Conjugacy in epigroups

António Malheiro
(CMA/FCT/NOVA University of Lisbon)

@ the York semigroup

(joint work with João Araújo, Michael Kinyon, Janusz Konieczny)

Acknowledgement:

This work was supported by CMA within the projects
UID / MAT / 00297/2013
PTDC/MHC-FIL/2583/2014
PTDC/MAT-PUR/31174/2017
financed by 'Fundação para a Ciência e a Tecnologia'

October 2018

Epigroups

Epigroups

A semigroup S is an epigroup if for any element x of S some power of x lies in a subgroup of S.

Nice classes of epigroups:

- finite semigroups;
- periodic semigroups;
- completely regular semigroups;
- completely 0 -simple semigroups;
- algebraic monoids.

Some concrete examples:

- the semigroup of all matrices over a division ring;
- the infinite cyclic epigroup $C_{n, \infty}$ given by the presentation

$$
\left\langle a, b \mid a b=b a, a b^{2}=b, a^{n+1} b=a^{n}\right\rangle
$$

Epigroups as unary semigroups

Let S be a semigroup:

- $a \in S$ is an epigroup element $(a \in \operatorname{Epi}(S))$ (or a group-bound element) if $\exists n: a^{n}$ is in a subgroup of S;
- the maximum subgroup of S containing a^{n} is its \mathcal{H}-class H; with identity e;
- we define the pseudo-inverse a^{\prime} of a by

$$
a^{\prime}:=(a e)^{-1}
$$

the inverse of $a e$ in the group H;

- $a \in \operatorname{Epi}(S)$ iff $\exists n \exists a^{\prime} \in S$ such that:

$$
a^{\prime} a a^{\prime}=a^{\prime}, \quad a a^{\prime}=a^{\prime} a, \quad a^{n+1} a^{\prime}=a^{n} ;
$$

the smallest such n is the index of a;

:

- a^{2}
- a
- we set $a^{\omega}=a a^{\prime}$; so $a^{\omega+1}=a a^{\prime} a=a^{\prime \prime}$.
- $\operatorname{Epi}_{n}(S)=\{a \in \operatorname{Epi}(S)$ with index no more than $n\} ;$
- $\operatorname{Epi}_{1}(S)$ are the completely regular,
- S is an epigroup if $S=\operatorname{Epi}(S)$.

Conjugacy... in groups

G a group
$a, b \in G$ are conjugate $(a \sim b)$ if:

- $\exists_{u, v \in G} a=u v$ and $b=v u$
- $\exists_{g \in G} a=g^{-1} b g$
- $\exists_{g \in G} g a=b g$
- $\exists_{g \in G} a g=g b$
- consider a representation $\rho: G \rightarrow G L_{n}(\mathbb{C})$;
the character $\quad \chi_{\rho}: G \rightarrow \mathbb{C}$ $g \mapsto \operatorname{Tr}(\rho(g))$ is a class function; irreducible characters \longleftrightarrow conjugacy classes

Some known generalizations of conjugacy...

S a semigroup (with zero) / monoid / inverse semigroup / epigroup

$$
\begin{aligned}
& a \sim_{p} b \Longleftrightarrow \exists_{u, v \in S^{1}} \quad a=u v \wedge b=v u \\
& a \sim_{u} b \Longleftrightarrow \exists_{g \in U(S)} \quad g^{-1} a g=b \wedge g b g^{-1}=a \\
& a \sim_{i} b \Longleftrightarrow \exists_{g \in S^{1}} \quad g^{-1} a g=b \wedge g b g^{-1}=a \\
& a \sim_{o} b \quad \Longleftrightarrow \exists_{g, h \in S^{1}} \quad a g=g b \wedge b h=h a \\
& \\
& a \sim_{c} b \Longleftrightarrow \exists_{g \in \mathbb{P}^{1}(a)} \quad \exists_{h \in \mathbb{P}^{1}(b)} a g=g b \wedge b h=h a \\
& a \sim_{t r} b \Longleftrightarrow \exists_{g, h \in S^{1}} \quad g h g=g \wedge h g h=h \wedge \\
& g a^{\omega+1} h=b^{\omega+1} \wedge \\
& h g=a^{\omega} \wedge g h=b^{\omega} .
\end{aligned}
$$

Known inclusions between conjugacies

\cdot	0	1	2	3	4	5	6
0	0	0	0	0	4	4	0
1	0	0	0	0	4	4	0
2	0	0	0	0	4	4	0
3	0	0	0	0	4	4	0
4	4	4	4	4	4	4	4
5	4	4	4	4	4	4	4
6	0	0	2	3	4	5	6

SmallSemigroup $(7,542155)$

Epigroups

For $a, b \in \operatorname{Epi}(S)$, we set
$a \sim_{t r} b \Longleftrightarrow \exists_{g, h \in S^{1}} g h g=g, h g h=h, h a^{\prime \prime} g=b^{\prime \prime}, g h=a a^{\prime}, h g=b b^{\prime}$.

Theorem

Let S be a semigroup. For $a, b \in \operatorname{Epi}(S)$, the following are equivalent:

1. $a \sim_{t r} b$;
2. $\exists_{g, h \in S^{1}} h a^{\prime \prime} g=b^{\prime \prime}, g h=a^{\omega}, h g=b^{\omega}$
3. $\exists_{g, h \in S^{1}} a^{\prime \prime} g=g b^{\prime \prime}, g h=a^{\omega}, h g=b^{\omega}$;
4. $\exists_{g, h \in S^{1}} a g=g b, b h=h a, g h=a^{\omega}, h g=b^{\omega}$;
5. $\exists_{g, h \in S^{1}} h g h=h, h a^{\prime \prime} g=b^{\prime \prime}, g b^{\prime \prime} h=a^{\prime \prime}$;
6. $a^{\prime \prime} \sim_{p} b^{\prime \prime}$.

Epigroups

Theorem

Let S be a semigroup. Then:

1. $\sim_{t r}$ is an equivalence relation on $\operatorname{Epi}(S)$;
2. for all $x \in \operatorname{Epi}(S), x \sim_{t r} x^{\prime \prime}$;
3. for all $x, y \in S$ such that $x y, y x \in \operatorname{Epi}(S), x y \sim_{t r} y x$;
4. $\sim_{t r}$ is the smallest equivalence relation on $\operatorname{Epi}(S)$ such that (2) and (3) hold.

Theorem
Let S be a semigroup. As relations on $\operatorname{Epi}(S)$, the following inclusions hold:

$$
\sim_{p} \subseteq \sim_{p}^{*} \subseteq \sim_{t r} \subseteq \sim_{o}
$$

Completely regular semigroups and beyond ...

Completely regular as semigroup variety:

$$
x x^{\prime}=x^{\prime} x \quad x^{\prime} x x^{\prime}=x^{\prime} \quad x x^{\prime} x=x
$$

Corollary

Let S be a semigroup. As relations on $\operatorname{Epi}_{1}(S)$, we have $\sim_{p}=\sim_{p}^{*}=\sim_{t r}$. In particular, (as Kudryavtseva showed) \sim_{p} is transitive on completely regular semigroups.
\mathcal{W} - Another semigroup variety:

$$
x x^{\prime}=x^{\prime} x \quad x^{\prime} x x^{\prime}=x^{\prime} \quad x^{3} x^{\prime}=x^{2} \quad(x y)^{\prime \prime}=x y
$$

Theorem
Let S be an epigroup in \mathcal{W}. Then $\sim_{p}=\sim_{p}^{*} \subset \sim_{t r}$.

Variants of CS semigroups

Theorem

Let $\left(S, \cdot,{ }^{\prime}\right)$ be a completely regular semigroup, and fix $a \in S$. Let $\left(S, \circ,{ }^{*}\right)$ be the variant of S at a, that is,

$$
x \circ y=x a y \quad \text { and } \quad x^{*}=(x a)^{\prime} x(a x)^{\prime}
$$

for all $x, y \in S$. Then $\left(S, \circ,{ }^{*}\right)$ is in \mathcal{W}.
Corollary
The relation \sim_{p} is transitive in every variant of a completely regular semigroup.

In general, for epigroups ...
\sim_{p} transitive $\nRightarrow \sim_{p}$ transitive in all of the variants.

Epigroups and idempotents

Proposition

Let S be an epigroup. Then $\sim_{t r} \cap \leq$ is the identity relation on $E(S)$.
Proposition
Let S be an epigroup in which $\sim_{t r}=\sim_{o}$. Then $E(S)$ is an antichain.
Completely simple semigroups

- no proper ideals;
- idempotents form an antichain.

Theorem

In completely simple semigroups, we have $\sim_{p}=\sim_{p}^{*}=\sim_{t r}=\sim_{o}$.

Theorem

Let S be a regular epigroup without zero. The following are equivalent:

1. $\sim_{p}=\sim_{o}$ in S;
2. S is completely simple.

Epigroups with zero

Completely 0-simple semigroups

Rees matrix representation $\mathcal{M}^{0}(G ; I, \Lambda ; P)$:

- I and Λ are nonempty sets;
- G is a group;
- $P=\left(p_{\lambda j}\right)$ is a $\Lambda \times I$ matrix with entries in $G \cup\{0\}$ such that no row or column of P consists entirely of zeros
- elements from $(I \times G \times \Lambda) \cup\{0\}$;
- multiplication is defined by $(i, a, \lambda)(j, b, \mu)=\left(i, a p_{\lambda j} b, \mu\right)$ if

$$
\begin{aligned}
& p_{\lambda j} \neq 0,(i, a, \lambda)(j, b, \mu)=0 \text { if } p_{\lambda j}=0, \text { and } \\
& (i, a, \lambda) 0=0(i, a, \lambda)=0 .
\end{aligned}
$$

Proposition

For a completely 0 -simple semigroup $\mathcal{M}^{0}(G ; I, \Lambda ; P)$, we have $\sim_{c} \subseteq \sim_{p}$. Moreover, $\sim_{c}=\sim_{p}$ if and only if the sandwich matrix P has only nonzero elements.

Epigroups with zero

Lemma

Let S be an epigroup with zero and suppose $\sim_{c} \subseteq \sim_{t r}$. Then $E(S) \backslash\{0\}$ is an antichain.

Theorem
Let S be a regular epigroup with zero. The following are equivalent:

1. $\sim_{c} \subseteq \sim_{p}$;
2. $\sim_{c} \subseteq \sim_{t r}$;
3. S is a 0 -direct union of completely 0 -simple semigroups.

0 -direct union

A semigroup S with zero is called a 0 -direct union of completely 0 -simple semigroups if $S=\bigcup_{i \in I} S_{i}$, where each S_{i} is a completely 0 -simple semigroup and $S_{i} \cap S_{j}=S_{i} S_{j}=\{0\}$ if $i \neq j$

The conjugacies \sim_{o} and \sim_{c} in epigroups

Recall \sim_{o}

$$
a \sim_{o} b \quad \Longleftrightarrow \quad \exists_{g, h \in S^{1}} a g=g b \wedge b h=h a
$$

Theorem

Let S be an epigroup and suppose $a \sim_{o} b$ for some $a, b \in S$. Then there exist mutually inverse $g, h \in S^{1}$ such that $a g=g b$ and $b h=h a$.

Recall \sim_{c}

$$
a \sim_{c} b \quad \Longleftrightarrow \quad \exists_{g \in \mathbb{P}^{1}(a)} \exists_{h \in \mathbb{P}^{1}(b)} a g=g b \wedge b h=h a
$$

Theorem
Let S be an epigroup with zero in \mathcal{W} and suppose $a \sim_{c} b$ for some $a, b \in S$. Then there exist mutually inverse $g \in \mathbb{P}^{1}(a), h \in \mathbb{P}^{1}(b)$ such that $a g=g b$ and $b h=h a$.

Conjugacy in symmetric inverse semigroups - $\mathcal{I}(X)$

X countable set
Basic partial injective transformations on X :

- cycle $-\delta=\left(x_{0} x_{1} \ldots x_{k-1}\right)$, with $x_{i} \delta=x_{i+1}$ for all $0 \leq i<k-1$, and $x_{k-1} \delta=x_{0}$.
- chain $-\theta=\left[x_{0} x_{1} \ldots x_{k}\right]$, with $x_{i} \theta=x_{i+1}$ for all $0 \leq i \leq k-1$.
- double ray $-\omega=\left\langle\ldots x_{-1} x_{0} x_{1} \ldots\right\rangle$, with $x_{i} \omega=x_{i+1}$ for all i.
- right ray $-v=\left[x_{0} x_{1} x_{2} \ldots\right\rangle$, with $x_{i} v=x_{i+1}$ for all $i \geq 0$.
- left ray $-\lambda=\left\langle\ldots x_{2} x_{1} x_{0}\right]$, with $x_{i} \lambda=x_{i-1}$ for all $i>0$.

An element $\beta \in \mathcal{I}(X)$ has a unique cycle-chain-ray decomposition:
$\beta=(24) \sqcup[6810] \sqcup\langle\ldots-6-4-2-1-3-5 \ldots\rangle \sqcup[15913 \ldots\rangle \sqcup\langle\ldots 151173]$

The cycle-chain-ray type of

$$
\alpha=(268) \sqcup[13] \sqcup[459]
$$

(has the form $(* * *)[* *][* * *]$)
is the sequence of cardinalities

$$
\langle 0,0,1,0, \ldots ; 0,1,1,0, \ldots ; 0,0,0\rangle
$$

The cycle-chain-ray type of
$\beta=(24) \sqcup[6810] \sqcup\langle\ldots-6-4-2-1-3-5 \ldots\rangle \sqcup[15913 \ldots\rangle \sqcup\langle\ldots 151173]$
(has the form $(* *)[* * *]\langle\ldots * * * \ldots\rangle[* * * \ldots\rangle\langle\ldots * * *]$)
is the sequence of cardinalities

$$
\langle 0,1,0, \ldots ; 0,0,1,0, \ldots ; 1,1,1\rangle .
$$

$$
\langle | \Delta_{\alpha}^{1}\left|,\left|\Delta_{\alpha}^{2}\right|,\left|\Delta_{\alpha}^{3}\right|, \ldots ;\left|\Theta_{\alpha}^{1}\right|,\left|\Theta_{\alpha}^{2}\right|,\left|\Theta_{\alpha}^{3}\right|, \ldots ;\left|\Omega_{\alpha}\right|,\left|\Upsilon_{\alpha}\right|,\left|\Lambda_{\alpha}\right|\right\rangle
$$

Conjugacy in symmetric inverse semigroups - $\mathcal{I}(X)$

Theorem

Suppose that X is countable. Let $\alpha, \beta \in \mathcal{I}(X)$. Then $\alpha \sim_{c} \beta$ if and only if the following conditions are satisfied:
(a) $\left|\Delta_{\alpha}^{k}\right|=\left|\Delta_{\beta}^{k}\right|$ for every $k \in \mathbb{Z}_{+},\left|\Omega_{\alpha}\right|=\left|\Omega_{\beta}\right|$, and $\left|\Lambda_{\alpha}\right|=\left|\Lambda_{\beta}\right|$;
(b) if Ω_{α} is finite, then $\left|\Upsilon_{\alpha}\right|=\left|\Upsilon_{\beta}\right|$; and
(c) if Λ_{α} is finite, then
(i) $k_{\alpha}=k_{\beta}\left(k_{\alpha}=\sup \left\{k \in \mathbb{Z}_{+}: \Theta_{\alpha}^{k} \neq \emptyset\right\}\right)$; and
(ii) if $k_{\alpha} \in \mathbb{Z}_{+}$, then $m_{\alpha}=m_{\beta}$
($m_{\alpha}=\max \left\{m \in\left\{1,2, \ldots, k_{\alpha}\right\}:\left|\Theta_{\alpha}^{m}\right|=\aleph_{0}\right\}$) and for every $k \in\left\{m_{\alpha}+1, \ldots, k_{\alpha}\right\},\left|\Theta_{\alpha}^{k}\right|=\left|\Theta_{\beta}^{k}\right|$.

$$
\begin{aligned}
& \langle | \Delta_{\alpha}^{1}\left|,\left|\Delta_{\alpha}^{2}\right|,\left|\Delta_{\alpha}^{3}\right|, \ldots ;\left|\Theta_{\alpha}^{1}\right|,\left|\Theta_{\alpha}^{2}\right|,\left|\Theta_{\alpha}^{3}\right|, \ldots ;\left|\Omega_{\alpha}\right|,\left|\Upsilon_{\alpha}\right|,\left|\Lambda_{\alpha}\right|\right\rangle \\
& \langle | \Delta_{\beta}^{1}\left|,\left|\Delta_{\beta}^{2}\right|,\left|\Delta_{\beta}^{3}\right|, \ldots ;\left|\Theta_{\beta}^{1}\right|,\left|\Theta_{\beta}^{2}\right|,\left|\Theta_{\beta}^{3}\right|, \ldots ;\left|\Omega_{\beta}\right|,\left|\Upsilon_{\beta}\right|,\left|\Lambda_{\beta}\right|\right\rangle
\end{aligned}
$$

Conjugacy in symmetric inverse semigroups - $\mathcal{I}(X)$

Corollary

Suppose that X is finite and $\alpha, \beta \in \mathcal{I}(X)$. Then the following are equivalent:

- $\alpha \sim_{c} \beta$;
- α and β have the same cycle-chain type;
- there exists a permutation σ on the set X such that $\alpha=\sigma^{-1} \beta \sigma$.

Theorem (Ganyushkin, Kormysheva, 1993)

Suppose that X is finite and $\alpha, \beta \in \mathcal{I}(X)$. Then $\alpha \sim_{p}^{*} \beta$ if and only if α and β have the same cycle type.

Conjugacy in symmetric inverse semigroups - $\mathcal{I}(X)$

Proposition

Suppose that X is finite with $|X| \geq 2$. Then $\sim_{c} \subset \sim_{p}$ in $\mathcal{I}(X)$.
Proposition
Suppose that X is countably infinite. Then, with respect to inclusion, \sim_{p} and \sim_{c} are not comparable in $\mathcal{I}(X)$.

For a countably infinite X :

Epigroup elements of $\mathcal{I}(X)$

Lemma

Let $\alpha \in \mathcal{I}(X)$. Then α is an epigroup element if and only if $\Omega_{\alpha}=\Upsilon_{\alpha}=\Lambda_{\alpha}=\emptyset$ and there is a positive integer n such that $\Theta_{\alpha}^{k}=\emptyset$ for all $k>n$.

Lemma

Let $\alpha \in \operatorname{Epi}(\mathcal{I}(X))$. Then α and $\alpha^{\prime \prime}$ have the same cycle type.
Theorem
Let X be a countable set. Then for all $\alpha, \beta \in \operatorname{Epi}(\mathcal{I}(X)), \alpha \sim_{t r} \beta$ if and only if α and β have the same cycle type.

When is conjugacy the identity relation?

Fact:

In a group \sim is the identity if and only if G is commutative.
Theorem
Let S be a semigroup. Then, \sim_{p} is the identity relation in S if and only if S is commutative.

Theorem

Let S be an epigroup. Then, $\sim_{t r}$ is the identity relation in S if and only if S is a commutative completely regular epigroup.

Theorem

Let S be a semigroup. Then:

1. if S is commutative, then \sim_{o} is the minimum cancellative congruence on S;
2. \sim_{o} is the identity relation in S if and only if S is commutative and cancellative.

When is conjugacy the identity relation?

Corollary

Let S be a commutative and cancellative semigroup. Then \sim_{p}, \sim_{o}, and \sim_{c} all coincide, and are equal to the identity relation.

Corollary

Let S be an epigroup. Then $\sim_{p}, \sim_{o}, \sim_{t r}$ and \sim_{c} all coincide and are equal to the identity relation if and only if S is a commutative group.

When is conjugacy the universal relation?

Theorem

Let S be an epigroup. The following are equivalent:

1. $\sim_{t r}$ is the universal relation;
2. $E(S)$ is an antichain and for all $x \in S, x^{\prime \prime}=x^{\omega}$;
3. for all $x, y \in S, x^{\prime} y x^{\prime}=x^{\prime}$;
4. for all $x, y \in S, x^{\omega} y x^{\omega}=x^{\omega}$;
5. for all $x \in S, e \in E(S), e x e=e$.

Theorem

Let S be a semigroup.

1. If S is a rectangular band, then \sim_{p} is the universal relation.
2. If \sim_{p} is the universal relation in S, then S is simple. If, in addition, S contains an idempotent, then S is a rectangular band.

Corollary

In a finite semigroup (or more generally, an epigroup) S, \sim_{p} is the universal relation if and only if S is a rectangular band.

Some research problems:

For inverse semigroups we can define the conjugacy notion

$$
a \sim_{i} b \Leftrightarrow \exists g \in S^{1}, \quad g^{-1} a g=b \wedge g b g^{-1}=a .
$$

This can be naturally generalized for epigroups setting

$$
a \sim b \Leftrightarrow \exists g \in S^{1}, \quad g^{\prime} a g=b \wedge g b g^{\prime}=a .
$$

In general, \sim is not transitive so we should consider \sim^{*}.

Left restriction

In $P(X)$ (the semigroup of partial transformations on any nonempty set X) which can be regarded as a left restriction semigroup with respect to the set of partial identities $E=\left\{i d_{Y}: Y \subseteq X\right\}$ we have $\alpha \sim_{c} \beta \Leftrightarrow \exists \phi, \psi \in S^{1}: \alpha \phi=\phi \beta \wedge \beta \psi=\psi \alpha \wedge(\alpha \phi)^{+}=\alpha^{+} \wedge(\beta \psi)^{+}=\beta^{+}$.

Thanks for your attention!

