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groups, Semigroup Forum, 102 (2021), 517–527.



Semigroups

Let S be a semigroup.

The centre of S is the sub-semigroup Z(S),

where

Z(S) = {t ∈ S : st = ts (s ∈ S)} ,

and S is abelian when Z(S) = S

An element p ∈ S is idempotent if p2 = p, and

S is idempotent if every element is idempo-

tent.

The semigroup is weakly cancellative if the

equations xs = t and sx = t have only finitely-

many solutions for x for each s, t ∈ S. For

s ∈ S, set Ls(t) = st and Rs(t) = ts for t ∈ S.

An element s ∈ S is cancellable if both Ls and

Rs are injective, and S is cancellative if each

s ∈ S is cancellable.
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Semilattices

Let (S,≤) be a non-empty, partially ordered

set, and suppose that

s ∧ t = min{s, t}

exists for all s, t ∈ S. Then (S,∧) is an abelian,

idempotent semigroup, called a semilattice.

Conversely, suppose that S is an abelian, idem-

potent semigroup. Take s, t ∈ S, and set s ≤ t

if st = s. Then (S,≤) is a semilattice and

s ∧ t = st (s, t ∈ S). Hence (S,∧) is a semi-

group that can be identified with S.
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Stone–Čech compactifications

The Stone–Čech compactification of a set
S is denoted by βS; we regard S as a subset of
βS, and set S∗ = βS \ S; this is the growth of S.

The space βS is each of the following:

• - abstractly characterized by a universal prop-
erty: βS is a compactification of S such that
each bounded function from S to a compact
space K has an extension to a continuous map
from βS to K;

• - the space of ultrafilters on S;

• - the Stone space of the Boolean algebra
P(S), the power set of S;

• - the character space of the commutative
C∗-algebra `∞(S), so that `∞(S) = C(βS).

The space βS is big: if |S| = κ (infinite), then
|βS| = 22κ.
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Semigroup compactifications

Let S be a semigroup. Then βS becomes a
semigroup, as follows.

For each s ∈ S, the map Ls : S → βS has an
extension to a continuous map Ls : βS → βS.
For u ∈ βS, define s2u = Ls(u).

Next, the map Ru : s 7→ s2u, S → βS , has an
extension to a continuous map Ru : βS → βS

for each u ∈ βS. Define

u2 v = Rv(u) (u, v ∈ βS) .

Similarly we have (βS, �) (exchanging right and
left).

In the case where S is abelian, u � v = v2u for
all u, v ∈ βS.

A book on this is [HS].
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Compact, right topological semigroup

Definition A semigroup X with a topology τ

is a compact, right topological semigroup

if (X, τ) is a compact space and the map Rv is

continuous with respect to τ for each v ∈ X.

For example, let S be a semigroup. Then

X = βS is compact, right topological semi-

group wrt 2 . The map Ls is continuous on X

when s ∈ S, but maybe not more generally.

The left topological centre of X is:

Z
(`)
t (X) = {u ∈ X : u2 v = u3 v (v ∈ X)} ,

and we have

Z
(`)
t (X) = {u ∈ X : Lu is continuous on X} ,

so S ⊂ Z
(`)
t (X) ⊂ X.

In the case where S is abelian, Z(`)
t (X) = Z(X).
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Arens regularity

The semigroup S is Arens regular (AR) if

Z
(`)
t (X) = X and strongly Arens irregular

(SAI) if Z
(`)
t (X) = Z

(r)
t (X) = S.

A subset V of X is determining for the left

topological centre (a DLTC set) if u ∈ Z
(`)
t (X)

whenever u ∈ X and u2 v = u3 v (v ∈ V ).

The following theorem is in [DLS]; see also

[PaS].

Theorem Let S be an infinite, weakly can-

cellative semigroup. Then S is SAI, and there

is a two-point subset of S∗ that is a DLTC set

for X. 2
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Banach algebras

Let A be an algebra such that (A, ‖ · ‖) is also

a Banach space. Then A is a Banach algebra

if also ‖ab‖ ≤ ‖a‖ ‖b‖ for all a, b ∈ A.

Example Let S be a non-empty set. Consider

the linear space of functions f : S → C such

that
∑
s∈S |f(s)| <∞. This is the space `1(S).

It is a Banach space for the norm

‖f‖1 =
∑
s∈S
|f(s)| .

Now suppose that S is a semigroup, and write

δs for the characteristic function of {s}. Then

`1(S) is a Banach algebra, where the convo-

lution product is specified by δs ? δt = δst for

all s, t ∈ S. It is the semigroup algebra of S.

This algebra is commutative if and only if S is

abelian.
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Banach spaces

Let E be a Banach space. The closed unit ball

is E[1]. The dual space of E is E′; it is the

Banach space of all bounded linear functionals

on E.

Write 〈x, λ〉 = λ(x) for x ∈ E and λ ∈ E′. Thus

〈 · , · 〉 gives the duality.

The weak-∗ topology on E′ is such that

λα → 0 iff 〈x, λα〉 → 0 for each x ∈ E. The

closed unit ball of E′ is weak-∗ compact.

The bidual is E′′ = (E′)′. The map

κ : E → E′′ ,

where 〈κ(x), λ〉 = 〈x, λ〉, is an isometric em-

bedding, so that E is a closed subspace of E′′.
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M(βS)

Example Start with a non-empty set S and

E = `1(S). Then we can identify E′ with

`∞(S) = C(X), where X = βS. The bidual

E′′ is C(X)′ = M(X), the Banach space of all

complex-valued, regular Borel measures µ on

X, with

‖µ‖ = |µ| (X) .

Then M(X) = `1(S)⊕M(S∗) as Banach spaces.
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Biduals of Banach algebras

Let A be a Banach algebra. Then there are
two natural products, 2 and 3, on the bidual
A′′ of A; they are called the Arens products.

There are formal definitions, but we shall use:

M2N = lim
α

lim
β
aαbβ , M3N = lim

β
lim
α
aαbβ

for M,N ∈ A′′, where (aα) and (bβ) are nets
in A with limα aα = M and limβ bβ = N in the
weak-∗ topology, σ(A′′, A′).

Set A′′ = (A′′, 2 ). We regard A as a closed
subalgebra of A′′.

In the case where A is abelian, M3N = N2M.

Example Let S be a semigroup. Then we iden-
tify `1(S)′′ with M(X), where X = βS, and this
gives two products on M(X). 2

See the book [DU] for an account of Arens
regularity.
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Arens regularity

Let A be a Banach algebra

The algebra A is Arens regular (AR) if 2 and
3 coincide on A′′. All C∗-algebras are AR.

There are definitions of Z
(`)
t (A′′) and Z

(r)
t (A′′),

and A is strongly Arens irregular (SAI) if
both are equal to A.

In the case where A is commutative, both are
equal to Z(A′′), the centre of A′′, and
A ⊂ Z(A′′) ⊂ A′′.

Example Let S be a semigroup. We identify
u ∈ X with the point mass at u, and then the
definitions of u2 v and δu2 δv are consistent
for u, v ∈ X. Suppose that S is abelian. Then

Z(M(β S)) ∩ β S ⊂ Z(β S) .

We do not have an example where the above
inclusion is proper. Can you see one? 2
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DLTC sets

Definition Let A be a Banach algebra. A non-
empty subset V of A′′ is determining for the

left topological centre (a DLTC set)for A′′

if M ∈ Z
(`)
t (A′′) whenever M ∈ A′′ and

M2N = M3N (N ∈ V ).

The following is Theorem 12.15 of [DLS].

Theorem Let S be an infinite, cancellative
semigroup. Then the semigroup algebra `1(S)
is SAI, and there exist a and b in S∗ such that
the two-point set {δa, δb} is a DLTC set for
M(X). 2

A related theorem:

Theorem Let G be a locally compact group,
and consider the group algebra A = (L1(G), ? ).
Then A is SAI, and there is a two-element
DLTC set in A′′. 2
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Totally ordered semigroups

Let T be an infinite, totally ordered space. For

s, t ∈ T , we set

s ∧ t = min{s, t}

so that T is a lattice and a semigroup with res-

pect to the operation ∧. Also T is an abelian,

idempotent semigroup, i.e., a semilattice.

We further suppose that T has a minimum ele-

ment, called 0, and a maximum element, called

∞, and that T is complete, in the sense that

every non-empty subset of T has a supremum

and an infimum. We give T its interval topol-

ogy, so that the closed intervals provide a sub-

base for the closed sets

Then T is then a compact topological semi-

group.
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The semigroup S

We take S to be an arbitrary, infinite subset of

T , so that S is a sub-semigroup of (T,∧) that

is also an abelian, idempotent semigroup.

[In fact, each totally ordered semigroup (S,∧)

can be embedded in a complete, compact,

totally ordered topological semigroup (T,∧);

this is well-known.]

We let E denote the set of accumulation points

of S in T .

Examples Set T = N∪{∞} and S = N, so that

E = {∞}; set T = {−∞}∪R∪ {∞} and S = Q,

so that E = T ; set T = [0, ω1], where ω1 is

the first uncountable ordinal, and S = [0, ω1),

so that E is the collection of limit ordinals in

T . These examples are not weakly cancella-

tive. 2
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The space X

We regard S as having the discrete topology.
Set X = βS, and X∗ = X \ S, as before.

The closures of a subset A of S in T and X
are clTA and clXA, respectively. The map

π : X → T

denotes the continuous extension of the inclu-
sion map of S into T , so that π(X) = clTS. We
shall write Ft for the fibre {x ∈ X : π(x) = t}
for t ∈ clTS. We set F ∗t = Ft ∩X∗, so that

F ∗t = Ft (t ∈ T\S) and F ∗t = Ft\{t} (t ∈ S) .

Take t ∈ T . Then F ∗t is a closed, and hence
compact, subset of X, and clearly F ∗t 6= ∅ if
and only if t ∈ E.

We recall the standard facts, that, for every
subset A of S, the set clXA is clopen in X,
and that, for every subsets A and B of S that
are disjoint, the two sets clXA and clXB are
disjoint in X.
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A character

Let S be a semigroup. Take a subset A of S,

and suppose that µ ∈ M(X)[1] with suppµ ⊂
clXA. Then the measure µ belongs to the

weak-∗ closure of aco{δs : s ∈ A}.

The augmentation character on (M(X), 2 )

is the map

ϕ0 : µ 7→ 〈1X , µ〉 = µ(X) =
∫
X

dµ .

Clearly ϕ0(µ2 ν) = ϕ0(µ)ϕ0(ν) (µ, ν ∈ M(X)),

so ϕ0 is indeed a character on (M(X), 2 ), and

ϕ0 is weak-∗ continuous.

17



Lemmas

Lemma 1 Suppose that A and B are subsets

of S such that A ≤ B. Take µ, ν ∈ M(X)[1]
with suppµ ⊂ clXA and supp ν ⊂ clXB. Then

µ2 ν = ν 2µ = ϕ0(ν)µ .

Proof Take σ ∈ aco{δs : s ∈ A}, τ ∈ aco{δt : t ∈ B}.
We have δs ? δt = δt ? δs = δs (s ∈ A, t ∈ B),

and so σ ? τ = τ ? σ = ϕ0(τ)σ. Take weak-∗
limits. 2

Take t ∈ E, and now set A = S ∩ [0, t) and

B = S ∩ (t,∞]. Then F ∗t ∩ clXA and F ∗t ∩ clXB

are disjoint, compact subsets of F ∗t whose union

is F ∗t .

Lemma 2 Suppose that p, q ∈ F ∗t ∩clXA. Then

p2 q = p. Suppose that p ∈ F ∗t ∩clXA and that

q ∈ F ∗t ∩ clXB. Then p2 q = q2 p = p. 2
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A theorem

Theorem The semigroup (S,∧) is SAI, and

the semigroup algebra (`1(S), ? ) is not AR.

Proof Consider a point p ∈ X∗, say p ∈ F ∗t ,

where t ∈ E. We may suppose that p ∈ clXA,

and so there exists q ∈ F ∗t ∩ clXA with q 6= p.

Hence p2 q 6= q2 p, and so p /∈ Z(X). Hence S

is SAI.

Clearly δp 6∈ Z(M(X)), and so `1(S) is not

AR. 2
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Another theorem

Lemma Let µ ∈ M(X), and take t ∈ E. Sup-

pose that µ | (F ∗t ∩ A) = 0. Then µ2 p = p2µ

for each p ∈ F ∗t ∩A.

Proof Take ε > 0. Then there exists u ∈ S

with u < t and |µ| (clX(S ∩ (u, t))) < ε. This

shows by previous lemmas that ‖µ2 p− p2µ‖ < ε.

Hence µ2 p = p2µ. 2

Theorem Let µ ∈ M(X). Then µ ∈ Z(M(X))

if and only if µ | F ∗t = 0 (t ∈ E).

Proof If µ | F ∗t 6= 0, use p, q ∈ F ∗t . If µ | F ∗t = 0

for each t ∈ E, use the lemma. 2
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Scattered spaces

A compact space K is scattered if each non-

empty subset of K contains a point that is

isolated in the subset. This happens if and

only if f(K) is countable for each f ∈ C(K) if

and only if `1(K) = M(K).

Theorem The semigroup algebra (`1(S), ? ) is

SAI if and only if clTS is scattered. 2

For example, N∪{∞} and [0, ω1] are scattered,

and so (N,∧) and ([0, ω1),∧) are SAI, but

{−∞}∪R∪{∞} is not scattered, and so (Q,∧)

is not SAI.
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DTC sets for M(X)

For each t ∈ E, choose two distinct points in
F ∗t ∩A and two distinct points in F ∗t ∩B when-
ever the respective sets are non-empty. The
collection of these points is called V . Now
take µ ∈M(X), and suppose that µ2 p = p2µ

for each p ∈ V . For each t ∈ E, it follows that
µ | (F ∗t ∩A) = 0 and that µ | (F ∗t ∩B) = 0. Thus
µ | F ∗t = 0. This implies that µ ∈ Z(M(X)),
and hence V is a DTC set for M(X).

This shows that M(X) has a DTC set consist-
ing of at most 2κ points of X, where κ = |E|;
this is a small subset of X because |X| = 22κ.

Suppose that E is infinite. Then there cannot
be a finite DTC set for the SAI semigroup S.
For suppose that V is a finite subset in X, and
choose t ∈ E \ π(V ), and then choose p ∈ F ∗t .
We have p2 v = v2 p (v ∈ V ), but p /∈ S, and
so V is not a DTC set for S.
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DTC sets for M(X), bis

Theorem Suppose that the set E is finite.
Then there is a finite DTC set for S.
Suppose that the set E is infinite or uncount-
able. Then there is no finite or countable DTC
set for S, respectively. 2

Theorem Suppose that the set E is countable.
Then the semigroup algebra `1(S) is SAI and
has a DTC set consisting of at most four mea-
sures in M(X∗)+.

Proof Suppose that (sn) is a sequence in S

such that F ∗sn ∩ clX(S ∩ [0, sn)) 6= ∅. Choose
two points p1,n and p2,n in F ∗sn∩clX(S∩ [0, sn)),
and set

µj =
∑ 1

2n
δpj,n (j = 1,2) .

We obtain two measures in M(X∗)+. Similarly
on the other side, so we have four measures.
These work. 2
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Examples 1

(I) Consider the semigroup S = (N,∧). Then

`1(S) is SAI and any two distinct points in N∗

form a DTC set for M(β N).

(II) Consider the semigroup S = (Q,∧). Then

S is SAI, but there is no countable DTC set

for S. The semigroup algebra `1(S) is neither

AR nor SAI, and we know Z(M(X)). There is

no countable DTC set for M(X).

(III) Consider the subset S of

T := {−∞} ∪ R ∪ {∞}

that consists of numbers of the form n − x,

where n ∈ Z and x ∈ {1/2,1/4,1/8, . . . }. Then

the corresponding set E is {−∞} ∪ Z ∪ {∞}, a

countable set. There is no finite DTC set for

the semigroup S. However `1(S) is SAI, and

there is a two-element DTC set in M(X∗)+.
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Examples 2

(IV) Consider the semigroup S = T = ([0, κ],∧),

where κ is a cardinal with |κ| ≥ ℵ1, so that the

corresponding set E has cardinality κ. Since

T is scattered, the algebra `1(S) is SAI. But

there is no DTC set for M(X) with cardinality

strictly less than κ. This shows that the car-

dinality of a DTC set can be arbitrarily large,

even when `1(S) is SAI.

A question

Set S = T = {0,1}κ, where κ is an infinite

cardinal. Then (S,∧) is a lattice, but S is not

totally ordered. Are S and `1(S) both SAI?
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