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Semigroups
Let S be a semigroup.

The centre of S is the sub-semigroup 3(S),
where

3(S)={teS:st=ts (s€S)},
and S is abelian when 3(S) =S

An element p € S is idempotent if p? = p, and
S is idempotent if every element is idempo-
tent.

The semigroup is weakly cancellative if the
equations xs =t and sx =t have only finitely-
many solutions for x for each s,t € §. For
s € S, set Lg(t) = st and Rs(t) = ts for t € S.
An element s € S is cancellable if both Ls and
Rs are injective, and S is cancellative if each
s € S is cancellable.



Semilattices

Let (S,<) be a non-empty, partially ordered
set, and suppose that

s ANt =min{s,t}

exists for all s,t € S. Then (S,A) is an abelian,
idempotent semigroup, called a semilattice.

Conversely, suppose that S is an abelian, idem-
potent semigroup. Take s,t € S, and set s <t
if st = s. Then (S5,<) is a semilattice and
sANt = st (s,t € S). Hence (S5,A) is a semi-
group that can be identified with S.



Stone—Cech compactifications

The Stone—Cech compactification of a set
S is denoted by 8S; we regard S as a subset of
BS, and set $* = BS\ S; this is the growth of S.

The space S is each of the following:

e - abstractly characterized by a universal prop-
erty: BS is a compactification of S such that
each bounded function from S to a compact
space K has an extension to a continuous map
from GBS to K,

e - the space of ultrafilters on S;

e - the Stone space of the Boolean algebra
P(S), the power set of S;

e - the character space of the commutative
C*-algebra £°°(S), so that £°°(S) = C(BS).

The space S is big: if |S| = k (infinite), then
1BS| = 22",



Semigroup compactifications

Let S be a semigroup. Then S becomes a
semigroup, as follows.

For each s € S, the map Ls : S — BS has an
extension to a continuous map Lg : 8S — BS.
For u € 8S, define sOu = Ls(u).

Next, the map Ry :s+— sOu, S — 8S, has an
extension to a continuous map Ry : 8BS — 8BS
for each u € 8S. Define

wOv = Ry(u) (u,veps).

Similarly we have (8S,¢) (exchanging right and
left).

In the case where S is abelian, v ¢ v = vOwu for
all u,v € 8S5.

A book on this is [HS].



Compact, right topological semigroup

Definition A semigroup X with a topology 7
iIs a compact, right topological semigroup
if (X,7) is a compact space and the map Ry is
continuous with respect to = for each v € X.

For example, let S be a semigroup. Then

X = pBS is compact, right topological semi-
group wrt 0. The map Lg is continuous on X
when s € S, but maybe not more generally.

The left topological centre of X is:
30(X)={ue X ubv=udv (ve X)},
and we have
37@()() = {u € X : Ly is continuous on X},
so S C 3§€)(X) C X.

In the case where S is abelian, 3§€)(X) = 3(X).
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Arens regularity

The semigroup S is Arens regular (AR) if
3§£)(X) — X and strongly Arens irregular

sAn if 339(x) =3V (x) = s.

A subset V of X is determining for the left
topological centre (a DLTC set) ifu € 37@(){)
whenever v € X and uOv=u<v (ve V).

The following theorem is in [DLS]; see also
[PasS].

Theorem Let S be an infinite, weakly can-
cellative semigroup. Then S is SAI, and there
is a two-point subset of S* that is a DLTC set
for X. O



Banach algebras

Let A be an algebra such that (A,||-||) is also
a Banach space. Then A is a Banach algebra
it also ||ab|| < |la|| ||b]| for all a,b € A.

Example Let S be a non-empty set. Consider
the linear space of functions f : S — C such
that Y.cq|f(s)| < co. This is the space £1(9).
It is a Banach space for the norm

1flle = 2_ 1£ ()] -

seS

Now suppose that S is a semigroup, and write
ds for the characteristic function of {s}. Then
¢1(S) is a Banach algebra, where the convo-
lution product is specified by 6s x §; = d4 for
all s,t € S. It is the semigroup algebra of S.

This algebra is commutative if and only if S is
abelian.



Banach spaces

Let £ be a Banach space. The closed unit ball
is Ej17. The dual space of E is E'; it is the
Banach space of all bounded linear functionals
on FE.

Write (z, \) = A(z) for z € E and A € E'. Thus
(-, -) gives the duality.

The weak-x topology on E’ is such that
Aa — O iff (z, \o) — O for each z € E. The
closed unit ball of E’ is weak-x compact.

The bidual is E” = (E")’. The map

k. E— E",

where (k(x), A) = (x, A), is an isometric em-
bedding, so that E is a closed subspace of E”.



M(BS)

Example Start with a non-empty set S and
E = ¢1(S). Then we can identify E’ with
¢°°(S) = C(X), where X = BS. The bidual
E"is C(X) = M(X), the Banach space of all
complex-valued, regular Borel measures u on
X, with

]l = |p] (X).

Then M(X) = ¢1(S)®M(S*) as Banach spaces.
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Biduals of Banach algebras

Let A be a Banach algebra. Then there are
two natural products, O and <, on the bidual
A" of A: they are called the Arens products.

There are formal definitions, but we shall use:
MON = Ilimlimaabg, MEN=Ilimlimaabg
(8 B B (e

for M,N € A", where (aq) and (bg) are nets
in A with limgaqg = M and Iimﬁbﬁ = N in the
weak-* topology, o(A”, A").

Set A” = (A", 0). We regard A as a closed
subalgebra of A”,

In the case where A is abelian, MO N = NOM.

Example Let S be a semigroup. Then we iden-
tify £1(5)” with M(X), where X = 35, and this
gives two products on M(X). O

See the book [DU] for an account of Arens
regularity.
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Arens regularity
Let A be a Banach algebra

The algebra A is Arens regular (AR) if O and
& coincide on A”. All C*-algebras are AR.

There are definitions of 3§€)(A”) and Sgr)(A”),
and A is strongly Arens irregular (SAI) if
both are equal to A.

In the case where A is commutative, both are
equal to 3(A"), the centre of A”, and
A cC3A" c A",

Example Let S be a semigroup. We identify
u € X with the point mass at u«, and then the
definitions of wOwv and §, 00, are consistent
for u,v € X. Suppose that S is abelian. Then

3(M(BS))NBSC3(BS).

We do not have an example where the above
inclusion is proper. Can you see one? O
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DLTC sets

Definition Let A be a Banach algebra. A non-
empty subset V of A” is determining for the
left topological centre (a DLTC set)for A”
it M e 3(9(A”) whenever M € A" and
MON=MON (N V).

The following is Theorem 12.15 of [DLS].

Theorem Let S be an infinite, cancellative
semigroup. Then the semigroup algebra ¢1(S)
is SAI, and there exist a and b in S* such that
the two-point set {dq,d0,} is a DLTC set for
M(X). O

A related theorem:

Theorem Let G be a locally compact group,
and consider the group algebra A = (L1 (G), *).
Then A is SAI, and there is a two-element

DLTC set in A”. O
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Totally ordered semigroups

Let 7" be an infinite, totally ordered space. For
s, t €1, we set

s ANt =min{s,t}

so that 7' is a lattice and a semigroup with res-
pect to the operation A. Also T is an abelian,
idempotent semigroup, i.e., a semilattice.

We further suppose that 7' has a minimum ele-
ment, called O, and a maximum element, called
oo, and that 7T is complete, in the sense that
every non-empty subset of 1T" has a supremum
and an infimum. We give T its interval topol-
ogy, so that the closed intervals provide a sub-
base for the closed sets

Then T is then a compact topological semi-
group.
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The semigroup S

We take S to be an arbitrary, infinite subset of
T, so that S is a sub-semigroup of (7, A) that
IS also an abelian, idempotent semigroup.

[In fact, each totally ordered semigroup (S, A)
can be embedded in a complete, compact,
totally ordered topological semigroup (T, A);
this is well-known.]

We let E denote the set of accumulation points
of SinT.

Examples Set "= NU{oo} and S = N, so that
E ={0};set T ={—c0} URU{oc0} and § = Q,
so that £ = T; set T' = [0,wq1], where wy is
the first uncountable ordinal, and S = [0,w1),
so that FE is the collection of limit ordinals in
T. These examples are not weakly cancella-

tive. O
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The space X

We regard S as having the discrete topology.
Set X =45, and X* = X \ S, as before.

The closures of a subset A of S in T and X
are clprA and clx A, respectively. The map

7. X —T

denotes the continuous extension of the inclu-
sion map of S into T', so that n(X) = clpS. We
shall write F; for the fibre {x € X : n(x) = t}
for t € clpS. We set F}f = F; N X™, so that

Ff=F (teT\S) and F'=F\{t} ((teS).

Take t € T. Then F} is a closed, and hence
compact, subset of X, and clearly FJ # 0 if
and only if t € E.

We recall the standard facts, that, for every
subset A of S, the set clxA is clopen in X,
and that, for every subsets A and B of S that
are disjoint, the two sets cly A and clyB are
disjoint in X.
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A character

Let S be a semigroup. Take a subset A of S,
and suppose that u € M(X)[l] with suppu C
ClxA. Then the measure p belongs to the
weak-x* closure of aco{ds : s € A}.

The augmentation character on (M(X), O)
is the map

po ik (1x, p) = p(X) =/X du .

Clearly ¢o(pOv) = @o(p)po(v) (p,v € M(X)),
SO g is indeed a character on (M(X), O), and

wo IS weak-x continuous.
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Lemmas

Lemma 1 Suppose that A and B are subsets
of S such that A < B. Take pu,v € M(X)[l]
with supp u C clxA and supprv C clxB. Then

pOv=vOp= (V).

Proof Take o € aco{ds : s € A}, T € aco{d; : t € B}.
We have §s x 6t = 6 x s = 05 (s € A, t € B),
and sOo o x T =171 *x 0 = pg(7)o. Take weak-x
limits. O

Take t € F, and now set A=5n|[0,t) and

B =SnN(t,o0]. Then FfNclxA and FfNclxB
are disjoint, compact subsets of F;* whose union
is Ff.

Lemma 2 Suppose that p,q € F'NclxA. Then
pOq =p. Suppose that p € FFNclxA and that
g€ FNclxB. Then pOq=q0p=np. O
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A theorem

Theorem The semigroup (S,A) is SAI, and
the semigroup algebra (¢1(9), ) is not AR.

Proof Consider a point p € X*, say p € F/,
where t € E. We may suppose that p € clx A,
and so there exists ¢ € F NclyA with g # p.

Hence pOqg # qOp, and so p ¢ 3(X). Hence S
is SAIL

Clearly &, € 3(M(X)), and so ¢1(S) is not
AR. O
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Another theorem

Lemma Let € M(X), and take t € E. Sup-
pose that p | (FNA)=0. Then pOp=pO0yu
for each p € F;"N A.

Proof Take € > 0. Then there exists u € S
with v <t and |u|(clx(S N (u,t))) < e. This
shows by previous lemmas that ||pOp —pOul| < €.
Hence pOp = p 0O pu. O

Theorem Let € M(X). Then p € 3(M(X))
ifand only if u | Ff =0 (t € E).

Proof If pu | F" 20, use p,q € FJ". If p | F¥ =0
for each t € F, use the lemma. O
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Scattered spaces

A compact space K is scattered if each non-
empty subset of K contains a point that is
isolated in the subset. This happens if and
only if f(K) is countable for each f € C(K) if
and only if ¢1(K) = M(K).

Theorem The semigroup algebra (£1(S), %) is
SAI if and only if clpS is scattered. O

For example, NU{oco} and [0,wq] are scattered,
and so (N, A) and ([0,w1),A) are SAI, but
{—occ} URU{oo} is not scattered, and so (Q,A)
is not SAL
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DTC sets for M(X)

For each t € E/, choose two distinct points in
Ff N A and two distinct points in F;*N B when-
ever the respective sets are non-empty. The
collection of these points is called V. Now
take € M(X), and suppose that pOp =pOpu
for each pe V. For each t € F, it follows that
p| (FFfNA) =0and that p | (FfNB) = 0. Thus
p | FY = 0. This implies that p € 3(M(X)),
and hence V is a DTC set for M(X).

This shows that M(X) has a DTC set consist-
ing of at most 2% points of X, where k = |E
this is a small subset of X because |X| = 22",

Suppose that FE is infinite. Then there cannot
be a finite DTC set for the SAI semigroup S.
For suppose that V is a finite subset in X, and
choose t € E\ m(V), and then choose p € F}.
We have pOv =ov0Op (ve V), but p¢ S, and
so Vis not a DTC set for S.
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DTC sets for M(X), bis

Theorem Suppose that the set E is finite.
Then there is a finite DTC set for S.

Suppose that the set E is infinite or uncount-
able. Then there is no finite or countable DTC
set for S, respectively. O

Theorem Suppose that the set F is countable.
Then the semigroup algebra ¢1(S) is SAI and
has a DT C set consisting of at most four mea-
sures in M(X*)T.

Proof Suppose that (sp) is a sequence in S
such that FJ Nnclx(SN[0,sn)) # 0. Choose
two points py 5, and po, in Ff Nclx (SN0, sn)),
and set
1 .
“j:Z§5pj,n (]:172)

We obtain two measures in M(X*)T. Similarly
on the other side, so we have four measures.

T hese work. O
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Examples 1

(I) Consider the semigroup S = (N, A). Then
¢1(8) is SAI and any two distinct points in N*
form a DTC set for M(8N).

(II) Consider the semigroup S = (Q,A). Then
S is SAI, but there is no countable DTC set
for S. The semigroup algebra ¢1(S) is neither
AR nor SAI, and we know 3(M(X)). There is
no countable DTC set for M(X).

(III) Consider the subset S of
T :={—occ} URU{o0o}

that consists of numbers of the form n — z,
where n € Z and z € {1/2,1/4,1/8,...}. Then
the corresponding set F is {—oco} UZ U {x}, a
countable set. There is no finite DTC set for
the semigroup S. However ¢1(9) is SAI, and
there is a two-element DTC set in M(X*)T.
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Examples 2

(IV) Consider the semigroup S =T = ([0, k], A),
where k is a cardinal with || > X4, so that the

corresponding set E has cardinality k. Since

T is scattered, the algebra ¢1(S) is SAIL But

there is no DTC set for M(X) with cardinality

strictly less than . This shows that the car-

dinality of a DTC set can be arbitrarily large,

even when ¢1(S) is SAL

A question
Set S = T = {0,1}", where k is an infinite

cardinal. Then (S,A) is a lattice, but S is not
totally ordered. Are S and £1(S) both SAI?
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