# Congruences on $G \imath \mathcal{I}_{n}$ 

Matthew Brookes<br>Supervised by Victoria Gould

University of York

SandGAL June 2019

## Introduction

- Aim: To understand congruences on semigroups that "look like transformation monoids"
- One direction involves looking at diagram monoids
- Congruence lattices of finite diagram monoids; 2018; East, Mitchell, Ruškuc, Torpey
- $\mathcal{I}_{n}$ is the partial automorphism of an independence algebra
- A free group act is an independence algebra, is it possible to describe congruences on its partial automorphism monoid?


## Congruences on $\mathcal{I}_{n}$

For each $a, b \in D_{k}$ with a $\mathcal{H} b$, there is $\mu \in \mathcal{S}_{k}$ such that $a, b$ have the following form:

$$
a=\left(\begin{array}{cccc}
b_{1} & b_{2} & \ldots & b_{k} \\
a_{1} & a_{2} & \ldots & a_{k}
\end{array}\right), \quad b=\left(\begin{array}{cccc}
b_{1} & b_{2} & \ldots & b_{k} \\
a_{1 \mu} & a_{2 \mu} & \ldots & a_{k \mu}
\end{array}\right)
$$

For $k \leq n$ and $N \unlhd \mathcal{S}_{k}$ define $\rho_{N}$ as follows:

- a $\rho_{N}$ a for all $a$;
- a $\rho_{N} b$ for $a, b$ with $\operatorname{rk}(a), \operatorname{rk}(b)<k$;
- for $\mathrm{rk}(a)=k=\mathrm{rk}(b), a \rho_{N} b$ if a $\mathcal{H} b$ and $\mu \in N$.
$G \succ \mathcal{I}_{n}$


## Definition

We define the partial wreath product of $G$ with $\mathcal{I}_{n}$ as follows

$$
G \imath \mathcal{I}_{n}=\left\{(g ; a) \in\left(G^{0}\right)^{n} \times \mathcal{I}_{n} \mid g_{i} \neq 0 \Longleftrightarrow i \in \operatorname{Dom}(a)\right\} .
$$

Multiplication is defined as

$$
\left(g_{1}, \ldots, g_{n} ; a\right)\left(h_{1}, \ldots, h_{n} ; b\right)=\left(g_{1} h_{1 a}, \ldots, g_{n} h_{n a} ; a b\right)
$$

letting $g 0=0=0 g$ for all $g \in G$, and $h_{i a}=0$ when ia is undefined.


## The Basic Structure of $G \imath \mathcal{I}_{n}$

$$
E\left(G \imath \mathcal{I}_{n}\right)=\left\{\left(1^{e} ; e\right) \mid e \in E\left(\mathcal{I}_{n}\right)\right\} \cong E\left(\mathcal{I}_{n}\right)
$$

where $1^{e} \in(G \cup\{0\})^{n}$ has: $1_{i}^{e}=1$ if $i \in \operatorname{Dom}(e)$, and $1_{i}^{e}=0$ otherwise.

Green's relations are induced by those for $\mathcal{I}_{n}$

$$
(g ; a) \mathcal{K}^{G\left(I_{n}\right.}(h ; b) \Longleftrightarrow a \mathcal{K}^{\mathcal{I}_{n}} b .
$$

Ideals of $G \imath \mathcal{I}_{n}$ are

$$
I_{k}=\left\{(g ; a) \in G \imath \mathcal{I}_{n} \mid \operatorname{rk}(a) \leq k\right\}
$$

for each $0 \leq k \leq n$, where $r k(a)=|\operatorname{Dom}(a)|$.
Write $l_{k}^{\star}$ for the corresponding Rees congruence on $G \imath \mathcal{I}_{n}$.

## Congruence decomposition



## Theorem (Lima, 1993)

Let $\rho$ be a congruence on $G \backslash \mathcal{I}_{n}$. If $\rho$ is not the universal congruence on $G \imath \mathcal{I}_{n}$ then there are $k \leq n, \sigma$ a non universal relation on $I_{k} / I_{k-1}$ and $\chi$ an idempotent separating congruence such that

$$
\rho=I_{k-1}^{\star} \cup \bar{\sigma} \cup \chi .
$$

Where for $\sigma$ a congruence on $I_{k} / I_{k-1}$ let

$$
\bar{\sigma}=\left\{(a, b) \in D_{k} \times D_{k} \mid\left(a / I_{k-1}, b / I_{k-1}\right) \in \sigma\right\}
$$



The lattice of non universal congruences on $I_{k} / I_{k-1}$ is isomorphic to the lattice of normal subgroups of $G \imath \mathcal{S}_{k}$.

## Normal subgroups of $G \imath \mathcal{S}_{k}$

## Definition

$J \leq G^{k}$ is (permutation) invariant if for all $\sigma \in \mathcal{S}_{k}$ we have that

$$
\left(g_{1}, g_{2}, \ldots, g_{k}\right) \in J \Longleftrightarrow\left(g_{1 \sigma}, g_{2 \sigma}, \ldots, g_{k \sigma}\right) \in J
$$

If $Z \unlhd G \imath \mathcal{S}_{k}$, then $J(Z)$ is an invariant normal subgroup of $G^{k}$, where

$$
J(Z)=\left\{j \in G^{k} \mid(j, 1) \in Z\right\}
$$

## Theorem (Usenko, 1991)

The normal subgroups of $G\left\{\mathcal{S}_{k}\right.$ are exactly:
(1) $\{(j, 1) \mid j \in J\}$ for $J \unlhd G^{k}$ an invariant subgroup;
(2) $\{(x, q) \mid q \in Q, x J=q \theta\}$ where $Q \unlhd \mathcal{S}_{k}, J \unlhd G^{k}$ is an invariant subgroup such that the induced action of $\mathcal{S}_{k}$ on $G^{k} / J$ is trivial, and $\theta: Q \rightarrow G^{k} / J$ is a homomorphism.

## Invariant Subgroups of $G^{k}$

## Definition

Let $G$ be a group, $N \unlhd M \unlhd K$ be normal subgroups of $G$, and $\theta: K / N \rightarrow M / N$ an homomorphism. Then $\{K, M, N, \theta\}$ is a $k$-invariant quadruple for $G$ if
(i) $[G, K] \subseteq N$;
(ii) $\operatorname{lm}(\theta) \subseteq M \subseteq\left\{x \in K / N \mid x \theta=x^{-k}\right\}$.

Given an $k$-invariant quadruple we define the following subset of $G^{k}$ :

$$
\begin{aligned}
& \mathbf{J}_{k}(K, M, N, \theta)=\left\{\left(g_{1}, \ldots, g_{k}\right) \in K^{k} \mid g_{1} M=\cdots=g_{k} M,\right. \\
& \left.g_{1} N \theta=g_{1}^{1-k} g_{2} g_{3} \ldots g_{k} N\right\} .
\end{aligned}
$$

## Theorem

These are exactly the invariant normal subgroups of $G^{k}$.

## Invariant Subgroups of $G^{k}$

## Definition

Let $G$ be a group, $N \unlhd M \unlhd K$ be normal subgroups of $G$, and $\theta: K / N \rightarrow M / N$ an homomorphism. Then $\{K, M, N, \theta\}$ is a $k$-invariant quadruple for $G$ if
(i) $[G, K] \subseteq N$;
(ii) $\operatorname{Im}(\theta) \subseteq M \subseteq\left\{x \in K / N \mid x \theta=x^{-k}\right\}$.

Given an $k$-invariant quadruple we define the following subset of $G^{k}$ :

$$
\begin{aligned}
& \mathbf{J}_{k}(K, M, N, \theta)=\left\{\left(g_{1}, \ldots, g_{k}\right) \in K^{k} \mid g_{1} M=\cdots=g_{k} M,\right. \\
& \left.g_{1} N \theta=g_{1}^{1-k} g_{2} g_{3} \ldots g_{k} N\right\} .
\end{aligned}
$$

## Corollary

If $G$ is a finite group then there is an integer $\lambda(G)$ such that for each $k$ the number of permutation invariant subgroups of $G^{k}$ is less than $\lambda(G)$.

## Normal subgroups of $G \imath \mathcal{S}_{k}$

Theorem (Usenko, 1991)
The normal subgroups of $G\left\{\mathcal{S}_{k}\right.$ are exactly:
(1) $\{(j, 1) \mid j \in J\}$ for $J \unlhd G^{k}$ an invariant subgroup;
(2) $\{(x, q) \mid q \in Q, x J=q \theta\}$ where $Q \unlhd \mathcal{S}_{k}$, $J=J_{k}\left(G, G, N, x N \mapsto x^{-n} N\right)$, and $\theta: Q \rightarrow G^{k} / J$ is a homomorphism.

## Corollary

Let $G$ be a finite group, then there is finite number $\lambda_{2}(G)$ such that for all $n$ the number of normal subgroups of $G \imath \mathcal{S}_{k}$ is at most $\lambda_{2}(G)$.

## Idempotent separating congruences

The centraliser of $E$ is the set $E \zeta=\{a \mid \forall e \in E$ ae $=e a\}$.
For $G \backslash \mathcal{I}_{n}$

$$
E \zeta=\left\{(g ; e) \in G \imath \mathcal{I}_{n} \mid e \in E\left(\mathcal{I}_{n}\right)\right\}
$$

Theorem (Petrich, 1978)
Let $S$ be an inverse semigroup. The lattice of idempotent separating congruences on $S$ is isomorphic to the lattice of full, self-conjugate, inverse subsemigroups of $S$ contained in $E \zeta$.
The following maps are mutually inverse lattice isomorphisms:

$$
\begin{aligned}
& K \mapsto \rho=\left\{(a, b) \mid a^{-1} a=b^{-1} b, a b^{-1} \in K\right\}, \\
& \rho \mapsto \operatorname{ker}(\rho)=\{a \in S \mid \exists e \in E(S) \text { with e } \rho a\}
\end{aligned}
$$

## Proposition

For $1 \leq i \leq n$ let $J_{i} \unlhd G^{i}$ be invariant normal subgroups such that

$$
\left\{\left(g_{1}, \ldots, g_{k-1}\right) \mid \exists g_{k} \in G \text { with }\left(g_{1}, \ldots, g_{k-1}, g_{k}\right) \in J_{k}\right\} \subseteq J_{k-1}
$$

Let $\pi:\left(G^{0}\right)^{n}: \rightarrow \bigsqcup_{0 \leq i \leq n} G^{i}$ be the function that ignores all 0 entries. Let

$$
K=\bigcup_{e \in E\left(\mathcal{I}_{n}\right)}\left\{\left(g_{1}, \ldots, g_{n} ; e\right) \in G \imath \mathcal{I}_{n} \mid g \pi \in J_{i} \text { where } i=\operatorname{rk}(e)\right\}
$$

Then $K$ is a full, self conjugate inverse subsemigroup of $G \imath \mathcal{I}_{n}$ with $K \subseteq E \zeta$.
Moreover, every such subsemigroup arises in this way.

$$
\begin{aligned}
\left\{\left(g _ { 1 } , \ldots , g _ { k - 1 } | \exists g _ { k } \text { with } \left(g_{1}, \ldots,\right.\right.\right. & \left.\left.g_{k}\right) \in \mathbf{J}_{k}(K, M, N, \theta)\right\} \\
& =\mathbf{J}_{k-1}(K, M, M, x M \mapsto M)
\end{aligned}
$$



## Corollary

Let $G$ be a finite group such that the longest chain of normal subgroups of $G$ has length $z$, then there are $A, B \in \mathbb{N}$ such that

$$
A n^{z-1} \leq\left|\mathfrak{C}_{I S}\left(G \imath \mathcal{I}_{n}\right)\right| \leq B n^{2(z-1)} .
$$

## The number of congruences on $G \imath \mathcal{I}_{n}$

Theorem (Lima, 1994)
Let $\rho$ be a congruence on $G \imath \mathcal{I}_{n}$. If $\rho$ is not the universal congruence on $G \imath I_{n}$ then there are $k \leq n, \sigma$ a non universal relation on $I_{k} / I_{k-1}$ and $\chi$ an idempotent separating congruence such that

$$
\rho=I_{k-1}^{\star} \cup \bar{\sigma} \cup \chi .
$$

## Corollary

Let $G$ be a finite group with the length of the longest chain of normal subgroups being $z$. Then there are $A, B \in \mathbb{N}$ such that

$$
A n^{2} \leq\left|\mathfrak{C}\left(G \succ I_{n}\right)\right| \leq B n^{2 z-1} .
$$

## Thank you for your attention!

