Andrei Krokhin - Universal Algebra for Constraint Satisfaction

Universal Algebra for Constraint Satisfaction

Andrei Krokhin Durham University

Disclaimer: these slides contain inaccuracies

Three Well-Known Problems

SAT: is a given propositional formula in CNF satisfiable?

$$F = (\neg x \lor y \lor \neg z) \land (x \lor y \lor \neg z) \land (\neg x \lor \neg y \lor z)$$

Linear Equations: does a given system of linear equations have a solution in the fixed field K?

$$\begin{cases} 2x + 2y + 3z = 1\\ 3x - 2y - 2z = 0\\ 5x - y + 10z = 2 \end{cases}$$

Graph 3-colouring: given a graph, can its vertices be coloured with 3 colours so that adjacent vertices are different colour?

Constraint Satisfaction Problem: 3 Forms

- Satisfiability (Logic, Databases) Given a finite structure \mathcal{B} and a $\exists \land$ -FO sentence φ , does \mathcal{B} satisfy φ ?
- Variable-value (AI, Algebra) Given finite sets A (variables), B (values), and a set of constraints $\{(\overline{s}_1, R_1), \dots, (\overline{s}_q, R_q)\}$ over A, is there a function $\varphi : A \to B$ such that $\varphi(\overline{s}_i) \in R_i$ for all i?
- Homomorphism (Model Theory, Graph Theory) Given two finite similar relational structures, $\mathcal{A} = (A; R_1^{\mathcal{A}}, \dots, R_k^{\mathcal{A}})$ and $\mathcal{B} = (B; R_1^{\mathcal{B}}, \dots, R_k^{\mathcal{B}}),$ is there a homomorphism $h : \mathcal{A} \to \mathcal{B}$?

Constraint Languages

Fix a finite set D.

Definition 1 A constraint language is any finite set Γ of relations on D. The problem $\text{CSP}(\Gamma)$ is the restriction of CSP where all constraint relations R_i must belong to Γ .

Equivalently, fix target structure \mathcal{B} (aka template) and ask whether a given structure \mathcal{A} homomorphically maps to \mathcal{B} . Notation: $\text{CSP}(\mathcal{B}) = \{\mathcal{A} \mid \mathcal{A} \to \mathcal{B}\}.$

The structure \mathcal{B} is obtained from Γ by indexing relations. NB. For a digraph \mathcal{H} , $CSP(\mathcal{H})$ is known as \mathcal{H} -COLOURING. For a structure \mathcal{B} on $\{0, 1\}$, $CSP(\mathcal{B})$ is a variant of SAT.

Main Complexity Classes

Examples

- Let $D = \{0, 1\}$ and $R = \{0, 1\}^3 \setminus \{(0, 0, 0), (1, 1, 1)\}$. If $\Gamma = \{R\}$ then $CSP(\Gamma)$ is NOT-ALL-EQUAL SAT. This problem is **NP**-complete.
- Let $D = \{0, 1\}$ and $R = \{(x, y, z) \mid x \land y \rightarrow z\}$. If $\Gamma = \{R, \{0\}, \{1\}\}$ then $CSP(\Gamma)$ is HORN 3-SAT. This problem is **P**-complete.
- Let $D = \{0, 1\}$ and $\Gamma = \{\leq, \{0\}, \{1\}\}$. Then $CSP(\Gamma)$ is the complement of PATH (i.e., UNREACHABILITY). Think: An instance is satisfiable iff it contains no path of the form $1 = x_1 \leq x_2 \leq \ldots \leq x_n = 0$. This problem is **NL**-complete.

More Examples

- If $\Gamma = \{\neq_D\}$ where \neq_D is the disequality relation on Dand |D| = k then $\text{CSP}(\Gamma)$ is GRAPH k-COLOURING. Think: elements of D are colours, variables are the nodes, and constraints $x \neq_D y$ are the edges of graph. Belongs to \mathbf{L} if $k \leq 2$, **NP**-complete for $k \geq 3$.
- For a semigroup S on D, let R_S = {(x, y, z) | xy = z}. If Γ = {R_S} ∪ {{d} | d ∈ D} then CSP(Γ) is the problem of solving SYSTEMS OF EQUATIONS over S. Think: transform each equation w₁ = w₂ into pair w₁ = u and w₁ = u, and then iteratively transform each xyz... = a into pair xy = x' and x'z... = a.

Classification Problems & The Holy Grail

The main classification problems about problems $CSP(\Gamma)$:

- Classify CSP(Γ) w.r.t. computational complexity,
 (i.e., w.r.t. membership in a given complexity class)
- Classify CSP(B) w.r.t. descriptive complexity, (i.e., w.r.t. definability in a given logic)
- 3. Classify $CSP(\mathcal{B})$ w.r.t. solvability by a given algorithm

Conjecture 1 (Feder, Vardi '98)

Dichotomy Conjecture: for each Γ , the problem $CSP(\Gamma)$ is either tractable (i.e., in **P**) or **NP**-complete.

Datalog

For logical definability, we will use Datalog (and FO) . A Datalog program has EDBs - relations from structure, and IDBs - auxiliary predicates. One IDB is the goal.

$$odd(X,Y) := edge(X,Y)$$

$$odd(X,Y) := odd(X,Z), edge(Z,T), edge(T,Y)$$

$$goal := odd(X,X)$$

A Datalog program recursively computes the IDBs (from EDBs).

Intuition: locally derive new constraints, trying to get a contradiction (to certify that there's no solution).

Definability in Datalog

"co- $CSP(\mathcal{B})$ is definable by a Datalog program" means that the program accepts precisely structures \mathcal{A} with $\mathcal{A} \not\rightarrow \mathcal{B}$.

Example 1 (HORN 3-SAT) co- $CSP(\mathcal{B}_{H3Sat})$ is definable by the following Datalog program

acc(X) :- O(X)acc(Z) :- acc(X), acc(Y), R(X, Y, Z)goal :- Z(X), acc(X)

If $\operatorname{co-CSP}(\mathcal{B})$ is definable in Datalog then $\operatorname{CSP}(\mathcal{B})$ is in **P**. Intuition: IDBs have bounded arity, so the program can do only polynomially many steps before stabilising.

Invariance and Polymorphisms

Definition 2 An *m*-ary relation *R* is invariant under an *n*-ary operation *f* (or *f* is a polymorphism of *R*) if, for any tuples $\bar{a}_1 = (a_{11}, \ldots, a_{1m}), \ldots, \bar{a}_n = (a_{n1}, \ldots, a_{nm}) \in R$, the tuple obtained by applying *f* componentwise belongs to *R*.

Example

Consider the relation $R = \{0, 1\}^3 \setminus \{(1, 1, 0)\}$ (from \mathcal{B}_{H3Sat})

• the binary operation min is a polymorphism of R.

• the binary operation max is not.

Polymorphisms of a Structure

- If f is a polymorphism of each relation in \mathcal{B} then f is called a polymorphism of \mathcal{B} .
- Example: min is a polymorphism of \mathcal{B}_{H3Sat} .
- Equivalently, f is a homomorphism from \mathcal{B}^n to \mathcal{B} .
- For a digraph: an edge-preserving mapping, i.e.

$$a_1 \quad a_2 \quad \dots \quad a_n \qquad f(a_1, a_2, \dots, a_n)$$

$$\downarrow \quad \downarrow \quad \dots \quad \downarrow \quad \Rightarrow \qquad \downarrow$$

$$b_1 \quad b_2 \quad \dots \quad b_n \qquad f(b_1, b_2, \dots, b_n)$$

From Structures to Algebras

Any structure \mathcal{B} is associated an algebra $\mathbf{A}_{\mathcal{B}} = (B, \operatorname{Pol}(\mathcal{B}))$ where $\operatorname{Pol}(\mathcal{B})$ is the set of all polymorphisms of \mathcal{B} .

Fact 1 (Bulatov, Jeavons, K '05 + Larose, Tesson '09) The (computational and descriptive) complexity of $CSP(\mathcal{B})$ is completely determined by the properties of $A_{\mathcal{B}}$.

Intuition: for any R, R is $(\exists \land =)$ -definable in \mathcal{B} iff $Pol(\mathcal{B}) \subseteq Pol(R)$, i.e. Pol() controls expressive power.

- Do we gain anything by using algebras?
- Why swap relations for operations?
- Algebras have much more structure than structures!

The Five Types (in Conservative Algebras)

Let \mathcal{B} contain all unary relations and fix $X = \{0, 1\} \subseteq B$. Each $g \in \text{Pol}(\mathcal{B})$ preserves X (i.e. $\mathbf{A}_{\mathcal{B}}$ is conservative). The set X can be assigned (in $\mathbf{A}_{\mathcal{B}}$) one of the five types: By Post'41, there exist only five possibilities for the set

- $\{f(x_1, \dots, x_n, 0, 1) \mid f = g_{|\{0,1\}} \text{ with } g \in \text{Pol}(\mathcal{B})\}:$
 - 1. essentially unary op's $s(x_1, \ldots, x_n) = t(x_i)$ unary
 - 2. all linear Boolean op's $\sum a_i x_i + a_0 \pmod{2}$ affine
 - 3. all possible Boolean operations Boolean
 - 4. all monotone Boolean operations lattice
 - 5. all op's of the form $\min(x_1, \ldots, x_n)$ and 0,1 semilattice

Ordering of Types

The Five Types in General Algebras

- Tame Congruence Theory (Hobby, McKenzie, 80's)
- The same five basic types of "local" behaviour
- "local" has a much more involved meaning
- Very advanced theory (focused on congruences)
- Presence of some types in $var(\mathbf{A}_{\mathcal{B}})$ hardness for CSP
- Absence of those types positive results for CSP
 - Requires new theory focused on relations
 - Massive attack by universal algebraists
 Barto, Kozik, Bulatov, McKenzie, Valeriote,
 Willard, Maroti, Markovic, many others

The Algebraic Dichotomy Conjecture

Some Algebraic Dichotomy Results

Some Algebraic Dichotomy Results

A Bait for Semigroup Theorists ...

Theorem 1 (Klíma, Tesson, Thérien '07) For every structure \mathcal{B} , there is a finite semigroup Ssatisfying $x^2 = x$ and xyz = yxz and such that $CSP(\mathcal{B})$ is poly-time equivalent to SYSTEMS OF EQUATIONS over S.

There's a full classification result for monoids, though ...

The Datalog Conjecture

The Datalog Theorem

Linear and Symmetric Datalog

A Datalog program is said to be linear if each rule contains at most one occurrence of an IDB in the body.

In other words, each rule looks like this

 $\theta_1(x,y) := [\theta_2(w,u,x),]R_1(x,y,z), R_2(x,w)$

where θ_i 's are the only IDBs in it.

A Datalog program is said to be symmetric if (i) it is linear and (ii) it is invariant under symmetry of rules.

Definability in LinDat \Rightarrow **NL**, in SymDat \Rightarrow **L**. [Dalmau'05, Egri,Larose,Tesson'07] Idea: program looks for a derivation path that ends in *goal*.

The Linear Datalog/NL Conjecture

A Linear Datalog/NL Result

A Linear Datalog/NL Result

The Symmetric Datalog/L Conjecture

A Symmetric Datalog/L Result

A Picture to Take Home

