Congruences on $G \wr \mathcal{I}_n$

Matthew Brookes Supervised by Victoria Gould

University of York

SandGAL June 2019

э

→ ∃ →

Image: A matrix

Introduction

- Aim: To understand congruences on semigroups that "look like transformation monoids"
- One direction involves looking at diagram monoids
 Congruence lattices of finite diagram monoids; 2018; East, Mitchell, Ruškuc, Torpey
- \mathcal{I}_n is the partial automorphism of an independence algebra
- A free group act is an independence algebra, is it possible to describe congruences on its partial automorphism monoid?

Congruences on \mathcal{I}_n

For each $a, b \in D_k$ with $a \mathcal{H} b$, there is $\mu \in S_k$ such that a, b have the following form:

$$\mathsf{a} = \begin{pmatrix} b_1 & b_2 & \dots & b_k \\ a_1 & a_2 & \dots & a_k \end{pmatrix}, \quad \mathsf{b} = \begin{pmatrix} b_1 & b_2 & \dots & b_k \\ a_{1\mu} & a_{2\mu} & \dots & a_{k\mu} \end{pmatrix}$$

For $k \leq n$ and $N \leq S_k$ define ρ_N as follows:

- $a \rho_N a$ for all a;
- *a* ρ_N *b* for *a*, *b* with rk(*a*), rk(*b*) < *k*;
- for rk(a) = k = rk(b), $a \rho_N b$ if $a \mathcal{H} b$ and $\mu \in N$.

 $G \wr \mathcal{I}_n$

Definition

We define the partial wreath product of G with \mathcal{I}_n as follows

$$G \wr \mathcal{I}_n = \{(g; a) \in (G^0)^n \times \mathcal{I}_n \mid g_i \neq 0 \iff i \in \mathsf{Dom}(a)\}.$$

Multiplication is defined as

$$(g_1, \ldots, g_n; a)(h_1, \ldots, h_n; b) = (g_1h_{1a}, \ldots, g_nh_{na}; ab),$$

letting g0 = 0 = 0g for all $g \in G$, and $h_{ia} = 0$ when *ia* is undefined.

The Basic Structure of $G \wr \mathcal{I}_n$

$$E(G \wr \mathcal{I}_n) = \{(1^e; e) \mid e \in E(\mathcal{I}_n)\} \cong E(\mathcal{I}_n)$$

where $1^e \in (G \cup \{0\})^n$ has: $1^e_i = 1$ if $i \in \text{Dom}(e)$, and $1^e_i = 0$ otherwise.

Green's relations are induced by those for \mathcal{I}_n

$$(g;a) \mathcal{K}^{G \wr \mathcal{I}_n} (h;b) \iff a \mathcal{K}^{\mathcal{I}_n} b.$$

Ideals of $G \wr \mathcal{I}_n$ are

$$I_k = \{(g; a) \in G \wr \mathcal{I}_n \mid \mathsf{rk}(a) \leq k\}$$

for each $0 \le k \le n$, where rk(a) = |Dom(a)|. Write I_k^* for the corresponding Rees congruence on $G \wr \mathcal{I}_n$.

イロト 不得 トイラト イラト 一日

Congruence decomposition

Theorem (Lima, 1993)

Let ρ be a congruence on $G \wr \mathcal{I}_n$. If ρ is not the universal congruence on $G \wr \mathcal{I}_n$ then there are $k \leq n, \sigma$ a non universal relation on I_k/I_{k-1} and χ an idempotent separating congruence such that

$$\rho = I_{k-1}^{\star} \cup \overline{\sigma} \cup \chi.$$

Where for σ a congruence on I_k/I_{k-1} let

$$\overline{\sigma} = \{(\mathsf{a}, \mathsf{b}) \in \mathsf{D}_k \times \mathsf{D}_k \mid (\mathsf{a}/\mathsf{I}_{k-1}, \mathsf{b}/\mathsf{I}_{k-1}) \in \sigma\}$$

The lattice of non universal congruences on I_k/I_{k-1} is isomorphic to the lattice of normal subgroups of $G \wr S_k$.

- 3

イロト イボト イヨト イヨト

Normal subgroups of $G \wr S_k$

Definition

 $J \leq G^k$ is (permutation) invariant if for all $\sigma \in \mathcal{S}_k$ we have that

$$(g_1,g_2,\ldots,g_k)\in J\iff (g_{1\sigma},g_{2\sigma},\ldots,g_{k\sigma})\in J$$

If $Z \leq G \wr S_k$, then J(Z) is an invariant normal subgroup of G^k , where

$$J(Z) = \{j \in G^k \mid (j,1) \in Z\}$$

Theorem (Usenko, 1991)

The normal subgroups of $G \wr S_k$ are exactly:

(1) $\{(j,1) \mid j \in J\}$ for $J \trianglelefteq G^k$ an invariant subgroup;

(2) $\{(x,q) \mid q \in Q, xJ = q\theta\}$ where $Q \leq S_k$, $J \leq G^k$ is an invariant subgroup such that the induced action of S_k on G^k/J is trivial, and $\theta : Q \rightarrow G^k/J$ is a homomorphism.

Invariant Subgroups of G^k

Definition

Let G be a group, $N \leq M \leq K$ be normal subgroups of G, and $\theta: K/N \to M/N$ an homomorphism. Then $\{K, M, N, \theta\}$ is a k-invariant quadruple for G if

(i) $[G, K] \subseteq N$; (ii) $\operatorname{Im}(\theta) \subseteq M \subseteq \{x \in K/N \mid x\theta = x^{-k}\}.$

Given an k-invariant quadruple we define the following subset of G^k :

$$\begin{aligned} \mathbf{J}_k(K, M, N, \theta) &= \{(g_1, \dots, g_k) \in K^k \mid g_1 M = \dots = g_k M, \\ g_1 N \theta &= g_1^{1-k} g_2 g_3 \dots g_k N \}. \end{aligned}$$

Theorem

These are exactly the invariant normal subgroups of G^k .

< ロ > < 同 > < 回 > < 回 > < 回 > <

Invariant Subgroups of G^k

Definition

Let G be a group, $N \leq M \leq K$ be normal subgroups of G, and $\theta: K/N \to M/N$ an homomorphism. Then $\{K, M, N, \theta\}$ is a k-invariant quadruple for G if

(i) $[G, K] \subseteq N$; (ii) $\operatorname{Im}(\theta) \subseteq M \subseteq \{x \in K/N \mid x\theta = x^{-k}\}.$

Given an k-invariant quadruple we define the following subset of G^k :

$$\begin{aligned} \mathbf{J}_k(\mathcal{K}, \mathcal{M}, \mathcal{N}, \theta) &= \{ (g_1, \dots, g_k) \in \mathcal{K}^k \mid g_1 \mathcal{M} = \dots = g_k \mathcal{M}, \\ g_1 \mathcal{N} \theta &= g_1^{1-k} g_2 g_3 \dots g_k \mathcal{N} \}. \end{aligned}$$

Corollary

If G is a finite group then there is an integer $\lambda(G)$ such that for each k the number of permutation invariant subgroups of G^k is less than $\lambda(G)$.

ヘロト 人間ト 人間ト 人間ト

Normal subgroups of $G \wr S_k$

Theorem (Usenko, 1991)

The normal subgroups of $G \wr S_k$ are exactly: (1) $\{(j,1) \mid j \in J\}$ for $J \leq G^k$ an invariant subgroup; (2) $\{(x,q) \mid q \in Q, xJ = q\theta\}$ where $Q \leq S_k$, $J = \mathbf{J}_k(G, G, N, xN \mapsto x^{-n}N)$, and $\theta : Q \to G^k/J$ is a homomorphism.

Corollary

Let G be a finite group, then there is finite number $\lambda_2(G)$ such that for all n the number of normal subgroups of $G \wr S_k$ is at most $\lambda_2(G)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Idempotent separating congruences

The centraliser of *E* is the set $E\zeta = \{a \mid \forall e \in E \ ae = ea\}$. For $G \wr \mathcal{I}_n$

$$E\zeta = \{(g; e) \in G \wr \mathcal{I}_n \mid e \in E(\mathcal{I}_n)\}.$$

Theorem (Petrich, 1978)

Let S be an inverse semigroup. The lattice of idempotent separating congruences on S is isomorphic to the lattice of full, self-conjugate, inverse subsemigroups of S contained in $E\zeta$. The following maps are mutually inverse lattice isomorphisms:

$$K \mapsto \rho = \{(a, b) \mid a^{-1}a = b^{-1}b, ab^{-1} \in K\},\$$
$$\rho \mapsto \ker(\rho) = \{a \in S \mid \exists e \in E(S) \text{ with } e \ \rho \ a\}$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Proposition

For $1 \leq i \leq n$ let $J_i \leq G^i$ be invariant normal subgroups such that $\{(g_1, \dots, g_{k-1}) \mid \exists g_k \in G \text{ with } (g_1, \dots, g_{k-1}, g_k) \in J_k\} \subseteq J_{k-1}.$ Let $\pi : (G^0)^n :\to \bigsqcup_{0 \leq i \leq n} G^i$ be the function that ignores all 0 entries. Let $K = \bigcup_{e \in E(\mathcal{I}_n)} \{(g_1, \dots, g_n; e) \in G \wr \mathcal{I}_n \mid g\pi \in J_i \text{ where } i = \mathsf{rk}(e)\}.$

Then K is a full, self conjugate inverse subsemigroup of $G \wr \mathcal{I}_n$ with $K \subseteq E\zeta$. Moreover, every such subsemigroup arises in this way.

$$\{(g_1, \dots, g_{k-1} \mid \exists g_k \text{ with } (g_1, \dots, g_k) \in \mathbf{J}_k(K, M, N, \theta)\} \\ = \mathbf{J}_{k-1}(K, M, M, \times M \mapsto M)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Corollary

Let G be a finite group such that the longest chain of normal subgroups of G has length z, then there are $A, B \in \mathbb{N}$ such that

$$An^{z-1} \leq |\mathfrak{C}_{IS}(G \wr \mathcal{I}_n)| \leq Bn^{2(z-1)}.$$

The number of congruences on $G \wr \mathcal{I}_n$

Theorem (Lima, 1994)

Let ρ be a congruence on $G \wr \mathcal{I}_n$. If ρ is not the universal congruence on $G \wr \mathcal{I}_n$ then there are $k \leq n$, σ a non universal relation on I_k/I_{k-1} and χ an idempotent separating congruence such that

$$\rho = I_{k-1}^{\star} \cup \overline{\sigma} \cup \chi.$$

Corollary

Let G be a finite group with the length of the longest chain of normal subgroups being z. Then there are $A, B \in \mathbb{N}$ such that

$$An^{z} \leq |\mathfrak{C}(G \wr \mathcal{I}_{n})| \leq Bn^{2z-1}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Thank you for your attention!

< □ > < 同 > < 回 > < 回 > < 回 >

э