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Algebras

Throughout, an algebra is linear and associa-
tive and over the complex field C.

A left ideal in A is a linear subspace I of A
such that ax € I when a € A and x € I; a left
ideal M is maximal if M = A and I = M or
I = A when I is a left ideal in A with I D M.

A proper left ideal I in an algebra A is modular
if there exists u € A with a—au el (a€ A).

Let I be a left ideal in an algebra A with such
a u. By Zorn's lemma, the family of left ideals
Jin Awith J DI and v € J has a maximal
member, say M. Clearly M is a maximal left
ideal in A.

The radical, rad A, of A is the intersection of
the maximal modular left ideals, withrad A = A
if there are no such (and then A is radical). It
is an ideal in A. The algebra is semi-simple if
rad A = {0}.



Banach Algebras

These are Banach spaces (A,]-]|) which are
also algebras such that

ladll < flafl Il (a,be A).

Example For a Banach space E, B(FE) is the
Banach algebra of all bounded, linear operators
on E. O

Example Let S be a semigroup. The point
mass at s € S is §s. The Banach space ¢1(S)
consists of the functions f : S — C such that

1£ll1 =Y {If(s)] :s€ S} <o0.

There is a Banach algebra product x called
convolution such that s x 6 = 9 (s,t € S).
Then (¢1(S), x) is a Banach algebra that is
the semigroup algebra on S. O



More definitions

Let I be a closed ideal in a Banach algebra A.
Then A/I is also a Banach algebra. The alge-
bra A/rad A is a semi-simple Banach algebra.

A maximal left ideal in a Banach algebra is
either closed or dense.

A Banach algebra is a Banach x-algebra if
there is an involution x on A such that

la™ll = llall (a € A).

For example, C*-algebras are Banach x-algebras.



Matrices

For n € N, we denote by M, the algebra of nxn
matrices over C. The algebras M,, are simple,
i.e., NO proper, non-zero ideals.

Let A be an algebra. Then M,(A) is the al-
gebra of all n x n matrices with coefficients in
A. In the case where A is a Banach algebra,
M, (A) is also a Banach algebra with respect
to the norm given by

()] = 3 |

1,J=1
Suppose that A is a Banach x-algebra. Then
My, (A) is also a Banach x-algebra with respect
to the involution given by the transpose map

(ai,j) = (a;f,z- :

az’,j‘ ((a; ;) € Mp(A)).



Maximal modular left ideals

Let A be a Banach algebra. The following
basic result is in all books on Banach algebras.

Theorem Every maximal modular left ideal M
in A is closed (and A/M is a simple Banach
left A-module).

Proof Take u € A as in the definition. Assume
that there is a € M with |la —u|| < 1. Then
thereisbe Awitha—u+b+b(a—u) =0, and
sou=a-+ba—+ (b—bu) € M, a contradiction.
So M is not dense, and hence it is closed. O



Codimension of maximal modular left
ideals in Banach algebras

What is the codimension of such an ideal M7

Suppose that A is commutative. Then A/M is
a field, and A/M = C by Gel'fand—Mazur, so
M is the kernel of a continuous character and
has codimension 1.

Suppose that A is non-commutative. For ex-
ample, take A = B(FE) for a Banach space F,
and take x € E with x #= 0. Then

M = {T € B(E) : Tz = 0}

IS a closed, singly-generated maximal left ideal.
When E has dimension n € N, M has codimen-
sion n; when E has infinite dimension, M has
infinite codimension.



Detour to Fréchet algebras

A Fréchet algebra has a countable series of
semi-norms, rather than one norm.

Let A be a commutative, unital Fréchet alge-
bra. Then each closed maximal ideal is the
kernel of a continuous character, but it is a
formidable open question, called Michael’s prob-
lem, whether all characters on each commu-
tative Fréchet algebra are continuous.



An example

Let O(C) denote the space of entire functions
on C, a Fréchet algebra with respect to the
topology of uniform convergence on compact
subsets of C.

Then each maximal ideal M of codimension 1
in O(C) is closed, and there exists z € C such
that

M= M, :={fcO(C): f(z) =0}.

Let I be the set of functions f € O(C) such
that f(n) = 0 for each sufficiently large n € N.
Clearly I is an ideal in O(C), I is dense in O(C),
and I is contained in a maximal ideal, say M.
Then M is dense in O(C), but M is not of the
form M,. The quotient A/M is a ‘very large
field” of infinite dimension. (For large fields,
see a book with W. H. Woodin.)



Maximal left ideals that are not modular

Example Let E be an infinite-dimensional Ba-
nach space. Then E has a dense subspace F
that has codimension 1 in E; it is the kernel of
a discontinuous linear functional. The space E
IS a commutative Banach algebra with respect
to the zero product, and F is a maximal (left)
ideal in this algebra such that F' is not closed,
and F'is obviously not modular. O

This suggested:

Conjecture Let A be a Banach algebra. Then
every maximal left ideal in A is either closed or
of codimension 1.

We shall give a counter-example.
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Algebraic preliminaries - 1
The following are little calculations.

Here A is any algebra, Al2l = {ab : a,b € A},
and A2 = lin Al2l. The algebra A factors if
A = A2l and factors weakly if A = A2 (not
the same).

Fact 1 Suppose that A2 C A. Then A contains
a maximal left ideal that is an ideal in A and
that contains A2. Each maximal left ideal that
contains A2 has codimension 1 in A.

Just take M to be a subspace of codimension
1 in A such that A2 ¢ M. 0
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Algebraic preliminaries - 2

Fact 2 Suppose that M is a maximal left ideal
in Aand be A, and set Jy,={a € A:abe M}.
Then either J, = A or J, is a maximal modular
left ideal in A.

Either Ab C M, and hence J,= A, or A/M is a
simple left A-module, and J, = (b+ M)L is a
maximal modular left ideal. O

Fact 3 A has no maximal left ideals iff A is a
radical algebra and A2 = A.

Suppose that A has no maximal left ideals.
Then A is radical, and A2 = A by Fact 1.

For the converse, assume that M is a maximal
left ideal, and take b € A. By Fact 2,
J, = A, and so Ab C M, whence A2 C M # A,

a contradiction. O
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A simple, radical algebra

A simple, radical algebra was constructed by
Paul Cohn in 1967. Since a simple algebra A is
such that A2 = A, it follows from Fact 3 that
this algebra has no maximal left or maximal
right ideal. However, it does have a maximal
ideal, namely {0}.

A topologically simple Banach algebra A is
one in which the only closed ideals are {0} and
A. Is there a commutative, radical Banach
algebra that is topologically simple?

Maybe this is the hardest question in Banach
algebra theory.
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An example

A Banach algebra A with a bounded approx-
imate identity is such that A = Al2l: this fol-
lows from Cohen’s factorization theorem

Let V be the Volterra algebra. This is the
Banach space L1([0,1]) with truncated convo-
lution multiplication:

(f * W) = [ 1t 9)g(s)ds (¢ € [0,1])

for f,g € V. This is a radical Banach algebra
with a BAI, and so V2l = V. Thus there are
no maximal ideals in V (and so the conjecture
holds vacuously for V).
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Some positive results

Theorem Let A be a Banach algebra with
maximal left ideal M. Suppose that A2 ¢ M
and M is also a right ideal. Then M is closed.

Proof Set Jy={a€ A:aA C M}. By Fact 2,
J is a closed left ideal. Since A2 ¢ M, it is
not true that J4, = A. Since M is a right ideal,
M C Jyq. SO M = Jy is closed. O

Corollary Let A be a commutative Banach al-
gebra with a maximal ideal M. Then M has
codimension 1. Either A/M = C and M is
closed, or A2 C M. O

T hus the conjecture holds in the commutative
case.
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Null sequences factoring

Let A be a Banach algebra. A null sequence
(an) factors if there is a null sequence (by) in
A and a € A with ap = bpa (n € N). This holds
when A has a BAI (but is more general).

Theorem Let A be a Banach algebra in which
null sequences factor. Then every maximal left
ideal M in A is closed.

Proof Take a € A and (an) in M with ap, — a.

There is a null sequence (by) and b € A with

a— anp = bpb and a = bgb. Again set
J=Jy={x€A:xbec M}.

By Fact 2, J is closed. Now we have
(bg — bp)b = an € M, so bg = lim(bg — bp) € J,
whence a € M. So M is closed. O
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Applications

Corollary Every maximal left ideal in each C*-
algebra is closed. O

Let £ be a Banach space. Then A(FE) and
IC(E) are the Banach algebras of approximable
and compact operators, respectively. Suppose
that E has certain approximation properties.
Then null sequences in A(E) and K(FE) factor,
and so every maximal left ideal is closed.

What are they? Are they all modular? What

happens if £ does not have the ‘certain approx-
imation properties’?
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An example - algebraic preliminary
Definition Let A be an algebra with a charac-
ter ¢. Then M, is the kernel of ¢ and

Jo =1lin{ab— p(a)b:a,bec A}.

Then J, is a right ideal and My,A C J, C M.

Suppose that there is an idempotent v in A\ M.
Then

Jo = M2+ Mpu~+ (1 —u)M,.

Fact Take a non-zero linear functional A on A
with A | J, = 0, and set M = ker A\. Then M
is @ maximal left ideal in A of codimension 1
and A2 ¢ M.

This is easily checked.
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A Banach algebra

Theorem Let A be a Banach algebra with a
character ¢, and suppose that J, is not closed.
Then there is a dense maximal left ideal M of
codimension 1 in A with A2 ¢ M.

Proof Take a linear functional A with A | J, =0
and \| J, # 0, and set M = ker A. O

A starting point

We suppose that we have a Banach algebra
(I, - |I;) with I2C 12 = I, and we take B = I*
to be the unitization of I, so that B is a unital
Banach algebra, with identity ep, say, and I is
a maximal ideal in B.
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A construction

From our starting point, consider the Banach
algebra B8 = M»(B), so that 8 is also a unital
Banach algebra. Set J = M»(I). Then J is a
closed ideal in B (of codimension 4).

Consider the elements

(e O (0 O
P_<O O) and Q_<O€B>
in B. Then P2 =P, Q2 =Q, PQ = QP = 0,
and P + @ is the identity of ‘5.

Next, consider the subset A = J 4+ CP in 8.
Symbolically, 20 has the form

B I
2 = ( - 1) |
Then 2 is a closed subalgebra of B, and J is
a maximal ideal in A of codimenison 1; the

quotient map ¢ : A — A/J is a character on .
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A construction, continued

We define M, and J, (in relation to 2 and the
character ¢) as above. Then J = M, and

Jo=T°4+3IP+QJC PI?Q+PIP+QicC7T,

and so 32 C J, C J = M. Also
1=(P+Q)I(P+Q)=PIP+PIQ+QJ.

We claim that 32 is dense in M,. Indeed,

given € > 0 and x € I, there exist n € N and
7 < €.

Ul,...,Un,V1,...,n € I With H:U — D1 Uy
It follows that

(55)-%(50)(55)

A =X uwv; O
= (7 o)) <

with similar calculations in the other positions.
The claim follows. Hence J, = M.
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A construction, continued further

We also claim that J, #= M,. Assume towards
a contradiction that J, = M,. Then

J= PJP 4+ PJQ 4+ Q3 = P3°Q + PIP+ Q3J.
Since J = PJP & PJQ & QJ, this implies that

PJQ = P32Q. However, take z € I\ I?, and
consider the element

({0 =z ~
X—<O O)EJ.

Since Px(@) = x, we see that x € PJ(Q. But
every element of PJ2Q has the form

(55)

where v € I2, and so x ¢ PJ2Q, the required
contradiction. Thus the claim holds.

So far we have:

Theorem The Banach algebra 21 contains a

dense maximal left ideal 9t with A2 ¢ 9 such

that 9t has codimension 1 in 2. O
22



Another algebraic calculation

Proposition Let A be an algebra containing
a maximal left ideal M of codimension 1 such
that A2 ¢ M, and take n € N. Then the matri-
ces (a; ;) in Mp(A) such that a;1 € M (i € Np)
form a maximal left ideal in M,,(A) of codimen-
sion n.

Proof The matrices that we are considering
have the form

M A ... A
M — M A ... A
M A ... A

It is clear that M is a left ideal of codimen-
sion n in M,(A). Consider a left ideal J in
M, (A) with 7 O M. Since A2 ¢ M, there exist
a,b € A with ab € M, and so b ¢ M and this
implies that Cab+ M = Cb+ M = A. A little
multiplication shows that 7 = M, (A), and so
M is maximal. O
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Conclusion

We combine the above results to exhibit our
main example (assuming that we can reach the
starting point).

Theorem Let n € N. Then there is a Banach
algebra A with a dense maximal left ideal M
with codimension n in A. We can arrange that
A be semi-simple and a Banach x-algebra. O

Challenge Modify the above to find a Banach
algebra with a dense maximal left ideal of infi-
nite codimension. Maybe a semigroup algebra
of the form ¢1(S)7
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An equivalence

T he existence of such a Banach algebra is equiv-
alent to the existence of a Banach algebra A
that has a discontinuous left A-module homo-
morphism into an infinite-dimensional, simple
Banach left A-module, an ‘automatic contin-
uity’ question.

See a book of mine on ‘automatic continuity’.
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A small modification

Replace 2 and J by

B I ~ (I I
Ql_(BI) and J_<BI>’

respectively. Then nearly the same calculation
works, and the bonus is that we get 22 = %I,
and hence A2 = A, so that A factors weakly.

Indeed, take
< — [ ¥1,1 Z12 A
21 T22
where x1 1,221 € B and xq 2,202 € I. Then

_ 0O O ro1 X22 2
X_PX+<€BO>< 0 0 e A= .

However I do not know the answer to the
following:

Let A be a Banach algebra that factors. Is
it true that every maximal left ideal in A is

closed?
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Commutative starting points

Recall that we require Banach algebras I such
that I2 is dense in I and I2 C I.

1) Let I = (¢P,]-,,), where 1 < p < oo, taken
with the coordinatewise product, so that [ is
a commutative, semi-simple Banach algebra.
The final algebra A is semi-simple.

2) Take R to be the commutative Banach alge-
bra C' ([0, 1]) with the above truncated convolu-
tion multiplication. Here R has an approximate
identity, so R[2l is dense in R, but R2 C R. This
example is radical. So the final algebra A has
a large radical.
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Non-commutative starting points

3) Let H be an infinite-dimensional Hilbert space,
and take I to be the non-commutative Banach
algebra of all Hilbert—Schmidt operators on H,
with the standard norm on I. Then 12 = /2]
IS the space of trace-class operators. Here I is
a semi-simple algebra and a Banach x-algebra,
and we can show that he corresponding alge-
bra A has the same properties. O

4) Let E be an infinite-dimensional Banach
space, and let I = N(FE), the nuclear opera-
tors on E, so that I is a non-commutative

Banach algebra with respect to the nuclear
norm. Then I2] is dense in T and I? has infi-
nite codimension in 1. O
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Finitely-generated maximal left ideals

A left ideal I in a unital algebra A is finitely-
generated if there exist ay,...,an, € A such
that I = Aaq + Aars + --- + Aan.

Theorem, Sinclair-Tullo, 1974 Let A be a
unital Banach algebra. Suppose that all closed
left ideals are finitely-generated. Then A is
finite dimensional. O

Conjecture, D-Zelazko, 2012 Let A be a
unital Banach algebra. Suppose that all max-
iImal left ideals are finitely-generated. Then A
is finite dimensional.

Theorem True when A is commutative, and
for various other examples. O

Theorem, D-Kania-Kochanek-Koszmider-

Laustsen, 2013 Consider B(E). Then the

conjecture holds for very many different classes

of Banach spaces E. NoO counter-example is

known. O
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Semigroup algebras

Theorem, Jared White, 2017 Consider ¢1(S)
for a monoid S, or its weighted version ¢1(S, w).
Then the conjecture holds for many different
classes of semigroup S, including all groups. O

For a semigroup algebra ¢1(S), set

t5(S) = {f: > f(s) =0}

seS

Then £3(S) is a maximal ideal, called the
augmentation ideal.

Theorem, Jared White, 2017 Let S be a
monoid. Then 601(8) is finitely generated (as
a left ideal) iff S is ‘pseudo-finite’. O

Could infinite, pseudo-finite semigroups give

counters to the DZ conjecture? One needs

all maximal left ideals to be finitely generated.
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Counter-examples?

White There are rather trivial infinite, pseudo-

finite semigroups. But these do not give counter-
examples to the main conjecture.

Example, VQG, et al There is a non-trivial in-
finite, pseudo-finite semigroup. O

Question Does this give a counter-example to
the DZ conjecture? What are the maximal left
ideals for this example?
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