Binary Relations, Algebras, Games

R Hirsch, I Hodkinson, M Jackson, S Mikulas and others

March 11, 2015

Binary Relations

Special cases:

- unary functions (partial or total), linear transformations,
- injections,
- surjections,
- permutations.

Constants and Operations

For functions

$$
0,1^{\prime}, \cdot, ;, D, R
$$

For relations, also

$$
1,+,-, \smile, *
$$

E.g. Permutations

$$
\left(\text { Perms }, 1^{\prime}, \smile, ;\right) \leadsto \text { groups }
$$

Every group is isomorphic to a set of permutations with identity, converse, composition.
Every set of permutations with identity, closed under converse and composition forms a group.

Classical Representations

Algebra $\mathcal{A}=(A, o p s)$. Let X be a class of relations, e.g. total functions. A representation of type X is injection $h: A \rightarrow \wp(D \times D) \cap X$ respecting operations
E.g.

$$
\begin{aligned}
(x, y) \in h(a ; b) & \Longleftrightarrow \exists z((x, z) \in h(a) \wedge(z, y) \in h(b)) \\
(x, y) \in h\left(1^{\prime}\right) & \Longleftrightarrow x=y
\end{aligned}
$$

$\mathbf{R}_{X}($ ops $)=\{\mathcal{A}: \exists$ representation of type X of $\mathcal{A}\}$.

Problems

$-\exists$ finite set of axioms $\mathcal{A} \models \Sigma \Longleftrightarrow \mathcal{A} \in \mathbf{R}_{X}($ ops $)$?

- Is it decidable whether a finite \mathcal{A} is in \mathbf{R}_{X} (ops)?
- If $\mathcal{A} \in \mathbf{R}_{X}$ (ops) is finite, does it have a representation on a finite base?

Relation Algebra [Tarski 1940s]

$$
\mathcal{A}=\left(A, 0,1,+,-, 1^{\prime}, \smile, ;\right)
$$

- $(A, 0,1,+,-)$ is a boolean algebra
- $\left(A, 1^{\prime},{ }^{-}, ;\right)$is an involuted monoid
- additive operators
- triangle law $a ; b \cdot c=0 \Longleftrightarrow a^{\smile} ; c \cdot b=0$

Examples

Type of rep.	Operators	Axioms	FRP	Decidable
Perms	$\left\{1^{\prime}, \smile, ~ ; ~\right\}$	Group	Yes	Yes
Funcs/Rels	\{; \}	Assoc.	Yes	Yes
Funcs/Rels	\{ $\left.1^{\prime}, ;\right\}$	Monoid	Yes	Yes
Relations	$\{0,1,+,-\}$	BA	Yes	Yes
Injections	$\{D, R, ;\} \subseteq S \subseteq\left\{D, R, 0,1^{\prime}, \cdot, ;\right\}$	∞	No	No
Relations	$\begin{aligned} &\left\{+, \cdot, 1^{\prime}, ;\right\} \subseteq S \\ & \subseteq \cdot \subseteq A \\ &\{\cdot, \cdot ;\} \subseteq S \subseteq R A \\ &\{+, \cdot, ;\} \subseteq S \subseteq R A \backslash\{\smile\} \\ &\{\leq,-, ;\} \subseteq S \subseteq R A \backslash\{\smile\} \end{aligned}$	∞	No	No
Relations	$\left\{1^{\prime}, \cdot, ;\right\}$	∞	No	?
Relations	$\{-, ;\}$?	?	?

Atom Structure

If boolean part is atomic (e.g. if \mathcal{A} is finite)

- which atoms are below identity?
- converse of each atom?
- composition of each pair of atoms?
determines the operators.
For composition, list the forbidden triples $(a, b, c): a ; b \cdot c=0$.

Representation of a Relation Algebra

$$
\begin{gathered}
\mathcal{A}=\left(A, 0,1,+,-, 1^{\prime}, \smile,{ }^{\smile}\right) \\
h: \mathcal{A} \rightarrow \wp(X \times X)
\end{gathered}
$$

such that

$$
\begin{aligned}
a \neq 0 & \Rightarrow h(a) \neq \emptyset(h \text { is } 1-1) \\
h(0) & =\emptyset \\
h(a+b) & =h(a) \cup h(b) \\
h(-a) & =h(1) \backslash h(a) \\
h\left(1^{\prime}\right) & =\{(x, x): x \in X\} \\
(x, y) \in h\left(a^{-}\right) & \Longleftrightarrow(y, x) \in h(a) \\
(x, y) \in h(a ; b) & \Longleftrightarrow \exists z[(x, z) \in h(a) \wedge(z, y) \in h(b)]
\end{aligned}
$$

In a square representation $h(1)=X \times X$.

Point Algebra (temporal reasoning)

3 atoms $1^{\prime}, L, G$ (so 8 elements)

$$
\begin{array}{c|ccc}
; & 1^{\prime} & L & G \\
\hline 1^{\prime} & 1^{\prime} & L & G \\
L & L & L & 1 \\
G & G & 1 & G
\end{array}
$$

where $1=1^{\prime}+L+G,\left(1^{\prime}\right)^{\smile}=1^{\prime}, L^{\smile}=G, G^{\smile}=L$.
Representation over \mathbb{Q}.

$$
h(L)=\{(q, r): q<r\}
$$

Outline of rest of talk

- How can you tell if a relation algebra is representable?
- Two player games to test representability.
- Obtaining first-order axioms from the games.
- Constructing relation algebras with required properties.

Characterising representability

Can consider various types of representations: classical, relativized, complete, etc. One approach: find first-order theory (or better, an equational theory) Δ such that

$$
\mathcal{A} \models \Delta \Longleftrightarrow \mathcal{A} \text { has approp. rep. }
$$

This may or may not be possible, and it is almost always fearsomely difficult.

Characterising representability by games

Our approach: devize two player game G such that
\exists has a w.s. in $G(\mathcal{A}) \Longleftrightarrow \mathcal{A}$ has an approp. rep.
Actually, in many cases we can use these games to obtain first-order theories as above.

Abelarde and Héloïse

Representation - Finite Algebra Case

$(x, y) \in h(1) \Rightarrow \exists!$ atom $\alpha(x, y) \in h(\alpha)$.
If h is a square, we can define a labelled graph (X, λ) by

$$
\begin{aligned}
\lambda & : X \times X \rightarrow A t(\mathcal{A}) \\
\lambda(x, y) & =\bigwedge\{a \in \mathcal{A}:(x, y) \in h(a)\}
\end{aligned}
$$

Conversely, if $\lambda: X \times X \rightarrow \operatorname{At}(\mathcal{A})$ satisfies

$$
\begin{aligned}
\lambda(x, y) \leq 1^{\prime} & \Longleftrightarrow x=y \\
\lambda(x, y)^{-} & =\lambda(y, x) \\
\lambda(x, z) ; \lambda(z, y) & \geq \lambda(x, y)
\end{aligned}
$$

and for all atoms $\alpha, \beta \in \operatorname{At}(\mathcal{A})$,

$$
\lambda(x, y) \leq \alpha ; \beta \Rightarrow \exists z[\lambda(x, z)=\alpha \wedge \lambda(z, y)=\beta]
$$

then λ defines a square representation h, by

$$
h(a)=\{(x, y): a \geq \lambda(x, y)\}
$$

Atomic \mathcal{A}-network: $N=(X, \lambda)$

$$
\lambda: X \times X \rightarrow A t(\mathcal{A})
$$

satisfies

$$
\begin{aligned}
\lambda(x, y) \leq 1^{\prime} & \Longleftrightarrow x=y \\
\lambda(x, y) & =\lambda(y, x) \\
\lambda(x, z) ; \lambda(z, y) & \geq \lambda(x, y)
\end{aligned}
$$

But maybe there are nodes x, y and atoms a, b such that

$$
\lambda(x, y) \leq a ; b \text { yet } \nexists z[\lambda(x, z)=a \wedge \lambda(z, y)=b]
$$

Then (x, y, a, b) is a defect of the atomic network.

Write N instead of X or λ.

Games on atomic \mathcal{A}-networks

Two players: \forall and \exists. The game $G_{n}(\mathcal{A})$ has n rounds (where $n \leq \omega$). A play of the game will be

$$
N_{0} \subseteq N_{1} \subseteq \ldots \subseteq N_{t-1} \subseteq N_{t} \subseteq \ldots \quad(t<n)
$$

Round 0:

- \forall picks $a_{0} \in \operatorname{At} \mathcal{A}$.
- \exists plays an atomic network N_{0} with a_{0} occurring as a label in it.

Round $t(1 \leq t<n)$: Suppose that the current atomic network at the start of the round is N_{t-1}. Play goes as follows:

Round t of $G_{n}(\mathcal{A})$

$\forall \quad$ picks $x, y \quad \in \quad N_{t-1}$ and $\quad a, b \in \operatorname{At}(\mathcal{A}) \quad$ with $a ; b \geq N_{t-1}(x, y)$
\exists responds with...

\ldots an atomic network N_{t},
extending $\quad N_{t-1}, \quad \& \quad$ containing some node z such that $N_{t}(x, z)=a, N_{t}(z, y)=b$

Who wins?

In any round, if \exists cannot play, or if she plays a labelled graph that fails to be an atomic network, then \forall wins.

If \exists plays a legitimate atomic network in each round then she wins.

Characterising representability for finite RAs, by games

Theorem 1 Let \mathcal{A} be a finite relation algebra.

1. $\mathcal{A} \in \operatorname{RRA}$ iff \exists has a winning strategy in $G_{\omega}(\mathcal{A})$.
2. \exists has a winning strategy in $G_{\omega}(\mathcal{A})$ iff she has one in $G_{n}(\mathcal{A})$ for all finite n.
3. One can construct first-order sentences σ_{n} for $n<\omega$ (independently of \mathcal{A}) such that $\mathcal{A} \models \sigma_{n}$ iff \exists has a winning strategy in $G_{n}(\mathcal{A})$.

Conclude that for a finite relation algebra \mathcal{A},

$$
\mathcal{A} \in \mathbf{R R A} \Longleftrightarrow \mathcal{A} \models\left\{\sigma_{n}: n<\omega\right\} .
$$

The axioms σ_{n} (sketch)

Given an atomic network N, and $k<\omega$, we write an axiom $\tau_{k}(N)$ saying that \exists can win $G_{k}(\mathcal{A})$ starting from N. We go by induction on k. All
quantifiers are implicitly relativised to atoms.

$$
\begin{aligned}
\tau_{0}(N)= & \bigwedge_{x \in N}\left(N(x, x) \leq 1^{\prime}\right. \\
& \left.\wedge \bigwedge_{y \in N \backslash\{x\}} N(x, y) \not \leq 1^{\prime}\right) \\
& \wedge \bigwedge_{x, y \in N} N(x, y)=N(y, x)^{\smile} \\
& \wedge \bigwedge_{x, y, z \in N} N(x, y) \leq N(x, z) ; N(z, y) \\
\tau_{k+1}(N)= & \bigwedge_{x, y \in N} \forall a, b\left(N(x, y) \leq a ; b \rightarrow \exists N^{\prime} \supseteq N\right. \\
& \left(\tau _ { k } (N ^ { \prime }) \wedge \bigvee _ { z \in N ^ { \prime } } \left(N^{\prime}(x, z)=a\right.\right. \\
& \left.\left.\left.\wedge N^{\prime}(z, y)=b\right)\right)\right) . \\
\sigma_{k}= & \forall a_{0} \exists N\left(\tau_{k-1}(N) \wedge \bigvee_{x, y \in N} N(x, y)=a_{0}\right)
\end{aligned}
$$

McKenzie's algebra

4 atoms: $1^{\prime},<,>, \sharp$.

$$
1^{\prime} \smile=1^{\prime}, \quad<^{\smile}=>, \quad>^{\smile}=<, \quad \sharp^{\smile}=\sharp .
$$

$;$	$<$	$>$	\sharp
$<$	$<$	1	$(<+\sharp)$
$>$	1	$>$	$(>+\sharp)$
$\#$	$(<+\sharp)$	$(>+\sharp)$	$-\sharp$

McKenzie's algebra

McKenzie's algebra

McKenzie's algebra

McKenzie's algebra

McKenzie's algebra

McKenzie's algebra

McKenzie's algebra

\forall wins.

Maddux algebra

4 atoms: $1^{\prime}, r, b, g$.
$x^{\smile}=x$ for all atoms x ('symmetric algebra')
All triples are consistent except Peircean transforms of:
($1^{\prime}, a, a^{\prime}$) for $a \neq a^{\prime}$, and (r, b, g).

Maddux algebra (\forall 's first kind of move)

Maddux algebra (\forall 's first kind of move)

Maddux algebra (\forall 's first kind of move)

Maddux algebra (\forall 's second kind of move)

Maddux algebra (\forall 's second kind of move)

Maddux algebra (\forall 's second kind of move)

Hence

1. McKenzie's algebra $\mathcal{K} \notin \mathbf{R R A}$.

So RRA \subset RA, as Lyndon (1950) showed.
In fact, \mathcal{K} is one of the smallest non-representable relation algebras. All relation algebras with ≤ 3 atoms are representable.
2. The Maddux algebra $\mathcal{M} \in \mathbf{R R A}$.

Exercise: show that if (X, λ) is any representation of \mathcal{M}, then X is infinite.

This is perhaps surprising, given that \mathcal{M} is symmetric.

Infinite Case

For infinite relation algebras there may not be atoms.
For atomic \mathcal{A} with countably many atoms:
\exists has winning strategyin $G_{\omega}(\mathcal{A}) \Longleftrightarrow \mathcal{A} \in$ CRA.

Could define a slightly different game and get axiomatisation of RRA. Alternatively,

$$
\mathcal{A} \in \mathbf{R R A} \Longleftrightarrow \mathcal{A}^{+} \in \mathbf{C R A}
$$

so to determine if \mathcal{A} is representable, play the atomic game over the canonical extension \mathcal{A}^{+}.

Constructing Relation Algebras

We want to construct algebras \mathcal{A} and we want to control who will win $G_{n}(\mathcal{A})$.

Ehrenfeucht-Fraïssé Game

Let A, B be structures in a binary signature (e.g. graphs). We can easily test whether positive existential properties of A hold in B or not - much easier than checking if an RA is representable.

$$
\mathbf{E F}_{r}(A, B)
$$

Game with r rounds $(r \leq \omega)$.

$\underline{\text { Rules of } \mathrm{EF}_{r}(A, B)}$

- \forall has pebbles $\alpha_{0}, \alpha_{1}, \ldots$
- \exists has corresponding pebbles $\beta_{0}, \beta_{1}, \ldots$.
- Initially \forall places α_{0} at some $a \in A, \exists$ must respond by picking $b \in B$ and placing β_{0} at b.
- In each subsequent round \forall can place a new pebble α_{i} on some $a_{i} \in$ A, \exists must choose $b_{i} \in B$ and place β_{i} at b_{i}.
- \forall wins if $\alpha_{i}, \alpha_{j}, \beta_{i}, \beta_{j}$ are at $a_{i}, a_{j}, b_{i}, b_{j}$ resp., $\left(a_{i}, a_{j}\right) \in r^{A}$ but $\left(b_{i}, b_{j}\right) \notin$ r^{B} (some binary predicate r).
- After r rounds, if \forall hasn't won so far then \exists is the winner.
- Can assume \forall never puts two pebbles on same spot.

Rules of $\mathrm{EF}_{r}^{p}(A, B)$

- Similar, but each player has only p pebbles.
- After p rounds, \forall must pick up a pebble in play and can re-use it $(\exists$ does the same).

Example game

Example game

\forall wins.

But \forall needs 3 turns with 3 different pebbles to win.

- \forall has winning strategy in $\mathrm{EF}_{3}^{3}(T, S)$.
- \exists has winning strategy in $\mathbf{E F}_{r}^{2}(T, S)$.
$\underline{E F F_{\omega}(A, B)}$

B

$$
\mathrm{EF}_{\omega}(A, B)
$$

B
$\underline{\mathrm{EF}_{\omega}(A, B)}$

$\underline{\mathrm{EF}_{\omega}(A, B)}$

$\underline{\mathrm{EF}_{\omega}(A, B)}$

$\underline{\mathrm{EF}_{\omega}(A, B)}$

$\underline{\mathrm{EF}_{\omega}(A, B)}$

\exists wins.

Third Example Game

- Successor relation.
- \forall has winning strategy in $\mathrm{EF}_{r+1}^{2}(A, B)$.
- \exists has winning strategy in $\mathrm{EF}_{r}^{2}(A, B)$.
- With three pebbles on (transitive) linear orders can do binary search $-\forall$ can win on linear orders of different lengths, $<2^{r}$.

Fourth example game

$$
A=\mathrm{K}_{\omega}, \quad B=\dot{\bigcup}_{n<\omega} \mathrm{K}_{n}
$$

- \forall wins $\operatorname{EF}_{\omega}(A, B)$, but
- \exists wins $\mathbf{E F}_{\omega}^{p}(A, B)$ for any $p<\omega$ (\exists 's places all her pebbles in K_{p}).

Extra rule

Initial round changed. \forall picks distinct $a_{0}, a_{1} \in A$ and places α_{0}, α_{1} at these points. \exists responds by picking $b_{0}, b_{1} \in B$ and placing β_{0}, β_{1} there. This counts as two rounds (combined).

At any point, \forall may remove pebbles as before, but he must always leave at least two distinct points of A covered.

Converting to RA

Idea: given binary structures A, B make $\mathbf{R A} \mathcal{A}_{A, B}$ such that
\exists has w.s. in $\mathbf{E F}_{r}^{p}(A, B) \Longleftrightarrow \exists$ has w.s. in $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right)$

Atoms

- $1^{\prime}, \mathrm{g}_{a}(a \in A), \mathrm{r}_{b b^{\prime}}\left(b, b^{\prime} \in B\right), \mathrm{y}, \mathrm{b}, \mathrm{w}$.
- All atoms self-converse, except $r_{b b^{\prime}}=r_{b^{\prime} b}$.

Forbidden triangles

Forbid ($1^{\prime}, x, y$) unless $x=y$.
indices match \Leftarrow

$$
\left\{(a, b),\left(a^{\prime}, b^{\prime}\right)\right\}
$$

\Rightarrow is well-def. partial hom.

At this point we have
\forall has w.s. in $\mathbf{E F}_{r}^{p}(A, B) \Rightarrow \forall$ has w.s. in $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right)$

Correspondence	between	games.
\exists wins $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right)$	$\Rightarrow \exists$ wins $\mathrm{EF}_{r}^{p}(A, B)$	

Correspondence between games.
 \exists wins $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right) \Rightarrow \exists$ wins $\operatorname{EF}_{r}^{p}(A, B)$

Correspondence	between	games.
\exists wins $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right)$	$\Rightarrow \exists$ wins $\mathrm{EF}_{r}^{p}(A, B)$	

Correspondence	between	games.
\exists wins $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right)$	$\Rightarrow \exists$ wins $\mathrm{EF}_{r}^{p}(A, B)$	

> | Correspondence | between | games. |
| :--- | :---: | :---: |
| \exists wins $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right)$ | $\Rightarrow \exists$ wins $\mathrm{EF}_{r}^{p}(A, B)$ | |

> | Correspondence | between | games. |
| :--- | :---: | :---: |
| \exists wins $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right)$ | $\Rightarrow \exists$ wins $\mathrm{EF}_{r}^{p}(A, B)$ | |

> | Correspondence | between | games. |
| :--- | :---: | :---: |
| \exists wins $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right)$ | $\Rightarrow \exists$ wins $\mathrm{EF}_{r}^{p}(A, B)$ | |

> | Correspondence | between | games. |
| :--- | :---: | :---: |
| \exists wins $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right)$ | $\Rightarrow \exists$ wins $\mathrm{EF}_{r}^{p}(A, B)$ | |

Correspondence between games.
 \exists wins $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right) \Rightarrow \exists$ wins $\operatorname{EF}_{r}^{p}(A, B)$

Correspondence between games.
 \exists wins $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right) \Rightarrow \exists$ wins $\operatorname{EF}_{r}^{p}(A, B)$

Correspondence between games.
 \exists wins $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right) \Rightarrow \exists$ wins $\operatorname{EF}_{r}^{p}(A, B)$

> | Correspondence | between | games. |
| :--- | :---: | :---: |
| \exists wins $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right)$ | $\Rightarrow \exists$ wins $\mathrm{EF}_{r}^{p}(A, B)$ | |

Correspondence	between	games.
\exists wins $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right)$	$\Rightarrow \exists$ wins $\mathrm{EF}_{r}^{p}(A, B)$	

> | Correspondence | between | games. |
| :--- | :---: | :---: |
| \exists wins $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right)$ | $\Rightarrow \exists$ wins $\mathrm{EF}_{r}^{p}(A, B)$ | |

> | Correspondence | between | games. |
| :--- | :---: | :---: |
| \exists wins $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right)$ | $\Rightarrow \exists$ wins $\mathrm{EF}_{r}^{p}(A, B)$ | |

> | Correspondence | between | games. |
| :--- | :---: | :---: |
| \exists wins $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right)$ | $\Rightarrow \exists$ wins $\mathrm{EF}_{r}^{p}(A, B)$ | |

How \exists can win $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right)$
\exists ’s strategy will be to play white if possible, else black if possible, else red. But this isn't working.

$$
\forall \text { finds loophole }
$$

\forall finds loophole

$$
\forall \text { finds loophole }
$$

\forall finds loophole

\forall finds loophole

\forall finds loophole

How to fix this

The idea was that \exists could freely choose red atoms.
Don't want \forall to choose red edge and then force a 'red clique' including that edge.
Final atoms to add:-

$$
\mathrm{w}_{S}: S \subseteq A,|S| \leq 2
$$

all self-converse.
Forbid

$$
\left(\mathrm{w}_{S}, \mathrm{~g}_{a}, \mathrm{y}\right)
$$

unless $a \in S$.

The atom structure in full

Atoms

$$
1^{\prime}, \mathrm{g}_{a}, \mathrm{w}, \mathrm{w}_{S}, \mathrm{y}, \mathrm{~b}, \mathrm{r}_{b b^{\prime}} \quad: a \in A, S \subseteq A|S| \leq 2, b, b^{\prime} \in B
$$

All self-converse except $\mathrm{r}_{b b^{\prime}}=\mathrm{r}_{b^{\prime} b}$.

Forbidden triples

PTs of

$$
\begin{array}{ll}
\left(1^{\prime}, x, y\right) & x \neq y \\
\left(\mathrm{~g}_{a}, \mathrm{~g}_{\left.a^{\prime}, \gamma\right)}\right) & a, a^{\prime} \in A, \gamma \text { is white or green } \\
(\mathrm{y}, \mathrm{y}, \mathrm{y}),(\mathrm{y}, \mathrm{y}, \mathrm{~b}) & \\
\left(\mathrm{r}_{b_{0} b_{1}}, \mathrm{r}_{b_{1}^{\prime} b_{2}^{\prime}}, \mathrm{r}_{\left.b_{0}^{\prime \prime} b_{2}^{\prime \prime}\right)}\right) & \text { unless } b_{0}=b_{0}^{\prime \prime}, b_{1}=b_{1}^{\prime}, b_{2}^{\prime}=b_{2}^{\prime \prime} \\
\left(\mathrm{g}_{a}, \mathrm{~g}_{a^{\prime}}, \mathrm{r}_{b b^{\prime}}\right) & \text { if }\left(a, a^{\prime}\right) \in r^{A} \text { but }\left(b, b^{\prime}\right) \notin r^{B} \\
\left(\mathrm{w}_{S}, \mathrm{~g}_{a}, \mathrm{y}\right) & \text { unless } a \in S
\end{array}
$$

We now have

\exists has winning strategy in $\mathrm{EF}_{r}^{p}(A, B)$
\exists has winning strategy in $G_{1+r}^{2+p}\left(\mathcal{A}_{A, B}\right)$

RRA is not finitely axiomatisable

- Let $\mathcal{A}_{n}=\mathcal{A}_{\mathrm{K}_{n+1}, \mathrm{~K}_{n}}$.
- \forall has winning strategy in $E F_{n+1}\left(\mathrm{~K}_{n+1}, \mathrm{~K}_{n}\right)$ so \forall has winning strategy in $G_{n+2}\left(\mathcal{A}_{n}\right)$ and $\mathcal{A}_{n} \notin \mathbf{R R A}$.
- But \exists has winning strategy in $\mathrm{EF}_{n}\left(\mathrm{~K}_{n+1}, \mathrm{~K}_{n}\right)$ so \exists has winning strategy in $G_{n+1}\left(\mathcal{A}_{n}\right)$. So $\mathcal{A}_{n} \models \sigma_{n+1}$.
- Let $\mathcal{A}=\Pi_{U} \mathcal{A}_{n}$ be a non-principal ultraproduct. Then $\mathcal{A} \vDash \sigma_{n}$, all n. Hence $\mathcal{A} \in \mathbf{R R A}$.
- No finite axiomatisation of RRA exists.

CRA is not elementary

Let $A=\mathrm{K}_{\omega}, B=\dot{\cup}_{n<\omega} \mathrm{K}_{n}$.
\forall has winning strategy in $\mathrm{EF}_{\omega}(A, B)$
$\Rightarrow \forall$ has winning strategy in $G_{\omega}\left(\mathcal{A}_{A, B}\right)$
$\Rightarrow \mathcal{A}_{A, B} \notin$ CRA
But
\exists has winning strategy in $\mathrm{EF}_{n}(A, B)$
$\Rightarrow \exists$ has winning strategy in $G_{n}\left(\mathcal{A}_{A, B}\right)$
$\Rightarrow \mathcal{A}_{A, B}=\sigma_{n}$
Hence
$\operatorname{CRA} \nexists \mathcal{A}_{A, B} \equiv \Pi_{U} \mathcal{A}_{A, B} \succeq \mathcal{B} \in \mathbf{C R A}$

$\mathbf{R A}_{n+1}$ not finitely axiomatisable over $\mathbf{R A}_{n}$

K_{n} is complete irreflexive graph over $\{0,1, \ldots, n-1\}$. I_{r} is successor relation over $\left\{0^{\prime}, 1^{\prime}, \ldots,(r-1)^{\prime}\right\}$.
A_{r}^{n} has nodes $n \cup r^{\prime}$ and has edges

$$
\begin{aligned}
\{(i, j): i \neq j<n\} & \cup\left\{\left(i^{\prime},(i+1)^{\prime}\right): i<r\right\} \\
& \cup\left\{\left(i, j^{\prime}\right),\left(j^{\prime}, i\right): i<n, j<r\right\}
\end{aligned}
$$

Some corollaries

Rainbow construction produces relation algebras that we can use to prove:-

- Non-finite axiomatisability of RRA [Monk, 1964]
- Non-finite axiomatisability of the representation class of any sub-signature of RA including compostion, converse and intersection [Hodkinson Mikulas, 2000]
- No set of equations using a finite number of variables can define RRA [Jónsson, 1991]
- Class of completely representable relation algebras not closed under elementary equivalence.
- Can be extended to cover similar results for cylindric algebras.

Open Problems

- Is this decidable: does a given finite relation algebra have a representation on a finite base??

No k-variable first order axiomatisation of RRA?

Find two finite graphs A, B with $A \not \equiv B$ but can't distinguish A, B using a k colour game.

Say A cannot embed in B. Then $\mathcal{A}_{A, B} \notin$ RRA but $\mathcal{A}_{B, B} \in \mathbf{R R A}$ and no k-variable formula distinguishes $\mathcal{A}_{A, B}$ from $\mathcal{A}_{B, B}$.

Some references

A De Morgan. On the syllogism, no. iv, and on the logic of relations. Transactions of the Cambridge Philosophical Society, 10:331-358, 1860.

A Tarski. On the calculus of relations. Journal of Symbolic Logic, 6:73-89, 1941.

A Tarski. Contributions to the theory of models, III. Koninkl. Nederl. Akad. Wetensch Proc., 58:56-64, 1955. = Indag. Math. 17.

J D Monk. On representable relation algebras. Michigan Mathematics Journal, 11:207-210, 1964.

A Tarski and S R Givant. A Formalization of Set Theory Without Variables. Number 41 in Colloquium Publications in Mathematics. American Mathematical Society, Providence, Rhode Island, 1987.

R Hirsch, I Hodkinson. Axiomatising various classes of relation and cylindric algebras. Logic Journal of the IGPL 5 (1997) 209-229.

R Hirsch, I Hodkinson. Complete representations in algebraic logic. Journal of Symbolic Logic 62 (1997) 816-847.

R Hirsch, I Hodkinson. Representability is not decidable for finite relation algebras. Trans. Amer. Math. Soc. 353 (2001) 1403-1425.

I Hodkinson, S Mikulás, Y Venema. Axiomatising complex algebras by games. Algebra Universalis 46 (2001) 455-478.

R Hirsch, M Jackson. Some Undecidable Problems on Representability as Binary Relations. Journal of Symbolic Logic.Volume 77(4), pp 1211-1244, 2012

