Maximal left ideals in Banach algebras

H. G. Dales, Lancaster

Joint work with M. Cabrera García and Á. Rodríguez Palacios of Granada, Spain

York, Algebra Seminar

20 February 2019

Algebras

Throughout, an algebra is linear and associative and over the complex field $\mathbb{C}.$

A left ideal in A is a linear subspace I of A such that $ax \in I$ when $a \in A$ and $x \in I$; a left ideal M is maximal if $M \neq A$ and I = M or I = A when I is a left ideal in A with $I \supset M$.

A proper left ideal I in an algebra A is **modular** if there exists $u \in A$ with $a - au \in I$ $(a \in A)$.

Let *I* be a left ideal in an algebra *A* with such a *u*. By Zorn's lemma, the family of left ideals *J* in *A* with $J \supset I$ and $u \notin J$ has a maximal member, say *M*. Clearly *M* is a maximal left ideal in *A*.

The **radical**, rad *A*, of *A* is the intersection of the maximal modular left ideals, with rad A = A if there are no such (and then *A* is **radical**). It is an ideal in *A*. The algebra is **semi-simple** if rad $A = \{0\}$.

Banach Algebras

These are Banach spaces $(A, \|\cdot\|)$ which are also algebras such that

```
||ab|| \le ||a|| ||b|| \quad (a, b \in A).
```

Example For a Banach space E, $\mathcal{B}(E)$ is the Banach algebra of all bounded, linear operators on E.

Example Let S be a semigroup. The point mass at $s \in S$ is δ_s . The Banach space $\ell^1(S)$ consists of the functions $f: S \to \mathbb{C}$ such that

$$||f||_1 = \sum \{|f(s)| : s \in S\} < \infty.$$

There is a Banach algebra product \star called convolution such that $\delta_s \star \delta_t = \delta_{st}$ $(s, t \in S)$. Then $(\ell^1(S), \star)$ is a Banach algebra that is the **semigroup algebra** on S.

More definitions

Let I be a closed ideal in a Banach algebra A. Then A/I is also a Banach algebra. The algebra A/rad A is a semi-simple Banach algebra.

A maximal left ideal in a Banach algebra is either closed or dense.

A Banach algebra is a **Banach** *-algebra if there is an involution * on A such that

 $||a^*|| = ||a|| \ (a \in A).$

For example, C^* -algebras are Banach *-algebras.

Matrices

For $n \in \mathbb{N}$, we denote by \mathbb{M}_n the algebra of $n \times n$ matrices over \mathbb{C} . The algebras \mathbb{M}_n are simple, i.e., no proper, non-zero ideals.

Let A be an algebra. Then $\mathbb{M}_n(A)$ is the algebra of all $n \times n$ matrices with coefficients in A. In the case where A is a Banach algebra, $\mathbb{M}_n(A)$ is also a Banach algebra with respect to the norm given by

$$\|(a_{i,j})\| = \sum_{i,j=1}^n \|a_{i,j}\|$$
 (($a_{i,j}$) $\in \mathbb{M}_n(A)$).

Suppose that A is a Banach *-algebra. Then $\mathbb{M}_n(A)$ is also a Banach *-algebra with respect to the involution given by the transpose map $(a_{i,j}) \mapsto (a_{j,i}^*)$.

Maximal modular left ideals

Let A be a Banach algebra. The following basic result is in all books on Banach algebras.

Theorem Every maximal modular left ideal M in A is closed (and A/M is a simple Banach left A-module).

Proof Take $u \in A$ as in the definition. Assume that there is $a \in M$ with ||a - u|| < 1. Then there is $b \in A$ with a - u + b + b(a - u) = 0, and so $u = a + ba + (b - bu) \in M$, a contradiction. So M is not dense, and hence it is closed. \Box

Codimension of maximal modular left ideals in Banach algebras

What is the codimension of such an ideal M?

Suppose that A is commutative. Then A/M is a field, and $A/M = \mathbb{C}$ by Gel'fand–Mazur, so M is the kernel of a continuous character and has codimension 1.

Suppose that A is non-commutative. For example, take $A = \mathcal{B}(E)$ for a Banach space E, and take $x \in E$ with $x \neq 0$. Then

$$M = \{T \in \mathcal{B}(E) : Tx = 0\}$$

is a closed, singly-generated maximal left ideal. When E has dimension $n \in \mathbb{N}$, M has codimension n; when E has infinite dimension, M has infinite codimension.

Detour to Fréchet algebras

A **Fréchet algebra** has a countable series of semi-norms, rather than one norm.

Let *A* be a commutative, unital Fréchet algebra. Then each closed maximal ideal is the kernel of a continuous character, but it is a formidable open question, called **Michael's prob**lem, whether all characters on each commutative Fréchet algebra are continuous.

An example

Let $O(\mathbb{C})$ denote the space of entire functions on \mathbb{C} , a Fréchet algebra with respect to the topology of uniform convergence on compact subsets of \mathbb{C} .

Then each maximal ideal M of codimension 1 in $O(\mathbb{C})$ is closed, and there exists $z \in \mathbb{C}$ such that

$$M = M_z := \{ f \in O(\mathbb{C}) : f(z) = 0 \}.$$

Let I be the set of functions $f \in O(\mathbb{C})$ such that f(n) = 0 for each sufficiently large $n \in \mathbb{N}$. Clearly I is an ideal in $O(\mathbb{C})$, I is dense in $O(\mathbb{C})$, and I is contained in a maximal ideal, say M. Then M is dense in $O(\mathbb{C})$, but M is not of the form M_z . The quotient A/M is a 'very large field' of infinite dimension. (For large fields, see a book with W. H. Woodin.)

Maximal left ideals that are not modular

Example Let E be an infinite-dimensional Banach space. Then E has a dense subspace F that has codimension 1 in E; it is the kernel of a discontinuous linear functional. The space E is a commutative Banach algebra with respect to the zero product, and F is a maximal (left) ideal in this algebra such that F is not closed, and F is obviously not modular.

This suggested:

Conjecture Let A be a Banach algebra. Then every maximal left ideal in A is either closed or of codimension 1.

We shall give a counter-example.

Algebraic preliminaries - 1

The following are little calculations.

Here A is any algebra, $A^{[2]} = \{ab : a, b \in A\}$, and $A^2 = \lim A^{[2]}$. The algebra A factors if $A = A^{[2]}$ and factors weakly if $A = A^2$ (not the same).

Fact 1 Suppose that $A^2 \subsetneq A$. Then A contains a maximal left ideal that is an ideal in A and that contains A^2 . Each maximal left ideal that contains A^2 has codimension 1 in A.

Just take M to be a subspace of codimension 1 in A such that $A^2 \subset M$.

Algebraic preliminaries - 2

Fact 2 Suppose that M is a maximal left ideal in A and $b \in A$, and set $J_b = \{a \in A : ab \in M\}$. Then either $J_b = A$ or J_b is a maximal modular left ideal in A.

Either $Ab \subset M$, and hence $J_b = A$, or A/M is a simple left A-module, and $J_b = (b + M)^{\perp}$ is a maximal modular left ideal.

Fact 3 A has no maximal left ideals iff A is a radical algebra and $A^2 = A$.

Suppose that A has no maximal left ideals. Then A is radical, and $A^2 = A$ by Fact 1.

For the converse, assume that M is a maximal left ideal, and take $b \in A$. By Fact 2, $J_b = A$, and so $Ab \subset M$, whence $A^2 \subset M \neq A$, a contradiction.

A simple, radical algebra

A simple, radical algebra was constructed by Paul Cohn in 1967. Since a simple algebra A is such that $A^2 = A$, it follows from Fact 3 that this algebra has no maximal left or maximal right ideal. However, it does have a maximal ideal, namely $\{0\}$.

A topologically simple Banach algebra A is one in which the only closed ideals are $\{0\}$ and A. Is there a commutative, radical Banach algebra that is topologically simple?

Maybe this is the hardest question in Banach algebra theory.

An example

A Banach algebra A with a bounded approximate identity is such that $A = A^{[2]}$; this follows from **Cohen's factorization theorem**

Let \mathcal{V} be the **Volterra algebra**. This is the Banach space $L^1([0,1])$ with truncated convolution multiplication:

$$(f \star g)(t) = \int_0^t f(t-s)g(s) \,\mathrm{d}s \quad (t \in [0,1])$$

for $f, g \in \mathcal{V}$. This is a radical Banach algebra with a BAI, and so $\mathcal{V}^{[2]} = \mathcal{V}$. Thus there are no maximal ideals in \mathcal{V} (and so the conjecture holds vacuously for \mathcal{V}).

Some positive results

Theorem Let A be a Banach algebra with maximal left ideal M. Suppose that $A^2 \not\subset M$ and M is also a right ideal. Then M is closed.

Proof Set $J_A = \{a \in A : aA \subset M\}$. By Fact 2, J_A is a closed left ideal. Since $A^2 \not\subset M$, it is not true that $J_A = A$. Since M is a right ideal, $M \subset J_A$. So $M = J_A$ is closed. \Box

Corollary Let A be a commutative Banach algebra with a maximal ideal M. Then M has codimension 1. Either $A/M = \mathbb{C}$ and M is closed, or $A^2 \subset M$.

Thus the conjecture holds in the commutative case.

Null sequences factoring

Let A be a Banach algebra. A null sequence (a_n) factors if there is a null sequence (b_n) in A and $a \in A$ with $a_n = b_n a$ $(n \in \mathbb{N})$. This holds when A has a BAI (but is more general).

Theorem Let A be a Banach algebra in which null sequences factor. Then every maximal left ideal M in A is closed.

Proof Take $a \in A$ and (a_n) in M with $a_n \rightarrow a$. There is a null sequence (b_n) and $b \in A$ with $a - a_n = b_n b$ and $a = b_0 b$. Again set

$$J = J_b = \{x \in A : xb \in M\}.$$

By Fact 2, J is closed. Now we have $(b_0 - b_n)b = a_n \in M$, so $b_0 = \lim(b_0 - b_n) \in J$, whence $a \in M$. So M is closed. \Box

Applications

Corollary Every maximal left ideal in each C^* -algebra is closed.

Let E be a Banach space. Then $\mathcal{A}(E)$ and $\mathcal{K}(E)$ are the Banach algebras of approximable and compact operators, respectively. Suppose that E has certain approximation properties. Then null sequences in $\mathcal{A}(E)$ and $\mathcal{K}(E)$ factor, and so every maximal left ideal is closed.

What are they? Are they all modular? What happens if E does not have the 'certain approximation properties'?

An example - algebraic preliminary

Definition Let A be an algebra with a character φ . Then M_{φ} is the kernel of φ and

$$J_{\varphi} = \lim \left\{ ab - \varphi(a)b : a, b \in A \right\}.$$

Then J_{φ} is a right ideal and $M_{\varphi}A \subset J_{\varphi} \subset M_{\varphi}$.

Suppose that there is an idempotent u in $A \setminus M_{\varphi}$. Then

$$J_{\varphi} = M_{\varphi}^2 + M_{\varphi}u + (1-u)M_{\varphi}.$$

Fact Take a non-zero linear functional λ on A with $\lambda \mid J_{\varphi} = 0$, and set $M = \ker \lambda$. Then M is a maximal left ideal in A of codimension 1 and $A^2 \not\subset M$.

This is easily checked.

A Banach algebra

Theorem Let A be a Banach algebra with a character φ , and suppose that J_{φ} is not closed. Then there is a dense maximal left ideal M of codimension 1 in A with $A^2 \not\subset M$.

Proof Take a linear functional λ with $\lambda \mid J_{\varphi} = 0$ and $\lambda \mid \overline{J_{\varphi}} \neq 0$, and set $M = \ker \lambda$.

A starting point

We suppose that we have a Banach algebra $(I, \|\cdot\|_I)$ with $I^2 \subsetneq \overline{I^2} = I$, and we take $B = I^{\sharp}$ to be the unitization of I, so that B is a unital Banach algebra, with identity e_B , say, and I is a maximal ideal in B.

A construction

From our starting point, consider the Banach algebra $\mathfrak{B} = \mathbb{M}_2(B)$, so that \mathfrak{B} is also a unital Banach algebra. Set $\mathfrak{I} = \mathbb{M}_2(I)$. Then \mathfrak{I} is a closed ideal in \mathfrak{B} (of codimension 4).

Consider the elements

$$P = \begin{pmatrix} e_B & 0\\ 0 & 0 \end{pmatrix} \quad \text{and} \quad Q = \begin{pmatrix} 0 & 0\\ 0 & e_B \end{pmatrix}$$

in \mathfrak{B} . Then $P^2 = P$, $Q^2 = Q$, PQ = QP = 0, and P + Q is the identity of \mathfrak{B} .

Next, consider the subset $\mathfrak{A} = \mathfrak{I} + \mathbb{C}P$ in \mathfrak{B} . Symbolically, \mathfrak{A} has the form

$$\mathfrak{A} = \left(\begin{array}{cc} B & I \\ I & I \end{array}\right) \,.$$

Then \mathfrak{A} is a closed subalgebra of \mathfrak{B} , and \mathfrak{I} is a maximal ideal in \mathfrak{A} of codimension 1; the quotient map $\varphi : \mathfrak{A} \to \mathfrak{A}/\mathfrak{I}$ is a character on \mathfrak{A} .

A construction, continued

We define M_{φ} and J_{φ} (in relation to \mathfrak{A} and the character φ) as above. Then $\mathfrak{I} = M_{\varphi}$ and

 $J_{\varphi} = \Im^2 + \Im P + Q\Im \subset P\Im^2 Q + P\Im P + Q\Im \subset \Im,$ and so $\Im^2 \subset J_{\varphi} \subset \Im = M_{\varphi}$. Also

 $\Im = (P+Q)\Im(P+Q) = P\Im P + P\Im Q + Q\Im.$

We claim that \mathfrak{I}^2 is dense in M_{φ} . Indeed, given $\varepsilon > 0$ and $x \in I$, there exist $n \in \mathbb{N}$ and $u_1, \ldots, u_n, v_1, \ldots, v_n \in I$ with $\left\| x - \sum_{i=1}^n u_i v_i \right\|_I < \varepsilon$. It follows that

$$\left\| \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} - \sum_{i=1}^{n} \begin{pmatrix} u_{i} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_{i} & 0 \\ 0 & 0 \end{pmatrix} \right\|$$
$$= \left\| \begin{pmatrix} x - \sum_{i=1}^{n} u_{i} v_{i} & 0 \\ 0 & 0 \end{pmatrix} \right\| < \varepsilon,$$

with similar calculations in the other positions. The claim follows. Hence $\overline{J_{\varphi}} = M_{\varphi}$.

A construction, continued further

We also *claim* that $J_{\varphi} \neq M_{\varphi}$. Assume towards a contradiction that $J_{\varphi} = M_{\varphi}$. Then

 $\Im = P\Im P + P\Im Q + Q\Im = P\Im^2 Q + P\Im P + Q\Im.$

Since $\Im = P\Im P \oplus P\Im Q \oplus Q\Im$, this implies that $P\Im Q = P\Im^2 Q$. However, take $x \in I \setminus I^2$, and consider the element

$$\mathbf{x} = \left(\begin{array}{cc} \mathbf{0} & x \\ \mathbf{0} & \mathbf{0} \end{array}\right) \in \mathfrak{I}.$$

Since $P\mathbf{x}Q = \mathbf{x}$, we see that $\mathbf{x} \in P\Im Q$. But every element of $P\Im^2 Q$ has the form

$$\left(\begin{array}{cc} 0 & u \\ 0 & 0 \end{array}\right) \ ,$$

where $u \in I^2$, and so $\mathbf{x} \notin P \mathfrak{I}^2 Q$, the required contradiction. Thus the claim holds.

So far we have:

Theorem The Banach algebra \mathfrak{A} contains a dense maximal left ideal \mathfrak{M} with $\mathfrak{A}^2 \not\subset \mathfrak{M}$ such that \mathfrak{M} has codimension 1 in \mathfrak{A} .

Another algebraic calculation

Proposition Let A be an algebra containing a maximal left ideal M of codimension 1 such that $A^2 \not\subset M$, and take $n \in \mathbb{N}$. Then the matrices $(a_{i,j})$ in $\mathbb{M}_n(A)$ such that $a_{i,1} \in M$ $(i \in \mathbb{N}_n)$ form a maximal left ideal in $\mathbb{M}_n(A)$ of codimension n.

Proof The matrices that we are considering have the form

$$\mathcal{M} = \begin{pmatrix} M & A & \dots & A \\ M & A & \dots & A \\ \dots & \dots & \dots & \dots \\ M & A & \dots & A \end{pmatrix}$$

It is clear that \mathcal{M} is a left ideal of codimension n in $\mathbb{M}_n(A)$. Consider a left ideal \mathcal{J} in $\mathbb{M}_n(A)$ with $\mathcal{J} \supseteq \mathcal{M}$. Since $A^2 \not\subset M$, there exist $a, b \in A$ with $ab \notin M$, and so $b \notin M$ and this implies that $\mathbb{C}ab + M = \mathbb{C}b + M = A$. A little multiplication shows that $\mathcal{J} = \mathbb{M}_n(A)$, and so \mathcal{M} is maximal. \Box

Conclusion

We combine the above results to exhibit our main example (assuming that we can reach the starting point).

Theorem Let $n \in \mathbb{N}$. Then there is a Banach algebra \mathcal{A} with a dense maximal left ideal \mathcal{M} with codimension n in \mathcal{A} . We can arrange that \mathcal{A} be semi-simple and a Banach *-algebra. \Box

Challenge Modify the above to find a Banach algebra with a dense maximal left ideal of infinite codimension. Maybe a semigroup algebra of the form $\ell^1(S)$?

An equivalence

The existence of such a Banach algebra is equivalent to the existence of a Banach algebra A that has a discontinuous left A-module homomorphism into an infinite-dimensional, simple Banach left A-module, an 'automatic continuity' question.

See a book of mine on 'automatic continuity'.

A small modification

Replace ${\mathfrak A}$ and ${\mathfrak I}$ by

$$\mathfrak{A} = \begin{pmatrix} B & I \\ B & I \end{pmatrix}$$
 and $\mathfrak{I} = \begin{pmatrix} I & I \\ B & I \end{pmatrix}$,

respectively. Then nearly the same calculation works, and the bonus is that we get $\mathfrak{A}^2 = \mathfrak{A}$, and hence $\mathcal{A}^2 = \mathcal{A}$, so that \mathcal{A} factors weakly. Indeed, take

$$\mathbf{x} = \begin{pmatrix} x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \end{pmatrix} \in \mathfrak{A},$$

where $x_{1,1}, x_{2,1} \in B$ and $x_{1,2}, x_{2,2} \in I$. Then

$$\mathbf{x} = P\mathbf{x} + \begin{pmatrix} 0 & 0 \\ e_B & 0 \end{pmatrix} \begin{pmatrix} x_{2,1} & x_{2,2} \\ 0 & 0 \end{pmatrix} \in \mathfrak{A}^2.$$

However I do not know the answer to the following:

Let A be a Banach algebra that factors. Is it true that every maximal left ideal in A is closed?

Commutative starting points

Recall that we require Banach algebras I such that I^2 is dense in I and $I^2 \subsetneq I$.

1) Let $I = (\ell^p, \|\cdot\|_p)$, where $1 \le p < \infty$, taken with the coordinatewise product, so that I is a commutative, semi-simple Banach algebra. The final algebra \mathcal{A} is semi-simple.

2) Take R to be the commutative Banach algebra C([0, 1]) with the above truncated convolution multiplication. Here R has an approximate identity, so $R^{[2]}$ is dense in R, but $R^2 \subsetneq R$. This example is radical. So the final algebra \mathcal{A} has a large radical.

Non-commutative starting points

3) Let H be an infinite-dimensional Hilbert space, and take I to be the non-commutative Banach algebra of all Hilbert–Schmidt operators on H, with the standard norm on I. Then $I^2 = I^{[2]}$ is the space of trace-class operators. Here I is a semi-simple algebra and a Banach *-algebra, and we can show that he corresponding algebra \mathcal{A} has the same properties. \Box

4) Let *E* be an infinite-dimensional Banach space, and let $I = \mathcal{N}(E)$, the nuclear operators on *E*, so that *I* is a non-commutative Banach algebra with respect to the nuclear norm. Then $I^{[2]}$ is dense in *I* and I^2 has infinite codimension in *I*.

Finitely-generated maximal left ideals

A left ideal I in a unital algebra A is **finitelygenerated** if there exist $a_1, \ldots, a_n \in A$ such that $I = Aa_1 + Aa_2 + \cdots + Aa_n$.

Theorem, Sinclair-Tullo, 1974 Let A be a unital Banach algebra. Suppose that all closed left ideals are finitely-generated. Then A is finite dimensional.

Conjecture, D-Zelazko, 2012 Let *A* be a unital Banach algebra. Suppose that all **max-imal** left ideals are finitely-generated. Then *A* is finite dimensional.

Theorem True when A is commutative, and for various other examples. \Box

Theorem, D-Kania-Kochanek-Koszmider-Laustsen, 2013 Consider $\mathcal{B}(E)$. Then the conjecture holds for very many different classes of Banach spaces E. No counter-example is known.

Semigroup algebras

Theorem, Jared White, 2017 Consider $\ell^1(S)$ for a monoid S, or its weighted version $\ell^1(S, \omega)$. Then the conjecture holds for many different classes of semigroup S, including all groups. \Box

For a semigroup algebra $\ell^1(S)$, set

$$\ell_0^1(S) = \left\{ f : \sum_{s \in S} f(s) = 0 \right\}$$

Then $\ell_0^1(S)$ is a maximal ideal, called the **augmentation ideal**.

Theorem, Jared White, 2017 Let S be a monoid. Then $\ell_0^1(S)$ is finitely generated (as a left ideal) iff S is 'pseudo-finite'.

Could infinite, pseudo-finite semigroups give counters to the DZ conjecture? One needs **all** maximal left ideals to be finitely generated.

Counter-examples?

White There are rather trivial infinite, pseudofinite semigroups. But these do not give counterexamples to the main conjecture.

Example, VG, et al There is a non-trivial infinite, pseudo-finite semigroup.

Question Does this give a counter-example to the DZ conjecture? What are the maximal left ideals for this example?