Conjugacy in epigroups

António Malheiro (CMA/FCT/NOVA University of Lisbon)

@ the York semigroup

(joint work with João Araújo, Michael Kinyon, Janusz Konieczny)

Acknowledgement: This work was supported by CMA within the projects UID/MAT/00297/2013 PTDC/MHC-FIL/2583/2014 PTDC/MHC-FIL/2583/2017 financed by 'Fundação para a Ciência e a Tecnologia'

October 2018

Epigroups

Epigroups

A semigroup S is an *epigroup* if for any element x of S some power of x lies in a subgroup of S.

Nice classes of epigroups:

- finite semigroups;
- periodic semigroups;
- completely regular semigroups;
- completely 0-simple semigroups;
- ▶ algebraic monoids.

Some concrete examples:

- ▶ the semigroup of all matrices over a division ring;
- ▶ the infinite cyclic epigroup $C_{n,\infty}$ given by the presentation

$$\langle a,b\mid ab=ba,\ ab^2=b,\ a^{n+1}b=a^n\rangle$$

Epigroups as unary semigroups

Let ${\cal S}$ be a semigroup:

- ► $a \in S$ is an epigroup element $(a \in \operatorname{Epi}(S))$ (or a group-bound element) if $\exists n : a^n$ is in a subgroup of S;
- ► the maximum subgroup of S containing aⁿ is its H-class H; with identity e;
- \blacktriangleright we define the *pseudo-inverse* a' of a by

$$a' := (ae)^{-1}$$

the inverse of ae in the group H; • $a \in \operatorname{Epi}(S)$ iff $\exists n \; \exists a' \in S$ such that:

$$a'aa' = a', \quad aa' = a'a, \quad a^{n+1}a' = a^n;$$

the smallest such n is the *index* of a;

 $\cdot a^2$

• a

Conjugacy... in groups

G a group $a,b\in G \text{ are conjugate } (a\sim b) \text{ if:}$

$$\blacktriangleright \exists_{u,v\in G} a = uv \text{ and } b = vu$$

$$\blacktriangleright \exists_{g \in G} \ a = g^{-1} b g$$

$$\blacktriangleright \exists_{g \in G} ga = bg$$

$$\blacktriangleright \exists_{g \in G} ag = gb$$

• consider a representation
$$\rho: G \to GL_n(\mathbb{C});$$

the character $\chi_{\rho}: G \to \mathbb{C}$
 $g \mapsto \operatorname{Tr}(\rho(g))$ is a class function;

irreducible characters \longleftrightarrow conjugacy classes

Some known generalizations of conjugacy...

S a semigroup (with zero) / monoid / inverse semigroup / epigroup

$$\begin{aligned} a \sim_p b & \iff \exists_{u,v \in S^1} \quad a = uv \ \land \ b = vu \\ a \sim_u b & \iff \exists_{g \in U(S)} \quad g^{-1}ag = b \ \land \ gbg^{-1} = a \\ a \sim_i b & \iff \exists_{g \in S^1} \quad g^{-1}ag = b \ \land \ gbg^{-1} = a \\ a \sim_o b & \iff \exists_{g,h \in S^1} \quad ag = gb \ \land \ bh = ha \\ a \sim_c b & \iff \exists_{g \in \mathbb{P}^1(a)} \quad \exists_{h \in \mathbb{P}^1(b)} \quad ag = gb \ \land \ bh = ha \\ a \sim_{tr} b & \iff \exists_{g,h \in S^1} \quad ghg = g \ \land \ hgh = h \ \land \\ ga^{\omega + 1}h = b^{\omega + 1} \ \land \\ hg = a^{\omega} \ \land \ gh = b^{\omega}. \end{aligned}$$

Known inclusions between conjugacies

•	0	1	2	3	4	5	6
0	0	0	0	0	4	4	0
1	0	0	0	0	4	4	0
2	0	0	0	0	4	4	0
3	0	0	0	0	4	4	0
4	4	4	4	4	4	4	4
5	4	4	4	4	4	4	4
6		0	2	3	4	5	6

SmallSemigroup(7,542155)

Epigroups

For $a, b \in \text{Epi}(S)$, we set $a \sim_{tr} b \iff \exists_{g,h \in S^1} ghg = g, hgh = h, ha''g = b'', gh = aa', hg = bb'.$

Theorem

Let S be a semigroup. For $a, b \in \text{Epi}(S)$, the following are equivalent:

1.
$$a \sim_{tr} b$$
;
2. $\exists_{g,h\in S^1} ha''g = b'', gh = a^{\omega}, hg = b^{\omega}$
3. $\exists_{g,h\in S^1} a''g = gb'', gh = a^{\omega}, hg = b^{\omega}$;
4. $\exists_{g,h\in S^1} ag = gb, bh = ha, gh = a^{\omega}, hg = b^{\omega}$;
5. $\exists_{g,h\in S^1} hgh = h, ha''g = b'', gb''h = a''$;
6. $a'' \sim_p b''$.

Epigroups

Theorem

Let S be a semigroup. Then:

- 1. \sim_{tr} is an equivalence relation on $\operatorname{Epi}(S)$;
- 2. for all $x \in \operatorname{Epi}(S), x \sim_{tr} x'';$
- 3. for all $x, y \in S$ such that $xy, yx \in \text{Epi}(S), xy \sim_{tr} yx$;
- 4. \sim_{tr} is the smallest equivalence relation on Epi(S) such that (2) and (3) hold.

Theorem

Let S be a semigroup. As relations on $\mathrm{Epi}(S),$ the following inclusions hold:

$$\sim_p \subseteq \sim_p^* \subseteq \sim_{tr} \subseteq \sim_o$$
.

Completely regular semigroups and beyond ...

Completely regular as semigroup variety:

$$xx' = x'x$$
 $x'xx' = x'$ $xx'x = x$

Corollary

Let S be a semigroup. As relations on $\operatorname{Epi}_1(S)$, we have $\sim_p = \sim_p^* = \sim_{tr}$. In particular, (as Kudryavtseva showed) \sim_p is transitive on completely regular semigroups.

 ${\mathcal W}$ - Another semigroup variety:

$$xx' = x'x$$
 $x'xx' = x'$ $x^3x' = x^2$ $(xy)'' = xy$

Theorem

Let S be an epigroup in \mathcal{W} . Then $\sim_p = \sim_p^* \subset \sim_{tr}$.

Variants of CS semigroups

Theorem

Let $(S, \cdot, ')$ be a completely regular semigroup, and fix $a \in S$. Let $(S, \circ, ^*)$ be the variant of S at a, that is,

 $x \circ y = xay$ and $x^* = (xa)'x(ax)'$

for all $x, y \in S$. Then $(S, \circ, *)$ is in \mathcal{W} .

Corollary

The relation \sim_p is transitive in every variant of a completely regular semigroup.

In general, for epigroups ...

 \sim_p transitive $\implies \sim_p$ transitive in all of the variants.

Epigroups and idempotents

Proposition

Let S be an epigroup. Then $\sim_{tr} \cap \leq$ is the identity relation on E(S).

Proposition

Let S be an epigroup in which $\sim_{tr} = \sim_o$. Then E(S) is an antichain.

Completely simple semigroups

- ▶ no proper ideals;
- idempotents form an antichain.

Theorem

In completely simple semigroups, we have $\sim_p = \sim_p^* = \sim_{tr} = \sim_o$.

Theorem

Let ${\cal S}$ be a regular epigroup without zero. The following are equivalent:

- 1. $\sim_p = \sim_o$ in S;
- 2. S is completely simple.

Epigroups with zero

Completely 0-simple semigroups

Rees matrix representation $\mathcal{M}^0(G; I, \Lambda; P)$:

- I and Λ are nonempty sets;
- G is a group;
- ► $P = (p_{\lambda j})$ is a $\Lambda \times I$ matrix with entries in $G \cup \{0\}$ such that no row or column of P consists entirely of zeros
- elements from $(I \times G \times \Lambda) \cup \{0\};$
- multiplication is defined by $(i, a, \lambda)(j, b, \mu) = (i, ap_{\lambda j}b, \mu)$ if $p_{\lambda j} \neq 0$, $(i, a, \lambda)(j, b, \mu) = 0$ if $p_{\lambda j} = 0$, and $(i, a, \lambda)0 = 0(i, a, \lambda) = 0$.

Proposition

For a completely 0-simple semigroup $\mathcal{M}^0(G; I, \Lambda; P)$, we have $\sim_c \subseteq \sim_p$. Moreover, $\sim_c = \sim_p$ if and only if the sandwich matrix P has only nonzero elements.

Epigroups with zero

Lemma

Let S be an epigroup with zero and suppose $\sim_c \subseteq \sim_{tr}$. Then $E(S) \setminus \{0\}$ is an antichain.

Theorem

Let S be a regular epigroup with zero. The following are equivalent:

1.
$$\sim_c \subseteq \sim_p;$$

2.
$$\sim_c \subseteq \sim_{tr};$$

3. S is a 0-direct union of completely 0-simple semigroups.

0-direct union

A semigroup S with zero is called a 0-direct union of completely 0-simple semigroups if $S = \bigcup_{i \in I} S_i$, where each S_i is a completely 0-simple semigroup and $S_i \cap S_j = S_i S_j = \{0\}$ if $i \neq j$ The conjugacies \sim_o and \sim_c in epigroups

Recall \sim_o

$$a \sim_o b \quad \iff \quad \exists_{g,h \in S^1} ag = gb \land bh = ha$$

Theorem

Let S be an epigroup and suppose $a \sim_o b$ for some $a, b \in S$. Then there exist mutually inverse $g, h \in S^1$ such that ag = gb and bh = ha.

Recall \sim_c

$$a\sim_c b \quad \Longleftrightarrow \quad \exists_{g\in \mathbb{P}^1(a)} \exists_{h\in \mathbb{P}^1(b)} \ ag = gb \ \land \ bh = ha$$

Theorem

Let S be an epigroup with zero in \mathcal{W} and suppose $a \sim_c b$ for some $a, b \in S$. Then there exist mutually inverse $g \in \mathbb{P}^1(a), h \in \mathbb{P}^1(b)$ such that ag = gb and bh = ha.

X countable set

Basic partial injective transformations on X:

• cycle - $\delta = (x_0 x_1 \dots x_{k-1})$, with $x_i \delta = x_{i+1}$ for all $0 \le i < k-1$, and $x_{k-1} \delta = x_0$.

• chain -
$$\theta = [x_0 x_1 \dots x_k]$$
, with $x_i \theta = x_{i+1}$ for all $0 \le i \le k-1$.

• double ray -
$$\omega = \langle \dots x_{-1} x_0 x_1 \dots \rangle$$
, with $x_i \omega = x_{i+1}$ for all *i*.

• right ray -
$$v = [x_0 x_1 x_2 \dots)$$
, with $x_i v = x_{i+1}$ for all $i \ge 0$

• left ray -
$$\lambda = \langle \dots x_2 x_1 x_0 \rangle$$
, with $x_i \lambda = x_{i-1}$ for all $i > 0$.

An element $\beta \in \mathcal{I}(X)$ has a unique cycle-chain-ray decomposition:

$$\beta = (2\ 4) \sqcup [6\ 8\ 10] \sqcup \langle \ldots -6\ -4\ -2\ -1\ -3\ -5\ \ldots \rangle \sqcup [1\ 5\ 9\ 13\ \ldots) \sqcup \langle \ldots 15\ 11\ 7\ 3]$$

The cycle-chain-ray type of

$$\alpha = (2\,6\,8) \sqcup [1\,3] \sqcup [4\,5\,9]$$

(has the form (* * *)[**][* * *]) is the sequence of cardinalities

$$\langle 0, 0, 1, 0, \ldots; 0, 1, 1, 0, \ldots; 0, 0, 0 \rangle.$$

The cycle-chain-ray type of

 $\beta = (2\ 4) \sqcup [6\ 8\ 10] \sqcup \langle \ldots -6\ -4\ -2\ -1\ -3\ -5\ \ldots \rangle \sqcup [1\ 5\ 9\ 13\ \ldots \rangle \sqcup \langle \ldots 15\ 11\ 7\ 3]$

(has the form $(**)[***]\langle\ldots***\ldots\rangle[***\ldots\rangle\langle\ldots**])$ is the sequence of cardinalities

$$\langle 0, 1, 0, \dots; 0, 0, 1, 0, \dots; 1, 1, 1 \rangle$$
.

$$\langle |\Delta_{\alpha}^{1}|, |\Delta_{\alpha}^{2}|, |\Delta_{\alpha}^{3}|, \dots; |\Theta_{\alpha}^{1}|, |\Theta_{\alpha}^{2}|, |\Theta_{\alpha}^{3}|, \dots; |\Omega_{\alpha}|, |\Upsilon_{\alpha}|, |\Lambda_{\alpha}| \rangle$$

Theorem

Suppose that X is countable. Let $\alpha, \beta \in \mathcal{I}(X)$. Then $\alpha \sim_c \beta$ if and only if the following conditions are satisfied:

- (a) $|\Delta_{\alpha}^{k}| = |\Delta_{\beta}^{k}|$ for every $k \in \mathbb{Z}_{+}$, $|\Omega_{\alpha}| = |\Omega_{\beta}|$, and $|\Lambda_{\alpha}| = |\Lambda_{\beta}|$;
- (b) if Ω_{α} is finite, then $|\Upsilon_{\alpha}| = |\Upsilon_{\beta}|$; and
- (c) if Λ_{α} is finite, then

(i)
$$k_{\alpha} = k_{\beta} \ (k_{\alpha} = \sup\{k \in \mathbb{Z}_{+} : \Theta_{\alpha}^{k} \neq \emptyset\});$$
 and
(ii) if $k_{\alpha} \in \mathbb{Z}_{+}$, then $m_{\alpha} = m_{\beta}$
 $(m_{\alpha} = \max\{m \in \{1, 2, \dots, k_{\alpha}\} : |\Theta_{\alpha}^{m}| = \aleph_{0}\})$ and for every
 $k \in \{m_{\alpha} + 1, \dots, k_{\alpha}\}, \ |\Theta_{\alpha}^{k}| = |\Theta_{\beta}^{k}|.$

$$\langle |\Delta_{\alpha}^{1}|, |\Delta_{\alpha}^{2}|, |\Delta_{\alpha}^{3}|, \dots; |\Theta_{\alpha}^{1}|, |\Theta_{\alpha}^{2}|, |\Theta_{\alpha}^{3}|, \dots; |\Omega_{\alpha}|, |\Upsilon_{\alpha}|, |\Lambda_{\alpha}| \rangle$$

$$\langle |\Delta_{\beta}^{1}|, |\Delta_{\beta}^{2}|, |\Delta_{\beta}^{3}|, \dots; |\Theta_{\beta}^{1}|, |\Theta_{\beta}^{2}|, |\Theta_{\beta}^{3}|, \dots; |\Omega_{\beta}|, |\Upsilon_{\beta}|, |\Lambda_{\beta}| \rangle$$

Corollary

Suppose that X is finite and $\alpha, \beta \in \mathcal{I}(X)$. Then the following are equivalent:

- $\blacktriangleright \ \alpha \sim_c \beta;$
- α and β have the same cycle-chain type;
- there exists a permutation σ on the set X such that $\alpha = \sigma^{-1}\beta\sigma$.

Theorem (Ganyushkin, Kormysheva, 1993)

Suppose that X is finite and $\alpha, \beta \in \mathcal{I}(X)$. Then $\alpha \sim_p^* \beta$ if and only if α and β have the same cycle type.

Proposition

Suppose that X is finite with $|X| \ge 2$. Then $\sim_c \subset \sim_p$ in $\mathcal{I}(X)$.

Proposition

Suppose that X is countably infinite. Then, with respect to inclusion, \sim_p and \sim_c are not comparable in $\mathcal{I}(X)$.

For a countably infinite X:

Epigroup elements of $\mathcal{I}(X)$

Lemma

Let $\alpha \in \mathcal{I}(X)$. Then α is an epigroup element if and only if $\Omega_{\alpha} = \Upsilon_{\alpha} = \Lambda_{\alpha} = \emptyset$ and there is a positive integer n such that $\Theta_{\alpha}^{k} = \emptyset$ for all k > n.

Lemma

Let $\alpha \in \operatorname{Epi}(\mathcal{I}(X))$. Then α and α'' have the same cycle type.

Theorem

Let X be a countable set. Then for all $\alpha, \beta \in \text{Epi}(\mathcal{I}(X)), \alpha \sim_{tr} \beta$ if and only if α and β have the same cycle type. When is conjugacy the identity relation?

Fact:

In a group \sim is the identity if and only if G is commutative.

Theorem

Let S be a semigroup. Then, \sim_p is the identity relation in S if and only if S is commutative.

Theorem

Let S be an epigroup. Then, \sim_{tr} is the identity relation in S if and only if S is a commutative completely regular epigroup.

Theorem

Let S be a semigroup. Then:

- 1. if S is commutative, then \sim_o is the minimum cancellative congruence on S;
- 2. \sim_o is the identity relation in S if and only if S is commutative and cancellative.

When is conjugacy the identity relation?

Corollary

Let S be a commutative and cancellative semigroup. Then \sim_p , \sim_o , and \sim_c all coincide, and are equal to the identity relation.

Corollary

Let S be an epigroup. Then $\sim_p, \sim_o, \sim_{tr}$ and \sim_c all coincide and are equal to the identity relation if and only if S is a commutative group.

When is conjugacy the universal relation?

Theorem

Let S be an epigroup. The following are equivalent:

- 1. \sim_{tr} is the universal relation;
- 2. E(S) is an antichain and for all $x \in S$, $x'' = x^{\omega}$;
- 3. for all $x, y \in S$, x'yx' = x';
- 4. for all $x, y \in S$, $x^{\omega}yx^{\omega} = x^{\omega}$;
- 5. for all $x \in S$, $e \in E(S)$, exe = e.

Theorem

Let S be a semigroup.

- 1. If S is a rectangular band, then \sim_p is the universal relation.
- 2. If \sim_p is the universal relation in S, then S is simple. If, in addition, S contains an idempotent, then S is a rectangular band.

Corollary

In a finite semigroup (or more generally, an epigroup) S, \sim_p is the universal relation if and only if S is a rectangular band.

Some research problems:

For inverse semigroups we can define the conjugacy notion

$$a \sim_i b \Leftrightarrow \exists g \in S^1, \quad g^{-1}ag = b \land gbg^{-1} = a.$$

This can be naturally generalized for epigroups setting

$$a \sim b \Leftrightarrow \exists g \in S^1, \quad g'ag = b \land gbg' = a.$$

In general, \sim is not transitive so we should consider \sim^* .

In P(X) (the semigroup of partial transformations on any nonempty set X) which can be regarded as a left restriction semigroup with respect to the set of partial identities $E = \{id_Y : Y \subseteq X\}$ we have

$$\alpha \sim_c \beta \iff \exists \phi, \psi \in S^1 : \alpha \phi = \phi \beta \land \beta \psi = \psi \alpha \land (\alpha \phi)^+ = \alpha^+ \land (\beta \psi)^+ = \beta^+$$

Thanks for your attention!