Zero-divisor graphs of MV-algebras

Aiping Gan

University of York

28 Feb 2018

Based on joint work with Yichuan Yang

- MV-algebras
- MV-semirings
- The zero-divisor graph of an MV-algebra

Definition [1,2]

An MV-algebra is an algebra $(A, \oplus, *, 0)$ of type (2, 1, 0) satisfying the following axioms: for all $x, y \in A$, (M1) $(A, \oplus, 0)$ is a commutative monoid, (M2) $x^{**} = x$, (M3) $x \oplus 0^* = 0^*$, (M4) $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$.

MV-algebras are the algebraic counterpart of Lukasiewicz logic, a many-valued logic with infinitely many values. They have been introduced by C.C.Chang [1](*C. C. Chang, Algebraic analysis of many-valued logic, Trans Am Math Soc., 88 (1958) 467-490*) to prove the completeness of a certain axiom system.

The class of MV-algebras is an equation class, so it forms a varity.

On every MV-algebra A, define the constant 1 and the operation \odot as follows:

$$1 = 0^*$$
 and $x \odot y = (x^* \oplus y^*)^*$.

Then for all $x, y \in A$, the following well-known properties hold:

- $(A, \odot, *, 1)$ is an MV-algebra,
- * is an isomorphism between $(A, \oplus, *, 0)$ and $(A, \odot, *, 1)$,
- 1* = 0,
- $x \oplus y = (x^* \odot y^*)^*$,
- $x \oplus 1 = 1$,
- $x \oplus x^* = 1$,
- $x \odot x^* = 0$.

MV-algebras

Example 1

Equip the real unit interval [0,1] with the operations

$$x \oplus y = min\{1, x + y\}$$
 and $x^* = 1 - x$.

Then $[0,1] = ([0,1], \oplus, *, 0)$ is an MV-algebra and $x \odot y = max\{0, x + y - 1\}.$ The rational numbers in [0,1] and for each $n \ge 2$, the *n*-element set

$$L_n = \{0, \frac{1}{n-1}, \frac{2}{n-1}, \cdots, \frac{n-2}{n-1}, 1\},\$$

yield examples of subalgebras of [0, 1].

The MV-algebra [0,1] is important because

- it generates the variety of all MV-algebras, and
- Chang Completeness Theorem says that an equation holds in [0, 1] if and only if it holds in every MV-algebra.

Example 2

For any Boolean algebra $(A, \lor, \land, -, 0, 1)$, the structure $(A, \lor, -, 0)$ is an MV-algebra, where $\lor, -$ and 0 denote, respectively, the join, the complement and the smallest element in A.

- Boolean algebras form a subvariety of the variety of MV-algebras. They are precisely the MV-algebras satisfying the additional equation x ⊕ x = x.
- MV-algebras are the non-idempotent generation of Boolean algebra.

The natural order

For any MV-algebra A and $x, y \in A$, define

$$x \leq y \iff x^* \oplus y = 1.$$

It is well-known that \leq is a partial order on A, called the natural order of A.

The natural order determines a structure of bounded distributive lattice on A, with 0 and 1 are respectively the bottom and the top element, and

$$x \lor y = (x \odot y^*) \oplus y \text{ and } x \land y = x \odot (x^* \oplus y).$$

Note: the axiom (M4) (x* ⊕ y)* ⊕ y = (y* ⊕ x)* ⊕ x ensures that x ∨ y = y ∨ x.

The relation among MV-algebras and some other algebras

It is known that MV-algebras are categorically equivalent to the following algebras:

- Abelian l-groups with strong unit [2];
- Bounded commutative BCK-algebras [3];
- Bounded DRI -semigroups satisfying the identity 1 (1 x) = x [4];
- Bézout domains with non-zero unit-radical.

Thus one can study MV-algebras from these aspects.

Definition of a semiring

A semiring is an algebra $(S, +, \cdot, 0, 1)$ of type (2, 2, 0, 0) satisfying the following axioms:

- (S1) (S, +, 0) is a commutative monoid,
- (S2) $(S, \cdot, 1)$ is a monoid,

(S3) · distributes over + from either side,

(S4) $0 \cdot x = 0 = x \cdot 0$ for all $x \in S$.

A semiring S is called commutative if so is the multiplication; additively idempotent if it satisfies the equation x + x = x.

For an additively idempotent semiring S, there exists a natural order given by

$$s \leq t \iff s+t=t$$

with $s, t \in S$.

Definition

An MV-semiring is a commutative, additively idempotent semiring $(S, +, \cdot, 0, 1)$ for which there exists a map $*: S \longrightarrow S$, called the negation, satisfying the following conditions: for all $a, b \in S$,

(i)
$$a \cdot b = 0$$
 if and only if $a \le b^*$,

(*ii*)
$$a + b = (a^* \cdot (a^* \cdot b)^*)^*$$
.

The next proposition gives a bridge between MV-algebras and MV-semirings.

Proposition [5]

For any MV-algebra $(A, \oplus, *, 0)$, both the semiring reducts $A^{\vee \odot} = (A, \vee, \odot, 0, 1)$ and $A^{\wedge \oplus} = (A, \wedge, \oplus, 1, 0)$ are MV-semirings. Conversely, if $(S, +, \cdot, 0, 1)$ is an MV-semiring, with negation *, the structure $(S, \oplus, *, 0)$ with

$$a \oplus b = (a^* \cdot b^*)^*$$
 for all $a, b \in S$

is an MV-algebra.

The zero-divisor graph of a semigroup [5]

Let $(S, \cdot, 0)$ be a commutative semigroup with zero. Recall that an element *a* of *S* is called a zero divisor if $a \cdot b = 0$ for some non-zero element *b* of *S*.

The zero-divisor graph $\Gamma(S)$ of S is the simple graph

- whose vertex set V(Γ(S)) is the set of all non-zero zero-divisors of S, and
- two distinct such elements a, b form an edge precisely when $a \cdot b = 0$.

The concept of the zero-divisor graph is extended to many algebras, such as, noncommutative semigroups, semirings, posets , etc. Now we extend it to MV-algebras.

For an MV-algebra A, since $(A, \odot, 0)$ is a commutative semigroup with zero, we define the zero-divisor graph of $(A, \odot, 0)$ to be the zero-divisor graph of MV-algebra A, and we denote it by $\Gamma(A)$, that is to say, $\Gamma(A)$ is the simple graph

- whose vertex set V(Γ(A)) is the set of all non-zero zero-divisors of A, and
- ▶ two distinct such elements a, b form an edge precisely when $a \odot b = 0$.

Note

For an MV-algebra A, the zero-divisor graph of A is the same as the zero-divisor graph of MV-semiring $A^{\vee \odot} = (A, \vee, \odot, 0, 1)$.

Proposition

 $V(\Gamma(A)) = A \setminus \{0,1\}$ for any MV-algebra A.

Proof.

Let A be an MV-algebra. It is obvious that $V(\Gamma(A)) \subseteq A \setminus \{0,1\}$; conversely, for any $a \in A \setminus \{0,1\}$, we have $a^* \in A \setminus \{0,1\}$ and $a \odot a^* = 0$, so $a \in V(\Gamma(A))$.

The zero-divisor graph of an MV-algebra

The graphs $\Gamma(L_{11})$ is as follows:

Theorem

Let A be an MV-algebra and $\Gamma(A)$ is not null. Then $\Gamma(A)$ is connected and diam $(\Gamma(A)) \leq 3$.

Theorem

Let A be an MV-algebra and $\Gamma(A)$ is not null. Then the following statements are equivalent:

Theorem

Let A be an MV-algebra, $|A| = n \ge 5$ and $\Gamma(A) \cong \Gamma(L_n)$ implies $A \cong L_n$.

Proposition

Let A be an MV-chain. Then the following statements are true: (i) $diam(\Gamma(A)) < 2$:

(i)
$$diam(\Gamma(A)) = 2$$
 if and only if $|A| \ge 5$.

Proposition

Let A, B and C be MV-algebras such that $A \cong B \times C$. Then we have

$$(|B| \ge 3 \text{ or } |C| \ge 3) \iff diam(\Gamma(A)) = 3.$$

- 1 C. C. Chang, Algebraic analysis of many-valued logic, Trans Am Math Soc., 88 (1958) 467-490.
- 2 D. Mundici, MV-algebras, www.mathematica.uns.edu.ar.Mundici-tutorial, 2007.
- 3 S.Tanaka, On ∧-commutative algebras, Math. Sem. Notes Kobe 3 (1975), 59 64.
- 4 J.Rachunek, Olomouc, MV-ALGEBRAS ARE CATEGORICALLY EQUIVALENT TO A CLASS OF DRI_{1(i)}-SEMIGROUPS, Mathematica Bohemica, 1998(4),437-441
- 5 Frank R. DeMeyer, Thomas McKenzie, and Kim Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65(2) (2002) 206-214.

Thank you for your attention!