall that Σ(X, P) is the set of transformations in T(X, P) which induce a permutation on the blocks of P.

3

(日) (同) (三) (三)

- Recall that Σ(X, P) is the set of transformations in T(X, P) which induce a permutation on the blocks of P.
- We next want to show that $rank(\Sigma(X, \mathcal{P}) : S(X, \mathcal{P}))$

where

- q is the number of values s for which \mathcal{P} has a unique block of size s,
- p is the number of values s for which \mathcal{P} has at least two blocks of size s,
- *I* is the number of values *s* for which \mathcal{P} has a block of size *s*, but no block of size s 1.

• Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .

イロト イポト イヨト イヨト 二日

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- For i ≤ p + q − 1, let B_i be the set of all mappings f ∈ Σ(X, P) such that

イロト イポト イヨト イヨト 二日

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- For i ≤ p + q − 1, let B_i be the set of all mappings f ∈ Σ(X, P) such that
 - **1** f maps a block of size l_i injectively to a block of size l_{i+1} ,

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- For i ≤ p + q − 1, let B_i be the set of all mappings f ∈ Σ(X, P) such that
 - **(**) f maps a block of size l_i injectively to a block of size l_{i+1} ,
 - 2 f maps a block of size l_{i+1} surjectively onto a block of size l_i ,

- 3

- 4 同 6 4 日 6 4 日 6

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- For i ≤ p + q − 1, let B_i be the set of all mappings f ∈ Σ(X, P) such that
 - **(**) f maps a block of size l_i injectively to a block of size l_{i+1} ,
 - 2 f maps a block of size l_{i+1} surjectively onto a block of size l_i ,
 - If maps every other block bijectively to a block of the same size.

- 4 週 ト - 4 三 ト - 4 三 ト

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- For i ≤ p + q − 1, let B_i be the set of all mappings f ∈ Σ(X, P) such that
 - **(**) f maps a block of size l_i injectively to a block of size l_{i+1} ,
 - 2 f maps a block of size l_{i+1} surjectively onto a block of size l_i ,
 - If maps every other block bijectively to a block of the same size.

- 4 週 ト - 4 三 ト - 4 三 ト

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- For i ≤ p + q − 1, let B_i be the set of all mappings f ∈ Σ(X, P) such that
 - If maps a block of size l_i injectively to a block of size l_{i+1} ,
 - 2 f maps a block of size l_{i+1} surjectively onto a block of size l_i ,
 - I maps every other block bijectively to a block of the same size.

Lemma

If $(S(X, \mathcal{P}), U) = \Sigma(X, \mathcal{P})$ for some $U \subseteq \Sigma(X, \mathcal{P})$, then $\mathcal{B}_i \cap U \neq \emptyset$ for every $i \leq p + q - 1$.

• Let f be an element of \mathcal{B}_i , for $i = 1, \ldots, p + q - 1$

- 31

・ロン ・四 ・ ・ ヨン ・ ヨン

- Let f be an element of \mathcal{B}_i , for $i = 1, \ldots, p + q 1$
- Note that the map f has a defect of $I_{i+1} I_i$.

3

(日) (周) (三) (三)

- Let f be an element of \mathcal{B}_i , for $i = 1, \ldots, p + q 1$
- Note that the map f has a defect of $l_{i+1} l_i$.
- Let B be the l_i-block of f that is mapped "upwards".

- 31

(日) (周) (三) (三)

- Let f be an element of \mathcal{B}_i , for $i = 1, \ldots, p + q 1$
- Note that the map f has a defect of $I_{i+1} I_i$.
- Let B be the l_i-block of f that is mapped "upwards".
- Now suppose that $f = g_1 \dots g_s$ with generators from $S(X, \mathcal{P})$ and U

E Sac

イロト イポト イヨト イヨト

- Let f be an element of \mathcal{B}_i , for $i = 1, \ldots, p + q 1$
- Note that the map f has a defect of $I_{i+1} I_i$.
- Let B be the l_i-block of f that is mapped "upwards".
- Now suppose that $f = g_1 \dots g_s$ with generators from $S(X, \mathcal{P})$ and U
- Eventually, some g_j must map $Bg_1 \dots g_{j-1}$ to a block B' of different size k

- Let f be an element of \mathcal{B}_i , for $i = 1, \ldots, p + q 1$
- Note that the map f has a defect of $I_{i+1} I_i$.
- Let B be the l_i-block of f that is mapped "upwards".
- Now suppose that $f = g_1 \dots g_s$ with generators from $S(X, \mathcal{P})$ and U
- Eventually, some g_j must map Bg₁...g_{j-1} to a block B' of different size k
- If $k < l_i$, then B is not mapped injectively, so $k > l_i$.

- Let f be an element of \mathcal{B}_i , for $i = 1, \ldots, p + q 1$
- Note that the map f has a defect of $l_{i+1} l_i$.
- Let B be the l_i-block of f that is mapped "upwards".
- Now suppose that $f = g_1 \dots g_s$ with generators from $S(X, \mathcal{P})$ and U
- Eventually, some g_j must map Bg₁...g_{j-1} to a block B' of different size k
- If $k < l_i$, then B is not mapped injectively, so $k > l_i$.
- If k > l_{i+1}, then k − l_i elements of B' would not be in the image of g₁...g_j, and so the defect of f would exceed l_{i+1} − l_i.

- Let f be an element of \mathcal{B}_i , for $i = 1, \ldots, p + q 1$
- Note that the map f has a defect of $I_{i+1} I_i$.
- Let B be the l_i-block of f that is mapped "upwards".
- Now suppose that $f = g_1 \dots g_s$ with generators from $S(X, \mathcal{P})$ and U
- Eventually, some g_j must map Bg₁...g_{j-1} to a block B' of different size k
- If $k < l_i$, then B is not mapped injectively, so $k > l_i$.
- If k > l_{i+1}, then k − l_i elements of B' would not be in the image of g₁...g_j, and so the defect of f would exceed l_{i+1} − l_i.
- Hence $k = l_{i+1}$, and g_i maps B to a block of size l_{i+1} .

- Let f be an element of \mathcal{B}_i , for $i = 1, \ldots, p + q 1$
- Note that the map f has a defect of $I_{i+1} I_i$.
- Let B be the l_i-block of f that is mapped "upwards".
- Now suppose that $f = g_1 \dots g_s$ with generators from $S(X, \mathcal{P})$ and U
- Eventually, some g_j must map Bg₁...g_{j-1} to a block B' of different size k
- If $k < l_i$, then B is not mapped injectively, so $k > l_i$.
- If k > l_{i+1}, then k − l_i elements of B' would not be in the image of g₁...g_j, and so the defect of f would exceed l_{i+1} − l_i.
- Hence $k = l_{i+1}$, and g_i maps B to a block of size l_{i+1} .
- Applying similar size considerations to the other blocks of *P*, we can show that g_i ∈ B_i.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

• Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- For $i \leq p + q$, let C_i be the set of all mappings $f \in \Sigma(X, \mathcal{P})$ such that

イロト イポト イヨト イヨト 二日

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- For $i \leq p + q$, let C_i be the set of all mappings $f \in \Sigma(X, \mathcal{P})$ such that
 - I maps every block to a block of the same size

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- For $i \leq p + q$, let C_i be the set of all mappings $f \in \Sigma(X, \mathcal{P})$ such that
 - I maps every block to a block of the same size
 - I has a defect of 1.

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- For $i \leq p + q$, let C_i be the set of all mappings $f \in \Sigma(X, \mathcal{P})$ such that
 - I maps every block to a block of the same size
 - I has a defect of 1.

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- For $i \leq p + q$, let C_i be the set of all mappings $f \in \Sigma(X, \mathcal{P})$ such that
 - I maps every block to a block of the same size
 - I has a defect of 1.

Lemma

Let $\langle S(X, \mathcal{P}), U \rangle = \Sigma(X, \mathcal{P})$ for some $U \subseteq \Sigma(X, \mathcal{P})$. If i = 1, ..., p + q is such that \mathcal{P} has no block of size $l_i - 1$, then $C_i \cap U \neq \emptyset$.

• Let B be a block of size l_i , where i is as in the lemma.

3

(日) (周) (三) (三)

- Let B be a block of size l_i , where i is as in the lemma.
- Let f ∈ Σ(X, P) be the function that maps one element of B to another element of B, and is the identity otherwise.

くほと くほと くほと

- Let B be a block of size l_i , where i is as in the lemma.
- Let f ∈ Σ(X, P) be the function that maps one element of B to another element of B, and is the identity otherwise.
- Suppose that $f = h_1 \cdots h_m$ with $h_i \in S(X, \mathcal{P}) \cup U$.

- 3

くほと くほと くほと

- Let B be a block of size l_i , where i is as in the lemma.
- Let f ∈ Σ(X, P) be the function that maps one element of B to another element of B, and is the identity otherwise.
- Suppose that $f = h_1 \cdots h_m$ with $h_i \in S(X, \mathcal{P}) \cup U$.
- Let z be the smallest index for which the image of h₁ · · · h_z does not contain a block B' of size l_i, and let B" be the block for which (B")h_z = B'.

・何・ ・ヨ・ ・ヨ・ ・ヨ

- Let B be a block of size l_i , where i is as in the lemma.
- Let f ∈ Σ(X, P) be the function that maps one element of B to another element of B, and is the identity otherwise.
- Suppose that $f = h_1 \cdots h_m$ with $h_i \in S(X, \mathcal{P}) \cup U$.
- Let z be the smallest index for which the image of h₁ · · · h_z does not contain a block B' of size l_i, and let B" be the block for which (B")h_z = B'.
- If $|B''| < l_i$ then h_z and hence f would have a defect of at least 2, as there is no block of size $l_i 1$.

- 3

くほと くほと くほと

- Let B be a block of size I_i , where i is as in the lemma.
- Let f ∈ Σ(X, P) be the function that maps one element of B to another element of B, and is the identity otherwise.
- Suppose that $f = h_1 \cdots h_m$ with $h_i \in S(X, \mathcal{P}) \cup U$.
- Let z be the smallest index for which the image of h₁ · · · h_z does not contain a block B' of size l_i, and let B" be the block for which (B")h_z = B'.
- If $|B''| < l_i$ then h_z and hence f would have a defect of at least 2, as there is no block of size $l_i 1$.
- If |B"| > l_i, then h_z ∈ Σ(X, P) must map another block "upwards". This would result in a second block not being contained in the image of f, and a defect of more than 1.

- 本間下 本臣下 本臣下 三臣

- Let B be a block of size I_i , where i is as in the lemma.
- Let f ∈ Σ(X, P) be the function that maps one element of B to another element of B, and is the identity otherwise.
- Suppose that $f = h_1 \cdots h_m$ with $h_i \in S(X, \mathcal{P}) \cup U$.
- Let z be the smallest index for which the image of h₁ · · · h_z does not contain a block B' of size l_i, and let B" be the block for which (B")h_z = B'.
- If $|B''| < l_i$ then h_z and hence f would have a defect of at least 2, as there is no block of size $l_i 1$.
- If |B"| > l_i, then h_z ∈ Σ(X, P) must map another block "upwards". This would result in a second block not being contained in the image of f, and a defect of more than 1.
- Hence $|B''| = l_i$, and by minimality of h_z , the mapping from B'' to B' is not injective.
Image reducing

- Let B be a block of size I_i , where i is as in the lemma.
- Let f ∈ Σ(X, P) be the function that maps one element of B to another element of B, and is the identity otherwise.
- Suppose that $f = h_1 \cdots h_m$ with $h_i \in S(X, \mathcal{P}) \cup U$.
- Let z be the smallest index for which the image of h₁ · · · h_z does not contain a block B' of size l_i, and let B" be the block for which (B")h_z = B'.
- If $|B''| < l_i$ then h_z and hence f would have a defect of at least 2, as there is no block of size $l_i 1$.
- If |B"| > l_i, then h_z ∈ Σ(X, P) must map another block "upwards". This would result in a second block not being contained in the image of f, and a defect of more than 1.
- Hence |B"| = l_i, and by minimality of h_z, the mapping from B" to B' is not injective.
- Image size now show that all remaining blocks are mapped bijectively. So $h_z \in C_i$.

Wolfram Bentz (CAUL)

It remains to show that we can generate $\Sigma(X, \mathcal{P})$ from $S(X, \mathcal{P})$ and a set of representatives of the relevant \mathcal{B}_i and \mathcal{C}_i .

• Assume first that $l_i - l_{i-1} = 1$. Let *h* be a generator from \mathcal{B}_{i-1} . Then we can generate an element of \mathcal{C}_i in the form *hgh* for a suitable $g \in S(X, \mathcal{P})$.

- 3

It remains to show that we can generate $\Sigma(X, \mathcal{P})$ from $S(X, \mathcal{P})$ and a set of representatives of the relevant \mathcal{B}_i and \mathcal{C}_i .

- Assume first that $l_i l_{i-1} = 1$. Let *h* be a generator from \mathcal{B}_{i-1} . Then we can generate an element of \mathcal{C}_i in the form *hgh* for a suitable $g \in S(X, \mathcal{P})$.
- This means that restricted to each block B, we have all permutations and a map of defect 1. From these functions, we can generate T(B).

- 3

It remains to show that we can generate $\Sigma(X, \mathcal{P})$ from $S(X, \mathcal{P})$ and a set of representatives of the relevant \mathcal{B}_i and \mathcal{C}_i .

- Assume first that $l_i l_{i-1} = 1$. Let *h* be a generator from \mathcal{B}_{i-1} . Then we can generate an element of \mathcal{C}_i in the form *hgh* for a suitable $g \in S(X, \mathcal{P})$.
- This means that restricted to each block B, we have all permutations and a map of defect 1. From these functions, we can generate T(B).
- Let f ∈ Σ(X, P). In order to establish that f can be obtained from our generators, it suffices to show that we can recover the permutation f
 of the blocks of P in such a way that no block dips "too low".

イロト 不得 トイヨト イヨト 二日

It remains to show that we can generate $\Sigma(X, \mathcal{P})$ from $S(X, \mathcal{P})$ and a set of representatives of the relevant \mathcal{B}_i and \mathcal{C}_i .

- Assume first that $l_i l_{i-1} = 1$. Let *h* be a generator from \mathcal{B}_{i-1} . Then we can generate an element of \mathcal{C}_i in the form *hgh* for a suitable $g \in S(X, \mathcal{P})$.
- This means that restricted to each block B, we have all permutations and a map of defect 1. From these functions, we can generate T(B).
- This means that at every stage of the process, the image of any block B must have size at least min{|B|, |Bf|}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

We next want to show that rank($T(X, \mathcal{P}) : \Sigma(X, \mathcal{P})$)

where

- q is the number of values s for which \mathcal{P} has a unique block of size s,
- *p* is the number of values *s* for which *P* has at least two blocks of size *s*.

• Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .

イロト 不得 トイヨト イヨト 二日

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- For $1 \le i < j \le p + q$, let $\mathcal{A}_{i,j}$ be the set of all mappings $f \in \Sigma(X, \mathcal{P})$ such that

イロト イポト イヨト イヨト 二日

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- For $1 \le i < j \le p + q$, let $\mathcal{A}_{i,j}$ be the set of all mappings $f \in \Sigma(X, \mathcal{P})$ such that

1 f maps exactly two blocks together, which are of sizes l_i and l_j ,

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- For $1 \le i < j \le p + q$, let $\mathcal{A}_{i,j}$ be the set of all mappings $f \in \Sigma(X, \mathcal{P})$ such that
 - f maps exactly two blocks together, which are of sizes l_i and l_j,
 f maps every other block injectively.

イロト イポト イヨト イヨト 二日

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- For $1 \le i < j \le p + q$, let $\mathcal{A}_{i,j}$ be the set of all mappings $f \in \Sigma(X, \mathcal{P})$ such that
 - **(**) f maps exactly two blocks together, which are of sizes l_i and l_j ,
 - *f* maps every other block injectively.
- Note that this implies that every block other the mentioned block of size *l_i* - is mapped bijectively to a block of the same size.

- 3

イロト イポト イヨト イヨト

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- For $1 \le i < j \le p + q$, let $\mathcal{A}_{i,j}$ be the set of all mappings $f \in \Sigma(X, \mathcal{P})$ such that
 - **(**) f maps exactly two blocks together, which are of sizes l_i and l_j ,
 - *f* maps every other block injectively.
- Note that this implies that every block other the mentioned block of size *l_i* - is mapped bijectively to a block of the same size.

- 3

イロト イポト イヨト イヨト

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- For $1 \le i < j \le p + q$, let $\mathcal{A}_{i,j}$ be the set of all mappings $f \in \Sigma(X, \mathcal{P})$ such that
 - **(**) f maps exactly two blocks together, which are of sizes l_i and l_j ,
 - *f* maps every other block injectively.
- Note that this implies that every block other the mentioned block of size *l_i* - is mapped bijectively to a block of the same size.

Lemma

If
$$\langle \Sigma(X, \mathcal{P}), U \rangle = T(X, \mathcal{P})$$
 for some $U \subseteq \Sigma(X, \mathcal{P})$, then $\mathcal{A}_{i,j} \cap U \neq \emptyset$ for all $1 \leq i < j \leq p + q$.

- 4 同 6 4 日 6 4 日 6

• Let i < j and f such that f maps block B of size I_i to block B' of size I_j , and is the identity everywhere else.

3

(日) (周) (三) (三)

- Let i < j and f such that f maps block B of size I_i to block B' of size I_j , and is the identity everywhere else.
- Now suppose that $f = g_1 \dots g_s$ with generators from $\Sigma(X, \mathcal{P})$ and U

- 3

- Let i < j and f such that f maps block B of size I_i to block B' of size I_j , and is the identity everywhere else.
- Now suppose that $f = g_1 \dots g_s$ with generators from $\Sigma(X, \mathcal{P})$ and U
- Let g_k be the first generator not from $\Sigma(X, \mathcal{P})$.

- Let i < j and f such that f maps block B of size I_i to block B' of size I_j , and is the identity everywhere else.
- Now suppose that $f = g_1 \dots g_s$ with generators from $\Sigma(X, \mathcal{P})$ and U
- Let g_k be the first generator not from $\Sigma(X, \mathcal{P})$.
- As f is injective on each block, g₁...g_{k-1} can only permute blocks of the same size.

- Let i < j and f such that f maps block B of size I_i to block B' of size I_j , and is the identity everywhere else.
- Now suppose that $f = g_1 \dots g_s$ with generators from $\Sigma(X, \mathcal{P})$ and U
- Let g_k be the first generator not from $\Sigma(X, \mathcal{P})$.
- As f is injective on each block, g₁...g_{k-1} can only permute blocks of the same size.
- So $|Bg_1 \dots g_{k-1}| = l_i$, and $|B'g_1 \dots g_{k-1}| = l_j$.

- Let i < j and f such that f maps block B of size I_i to block B' of size I_j , and is the identity everywhere else.
- Now suppose that $f = g_1 \dots g_s$ with generators from $\Sigma(X, \mathcal{P})$ and U
- Let g_k be the first generator not from $\Sigma(X, \mathcal{P})$.
- As f is injective on each block, g₁...g_{k-1} can only permute blocks of the same size.
- So $|Bg_1 \dots g_{k-1}| = I_i$, and $|B'g_1 \dots g_{k-1}| = I_j$.
- As g_k ∉ Σ(X, P), it must map at least two blocks together. This can only be Bg₁...g_{k-1}, and B'g₁...g_{k-1}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

- Let i < j and f such that f maps block B of size I_i to block B' of size I_j , and is the identity everywhere else.
- Now suppose that $f = g_1 \dots g_s$ with generators from $\Sigma(X, \mathcal{P})$ and U
- Let g_k be the first generator not from $\Sigma(X, \mathcal{P})$.
- As f is injective on each block, g₁...g_{k-1} can only permute blocks of the same size.
- So $|Bg_1 \dots g_{k-1}| = l_i$, and $|B'g_1 \dots g_{k-1}| = l_j$.
- As g_k ∉ Σ(X, P), it must map at least two blocks together. This can only be Bg₁...g_{k-1}, and B'g₁...g_{k-1}.
- Counting image sizes, we see that these must be mapped together to a block of size l_i.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

- Let i < j and f such that f maps block B of size I_i to block B' of size I_j , and is the identity everywhere else.
- Now suppose that $f = g_1 \dots g_s$ with generators from $\Sigma(X, \mathcal{P})$ and U
- Let g_k be the first generator not from $\Sigma(X, \mathcal{P})$.
- As f is injective on each block, g₁...g_{k-1} can only permute blocks of the same size.
- So $|Bg_1 \dots g_{k-1}| = I_i$, and $|B'g_1 \dots g_{k-1}| = I_j$.
- As $g_k \notin \Sigma(X, \mathcal{P})$, it must map at least two blocks together. This can only be $Bg_1 \dots g_{k-1}$, and $B'g_1 \dots g_{k-1}$.
- Counting image sizes, we see that these must be mapped together to a block of size *I_j*.
- By considering image sizes, we can check that $g_k \in \mathcal{A}_{i,j}$.

• Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- Let 1 ≤ i ≤ p + q be such that P has at least two blocks of size l_i.
 Let A_i be the set of all mappings f ∈ Σ(X, P) such that

3

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- Let 1 ≤ i ≤ p + q be such that P has at least two blocks of size l_i.
 Let A_i be the set of all mappings f ∈ Σ(X, P) such that
 - **(**) f maps exactly two blocks together, which are both of sizes l_i ,

- 34

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- Let 1 ≤ i ≤ p + q be such that P has at least two blocks of size l_i.
 Let A_i be the set of all mappings f ∈ Σ(X, P) such that
 - **(**) f maps exactly two blocks together, which are both of sizes l_i ,
 - *f* maps every other block injectively.

- 3

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- Let 1 ≤ i ≤ p + q be such that P has at least two blocks of size l_i.
 Let A_i be the set of all mappings f ∈ Σ(X, P) such that
 - **(**) f maps exactly two blocks together, which are both of sizes l_i ,
 - *f* maps every other block injectively.

- 3

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- Let 1 ≤ i ≤ p + q be such that P has at least two blocks of size l_i.
 Let A_i be the set of all mappings f ∈ Σ(X, P) such that
 - **(**) f maps exactly two blocks together, which are both of sizes l_i ,
 - *f* maps every other block injectively.

Lemma

If $\langle \Sigma(X, \mathcal{P}), U \rangle = T(X, \mathcal{P})$ for some $U \subseteq \Sigma(X, \mathcal{P})$, then $\mathcal{A}_i \cap U \neq \emptyset$ for all $1 \leq i \leq p + q$ for which \mathcal{P} has multiple blocks of size l_i .

- Let $l_1 < l_2 < \cdots < l_{p+q}$ be the distinct sizes of blocks in \mathcal{P} .
- Let 1 ≤ i ≤ p + q be such that P has at least two blocks of size l_i. Let A_i be the set of all mappings f ∈ Σ(X, P) such that
 - **(**) f maps exactly two blocks together, which are both of sizes l_i ,
 - *f* maps every other block injectively.

Lemma

If $\langle \Sigma(X, \mathcal{P}), U \rangle = T(X, \mathcal{P})$ for some $U \subseteq \Sigma(X, \mathcal{P})$, then $\mathcal{A}_i \cap U \neq \emptyset$ for all $1 \leq i \leq p + q$ for which \mathcal{P} has multiple blocks of size l_i .

The main theorem now follows once we can show that we can generate $T(X, \mathcal{P})$ from $\Sigma(X, \mathcal{P})$ and a set of representatives of the relevant sets $\mathcal{A}_{i,j}$ and \mathcal{A}_i .