Arens regularity of semigroups and semigroup algebras

H. G. Dales, Lancaster

York, Wednesday 17 November 2021

Joint work with Dona Strauss

References

[D] H. G. Dales, Banach algebras and automatic continuity, London Math. Society Monographs, Volume 24, The Clarendon Press, Oxford, xv+907 pp., 2000.
[DLS] H. G. Dales, A. T.-M. Lau, and D. Strauss, Banach algebras on semigroups and on their compactifications, Memoirs American Math. Soc., 205 (2010), 1-165.
[DS] H. G. Dales and D. Strauss, Arens regularity for totally ordered semigroups, in preparation.

DU H. G. Dales and A. Ülger, Banach Function Algebras, Arens Regularity, and BSE Norms, in preparation.
[HS] N. Hindman and D. Strauss, Algebra in the StoneČech compactification, Theory and applications, Walter de Gruyter, Berlin and New York, 1998; second revised and extended edition, 2012.
[PaS] J. Pachl and J. Steprāns, DTC ultrafilters on groups, Semigroup Forum, 102 (2021), 517-527.

Semigroups

Let S be a semigroup.

The centre of S is the sub-semigroup $\mathfrak{Z}(S)$, where

$$
\mathcal{Z}(S)=\{t \in S: s t=t s(s \in S)\},
$$

and S is abelian when $\mathcal{Z}(S)=S$

An element $p \in S$ is idempotent if $p^{2}=p$, and S is idempotent if every element is idempotent.

The semigroup is weakly cancellative if the equations $x s=t$ and $s x=t$ have only finitelymany solutions for x for each $s, t \in S$. For $s \in S$, set $L_{s}(t)=s t$ and $R_{s}(t)=t s$ for $t \in S$. An element $s \in S$ is cancellable if both L_{s} and R_{s} are injective, and S is cancellative if each $s \in S$ is cancellable.

Semilattices

Let (S, \leq) be a non-empty, partially ordered set, and suppose that

$$
s \wedge t=\min \{s, t\}
$$

exists for all $s, t \in S$. Then (S, \wedge) is an abelian, idempotent semigroup, called a semilattice.

Conversely, suppose that S is an abelian, idempotent semigroup. Take $s, t \in S$, and set $s \leq t$ if $s t=s$. Then (S, \leq) is a semilattice and $s \wedge t=s t(s, t \in S)$. Hence (S, \wedge) is a semigroup that can be identified with S.

Stone-Čech compactifications

The Stone-Čech compactification of a set

 S is denoted by βS; we regard S as a subset of βS, and set $S^{*}=\beta S \backslash S$; this is the growth of S.The space βS is each of the following:

- - abstractly characterized by a universal property: βS is a compactification of S such that each bounded function from S to a compact space K has an extension to a continuous map from βS to K;
- - the space of ultrafilters on S;
- - the Stone space of the Boolean algebra $\mathcal{P}(S)$, the power set of S;
- - the character space of the commutative C^{*}-algebra $\ell^{\infty}(S)$, so that $\ell^{\infty}(S)=C(\beta S)$.

The space βS is big: if $|S|=\kappa$ (infinite), then $|\beta S|=2^{2^{\kappa}}$.

Semigroup compactifications

Let S be a semigroup. Then βS becomes a semigroup, as follows.

For each $s \in S$, the map $L_{s}: S \rightarrow \beta S$ has an extension to a continuous map $L_{s}: \beta S \rightarrow \beta S$. For $u \in \beta S$, define $s \square u=L_{s}(u)$.

Next, the map $R_{u}: s \mapsto s \square u, S \rightarrow \beta S$, has an extension to a continuous map $R_{u}: \beta S \rightarrow \beta S$ for each $u \in \beta S$. Define

$$
u \square v=R_{v}(u) \quad(u, v \in \beta S) .
$$

Similarly we have ($\beta S, \diamond$) (exchanging right and left).

In the case where S is abelian, $u \diamond v=v \square u$ for all $u, v \in \beta S$.

A book on this is [HS].

Compact, right topological semigroup

Definition A semigroup X with a topology τ is a compact, right topological semigroup if (X, τ) is a compact space and the map R_{v} is continuous with respect to τ for each $v \in X$.

For example, let S be a semigroup. Then $X=\beta S$ is compact, right topological semigroup wrt \square. The map L_{s} is continuous on X when $s \in S$, but maybe not more generally.

The left topological centre of X is:

$$
\mathfrak{\mathfrak { J }}_{t}^{(\ell)}(X)=\{u \in X: u \square v=u \diamond v(v \in X)\},
$$

and we have
$\mathfrak{J}_{t}^{(\ell)}(X)=\left\{u \in X: L_{u}\right.$ is continuous on $\left.X\right\}$, so $S \subset \mathfrak{Z}_{t}^{(\ell)}(X) \subset X$.

In the case where S is abelian, $\mathfrak{Z}_{t}^{(\ell)}(X)=\mathfrak{Z}(X)$.

Arens regularity

The semigroup S is Arens regular (AR) if $\mathfrak{Z}_{t}^{(\ell)}(X)=X$ and strongly Arens irregular (SAI) if $\mathfrak{Z}_{t}^{(\ell)}(X)=\mathfrak{Z}_{t}^{(r)}(X)=S$.

A subset V of X is determining for the left topological centre (a DLTC set) if $u \in \mathfrak{J}_{t}^{(\ell)}(X)$ whenever $u \in X$ and $u \square v=u \diamond v(v \in V)$.

The following theorem is in [DLS]; see also [PaS].

Theorem Let S be an infinite, weakly cancellative semigroup. Then S is SAI, and there is a two-point subset of S^{*} that is a DLTC set for X.

Banach algebras

Let A be an algebra such that $(A,\|\cdot\|)$ is also a Banach space. Then A is a Banach algebra if also $\|a b\| \leq\|a\|\|b\|$ for all $a, b \in A$.

Example Let S be a non-empty set. Consider the linear space of functions $f: S \rightarrow \mathbb{C}$ such that $\sum_{s \in S}|f(s)|<\infty$. This is the space $\ell^{1}(S)$. It is a Banach space for the norm

$$
\|f\|_{1}=\sum_{s \in S}|f(s)| .
$$

Now suppose that S is a semigroup, and write δ_{s} for the characteristic function of $\{s\}$. Then $\ell^{1}(S)$ is a Banach algebra, where the convolution product is specified by $\delta_{s} \star \delta_{t}=\delta_{s t}$ for all $s, t \in S$. It is the semigroup algebra of S.

This algebra is commutative if and only if S is abelian.

Banach spaces

Let E be a Banach space. The closed unit ball is $E_{[1]}$. The dual space of E is E^{\prime}; it is the Banach space of all bounded linear functionals on E.

Write $\langle x, \lambda\rangle=\lambda(x)$ for $x \in E$ and $\lambda \in E^{\prime}$. Thus $\langle\cdot, \cdot\rangle$ gives the duality.

The weak-* topology on E^{\prime} is such that $\lambda_{\alpha} \rightarrow 0$ iff $\left\langle x, \lambda_{\alpha}\right\rangle \rightarrow 0$ for each $x \in E$. The closed unit ball of E^{\prime} is weak-* compact.

The bidual is $E^{\prime \prime}=\left(E^{\prime}\right)^{\prime}$. The map

$$
\kappa: E \rightarrow E^{\prime \prime}
$$

where $\langle\kappa(x), \lambda\rangle=\langle x, \lambda\rangle$, is an isometric embedding, so that E is a closed subspace of $E^{\prime \prime}$.

$M(\beta S)$

Example Start with a non-empty set S and $E=\ell^{1}(S)$. Then we can identify E^{\prime} with $\ell^{\infty}(S)=C(X)$, where $X=\beta S$. The bidual $E^{\prime \prime}$ is $C(X)^{\prime}=M(X)$, the Banach space of all complex-valued, regular Borel measures μ on X, with

$$
\|\mu\|=|\mu|(X) .
$$

Then $M(X)=\ell^{1}(S) \oplus M\left(S^{*}\right)$ as Banach spaces.

Biduals of Banach algebras

Let A be a Banach algebra. Then there are two natural products, \square and \diamond, on the bidual $A^{\prime \prime}$ of A; they are called the Arens products.

There are formal definitions, but we shall use:
$\mathrm{M} \square \mathrm{N}=\lim _{\alpha} \lim _{\beta} a_{\alpha} b_{\beta}, \quad \mathrm{M} \diamond \mathrm{N}=\lim _{\beta} \lim _{\alpha} a_{\alpha} b_{\beta}$
for $\mathrm{M}, \mathrm{N} \in A^{\prime \prime}$, where $\left(a_{\alpha}\right)$ and $\left(b_{\beta}\right)$ are nets in A with $\lim _{\alpha} a_{\alpha}=\mathrm{M}$ and $\lim _{\beta} b_{\beta}=\mathrm{N}$ in the weak-* topology, $\sigma\left(A^{\prime \prime}, A^{\prime}\right)$.

Set $A^{\prime \prime}=\left(A^{\prime \prime}, \square\right)$. We regard A as a closed subalgebra of $A^{\prime \prime}$.

In the case where A is abelian, $\mathrm{M} \diamond \mathrm{N}=\mathrm{N} \square \mathrm{M}$.
Example Let S be a semigroup. Then we identify $\ell^{1}(S)^{\prime \prime}$ with $M(X)$, where $X=\beta S$, and this gives two products on $M(X)$.

See the book [DU] for an account of Arens regularity.

Arens regularity

Let A be a Banach algebra
The algebra A is Arens regular (AR) if \square and \diamond coincide on $A^{\prime \prime}$. All C^{*}-algebras are AR.

There are definitions of $\mathfrak{Z}_{t}^{(\ell)}\left(A^{\prime \prime}\right)$ and $\mathfrak{Z}_{t}^{(r)}\left(A^{\prime \prime}\right)$, and A is strongly Arens irregular (SAI) if both are equal to A.

In the case where A is commutative, both are equal to $\mathfrak{Z}\left(A^{\prime \prime}\right)$, the centre of $A^{\prime \prime}$, and $A \subset \mathfrak{Z}\left(A^{\prime \prime}\right) \subset A^{\prime \prime}$.

Example Let S be a semigroup. We identify $u \in X$ with the point mass at u, and then the definitions of $u \square v$ and $\delta_{u} \square \delta_{v}$ are consistent for $u, v \in X$. Suppose that S is abelian. Then

$$
\mathfrak{Z}(M(\beta S)) \cap \beta S \subset \mathfrak{Z}(\beta S) .
$$

We do not have an example where the above inclusion is proper. Can you see one?

DLTC sets

Definition Let A be a Banach algebra. A nonempty subset V of $A^{\prime \prime}$ is determining for the left topological centre (a DLTC set)for $A^{\prime \prime}$ if $\mathrm{M} \in \mathfrak{Z}_{t}^{(\ell)}\left(A^{\prime \prime}\right)$ whenever $\mathrm{M} \in A^{\prime \prime}$ and $\mathrm{M} \square \mathrm{N}=\mathrm{M} \diamond \mathrm{N}(\mathrm{N} \in V)$.

The following is Theorem 12.15 of [DLS].

Theorem Let S be an infinite, cancellative semigroup. Then the semigroup algebra $\ell^{1}(S)$ is SAI, and there exist a and b in S^{*} such that the two-point set $\left\{\delta_{a}, \delta_{b}\right\}$ is a DLTC set for $M(X)$.

A related theorem:

Theorem Let G be a locally compact group, and consider the group algebra $A=\left(L^{1}(G), \star\right)$. Then A is SAI, and there is a two-element DLTC set in $A^{\prime \prime}$.

Totally ordered semigroups

Let T be an infinite, totally ordered space. For $s, t \in T$, we set

$$
s \wedge t=\min \{s, t\}
$$

so that T is a lattice and a semigroup with respect to the operation \wedge. Also T is an abelian, idempotent semigroup, i.e., a semilattice.

We further suppose that T has a minimum element, called 0 , and a maximum element, called ∞, and that T is complete, in the sense that every non-empty subset of T has a supremum and an infimum. We give T its interval topology, so that the closed intervals provide a subbase for the closed sets

Then T is then a compact topological semigroup.

The semigroup S

We take S to be an arbitrary, infinite subset of T, so that S is a sub-semigroup of (T, \wedge) that is also an abelian, idempotent semigroup.
[In fact, each totally ordered semigroup (S, \wedge) can be embedded in a complete, compact, totally ordered topological semigroup (T, \wedge); this is well-known.]

We let E denote the set of accumulation points of S in T.

Examples Set $T=\mathbb{N} \cup\{\infty\}$ and $S=\mathbb{N}$, so that $E=\{\infty\}$; set $T=\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ and $S=\mathbb{Q}$, so that $E=T$; set $T=\left[0, \omega_{1}\right]$, where ω_{1} is the first uncountable ordinal, and $S=\left[0, \omega_{1}\right)$, so that E is the collection of limit ordinals in T. These examples are not weakly cancellative.

The space X

We regard S as having the discrete topology. Set $X=\beta S$, and $X^{*}=X \backslash S$, as before.

The closures of a subset A of S in T and X are $\mathrm{Cl}_{T} A$ and $\mathrm{Cl}_{X} A$, respectively. The map

$$
\pi: X \rightarrow T
$$

denotes the continuous extension of the inclusion map of S into T, so that $\pi(X)=\mathrm{cl}_{T} S$. We shall write F_{t} for the fibre $\{x \in X: \pi(x)=t\}$ for $t \in \mathrm{Cl}_{T} S$. We set $F_{t}^{*}=F_{t} \cap X^{*}$, so that $F_{t}^{*}=F_{t} \quad(t \in T \backslash S) \quad$ and $\quad F_{t}^{*}=F_{t} \backslash\{t\} \quad(t \in S)$. Take $t \in T$. Then F_{t}^{*} is a closed, and hence compact, subset of X, and clearly $F_{t}^{*} \neq \emptyset$ if and only if $t \in E$.

We recall the standard facts, that, for every subset A of S, the set $\mathrm{cl}_{X} A$ is clopen in X, and that, for every subsets A and B of S that are disjoint, the two sets $\mathrm{Cl}_{X} A$ and $\mathrm{cl}_{X} B$ are disjoint in X.

A character

Let S be a semigroup. Take a subset A of S, and suppose that $\mu \in M(X)_{[1]}$ with $\operatorname{supp} \mu \subset$ $\mathrm{cl}_{\mathrm{X}} \mathrm{A}$. Then the measure μ belongs to the weak-* closure of aco $\left\{\delta_{s}: s \in A\right\}$.

The augmentation character on $(M(X), \square)$

 is the map$$
\varphi_{0}: \mu \mapsto\left\langle 1_{X}, \mu\right\rangle=\mu(X)=\int_{X} \mathrm{~d} \mu
$$

Clearly $\varphi_{0}(\mu \square \nu)=\varphi_{0}(\mu) \varphi_{0}(\nu)(\mu, \nu \in M(X))$, so φ_{0} is indeed a character on $(M(X), \square)$, and φ_{0} is weak-* continuous.

Lemmas

Lemma 1 Suppose that A and B are subsets of S such that $A \leq B$. Take $\mu, \nu \in M(X)_{[1]}$ with supp $\mu \subset \mathrm{cl}_{\mathrm{X}} \mathrm{A}$ and $\operatorname{supp} \nu \subset \mathrm{cl}_{\mathrm{X}} \mathrm{B}$. Then

$$
\mu \square \nu=\nu \square \mu=\varphi_{0}(\nu) \mu .
$$

Proof Take $\sigma \in \operatorname{aco}\left\{\delta_{s}: s \in A\right\}, \tau \in \operatorname{aco}\left\{\delta_{t}: t \in B\right\}$. We have $\delta_{s} \star \delta_{t}=\delta_{t} \star \delta_{s}=\delta_{s}(s \in A, t \in B)$, and so $\sigma \star \tau=\tau \star \sigma=\varphi_{0}(\tau) \sigma$. Take weak-* limits.

Take $t \in E$, and now set $A=S \cap[0, t)$ and $B=S \cap(t, \infty]$. Then $F_{t}^{*} \cap \mathrm{cl}_{X} A$ and $F_{t}^{*} \cap \mathrm{cl}_{X} B$ are disjoint, compact subsets of F_{t}^{*} whose union is F_{t}^{*}.

Lemma 2 Suppose that $p, q \in F_{t}^{*} \cap \mathrm{cl}_{X} A$. Then $p \square q=p$. Suppose that $p \in F_{t}^{*} \cap \mathrm{cl}_{X} A$ and that $q \in F_{t}^{*} \cap \mathrm{cl}_{X} B$. Then $p \square q=q \square p=p$.

A theorem

Theorem The semigroup (S, \wedge) is SAI, and the semigroup algebra $\left(\ell^{1}(S), \star\right)$ is not AR.

Proof Consider a point $p \in X^{*}$, say $p \in F_{t}^{*}$, where $t \in E$. We may suppose that $p \in \mathrm{Cl}_{X} A$, and so there exists $q \in F_{t}^{*} \cap \mathrm{Cl}_{X} A$ with $q \neq p$. Hence $p \square q \neq q \square p$, and so $p \notin \mathfrak{Z}(X)$. Hence S is SAI.

Clearly $\delta_{p} \notin \mathfrak{Z}(M(X))$, and so $\ell^{1}(S)$ is not AR.

Another theorem

Lemma Let $\mu \in M(X)$, and take $t \in E$. Suppose that $\mu \mid\left(F_{t}^{*} \cap A\right)=0$. Then $\mu \square p=p \square \mu$ for each $p \in F_{t}^{*} \cap A$.

Proof Take $\varepsilon>0$. Then there exists $u \in S$ with $u<t$ and $|\mu|\left(\mathrm{cl}_{X}(S \cap(u, t))\right)<\varepsilon$. This shows by previous lemmas that $\|\mu \square p-p \square \mu\|<\varepsilon$. Hence $\mu \square p=p \square \mu$.

Theorem Let $\mu \in M(X)$. Then $\mu \in \mathfrak{Z}(M(X))$ if and only if $\mu \mid F_{t}^{*}=0(t \in E)$.

Proof If $\mu \mid F_{t}^{*} \neq 0$, use $p, q \in F_{t}^{*}$. If $\mu \mid F_{t}^{*}=0$ for each $t \in E$, use the lemma.

Scattered spaces

A compact space K is scattered if each nonempty subset of K contains a point that is isolated in the subset. This happens if and only if $f(K)$ is countable for each $f \in C(K)$ if and only if $\ell^{1}(K)=M(K)$.

Theorem The semigroup algebra ($\ell^{1}(S), \star$) is SAI if and only if $\mathrm{cl}_{T} S$ is scattered.

For example, $\mathbb{N} \cup\{\infty\}$ and $\left[0, \omega_{1}\right]$ are scattered, and so (\mathbb{N}, \wedge) and ($\left[0, \omega_{1}\right), \wedge$) are SAI, but $\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ is not scattered, and so (\mathbb{Q}, \wedge) is not SAI.

DTC sets for $M(X)$

For each $t \in E$, choose two distinct points in $F_{t}^{*} \cap A$ and two distinct points in $F_{t}^{*} \cap B$ whenever the respective sets are non-empty. The collection of these points is called V. Now take $\mu \in M(X)$, and suppose that $\mu \square p=p \square \mu$ for each $p \in V$. For each $t \in E$, it follows that $\mu \mid\left(F_{t}^{*} \cap A\right)=0$ and that $\mu \mid\left(F_{t}^{*} \cap B\right)=0$. Thus $\mu \mid F_{t}^{*}=0$. This implies that $\mu \in \mathfrak{Z}(M(X))$, and hence V is a DTC set for $M(X)$.

This shows that $M(X)$ has a DTC set consisting of at most 2^{κ} points of X, where $\kappa=|E|$; this is a small subset of X because $|X|=2^{2^{\kappa}}$.

Suppose that E is infinite. Then there cannot be a finite DTC set for the SAI semigroup S. For suppose that V is a finite subset in X, and choose $t \in E \backslash \pi(V)$, and then choose $p \in F_{t}^{*}$. We have $p \square v=v \square p(v \in V)$, but $p \notin S$, and so V is not a DTC set for S.

DTC sets for $M(X)$, bis

Theorem Suppose that the set E is finite. Then there is a finite DTC set for S.
Suppose that the set E is infinite or uncountable. Then there is no finite or countable DTC set for S, respectively.

Theorem Suppose that the set E is countable. Then the semigroup algebra $\ell^{1}(S)$ is SAI and has a DTC set consisting of at most four measures in $M\left(X^{*}\right)^{+}$.

Proof Suppose that $\left(s_{n}\right)$ is a sequence in S such that $F_{s_{n}}^{*} \cap \mathrm{cl}_{X}\left(S \cap\left[0, s_{n}\right)\right) \neq \emptyset$. Choose two points $p_{1, n}$ and $p_{2, n}$ in $F_{s_{n}}^{*} \cap \mathrm{cl}_{X}\left(S \cap\left[0, s_{n}\right)\right)$, and set

$$
\mu_{j}=\sum \frac{1}{2^{n}} \delta_{p_{j, n}} \quad(j=1,2) .
$$

We obtain two measures in $M\left(X^{*}\right)^{+}$. Similarly on the other side, so we have four measures. These work.

Examples 1

(I) Consider the semigroup $S=(\mathbb{N}, \wedge)$. Then $\ell^{1}(S)$ is SAI and any two distinct points in \mathbb{N}^{*} form a DTC set for $M(\beta \mathbb{N})$.
(II) Consider the semigroup $S=(\mathbb{Q}, \wedge)$. Then S is SAI, but there is no countable DTC set for S. The semigroup algebra $\ell^{1}(S)$ is neither AR nor SAI, and we know $\mathfrak{Z}(M(X))$. There is no countable DTC set for $M(X)$.
(III) Consider the subset S of

$$
T:=\{-\infty\} \cup \mathbb{R} \cup\{\infty\}
$$

that consists of numbers of the form $n-x$, where $n \in \mathbb{Z}$ and $x \in\{1 / 2,1 / 4,1 / 8, \ldots\}$. Then the corresponding set E is $\{-\infty\} \cup \mathbb{Z} \cup\{\infty\}$, a countable set. There is no finite DTC set for the semigroup S. However $\ell^{1}(S)$ is SAI, and there is a two-element DTC set in $M\left(X^{*}\right)^{+}$.

Examples 2

(IV) Consider the semigroup $S=T=([0, \kappa], \wedge)$, where κ is a cardinal with $|\kappa| \geq \aleph_{1}$, so that the corresponding set E has cardinality κ. Since T is scattered, the algebra $\ell^{1}(S)$ is SAI. But there is no DTC set for $M(X)$ with cardinality strictly less than κ. This shows that the cardinality of a DTC set can be arbitrarily large, even when $\ell^{1}(S)$ is SAI.

A question

Set $S=T=\{0,1\}^{\kappa}$, where κ is an infinite cardinal. Then (S, \wedge) is a lattice, but S is not totally ordered. Are S and $\ell^{1}(S)$ both SAI?

