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Binary Relations

Special cases:

• unary functions (partial or total), linear transformations,

• injections,

• surjections,

• permutations.
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Constants and Operations

For functions

0,1′, ·, ; , D,R

For relations, also

1,+,−,^, ∗
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E.g. Permutations

(Perms,1′,^, ; ) ; groups

Every group is isomorphic to a set of permutations with identity, converse,
composition.
Every set of permutations with identity, closed under converse and compo-
sition forms a group.
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Classical Representations

Algebra A = (A, ops). Let X be a class of relations, e.g. total functions.
A representation of type X is injection h : A→ ℘(D×D)∩X respecting
operations
E.g.

(x, y) ∈ h(a; b) ⇐⇒ ∃z((x, z) ∈ h(a) ∧ (z, y) ∈ h(b))

(x, y) ∈ h(1′) ⇐⇒ x = y

RX(ops) = {A : ∃representation of type X of A}.
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Problems

• ∃ finite set of axioms A |= Σ ⇐⇒ A ∈ RX(ops)?

• Is it decidable whether a finite A is in RX(ops)?

• If A ∈ RX(ops) is finite, does it have a representation on a finite
base?
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Relation Algebra [Tarski 1940s]

A = (A,0,1,+,−,1′,^, ; )

• (A,0,1,+,−) is a boolean algebra

• (A,1′,^, ; ) is an involuted monoid

• additive operators

• triangle law a; b · c = 0 ⇐⇒ a^; c · b = 0
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Examples

Type of rep. Operators Axioms FRP Decidable
Perms {1′,^, ; } Group Yes Yes
Funcs/Rels {; } Assoc. Yes Yes
Funcs/Rels {1′, ; } Monoid Yes Yes
Relations {0,1,+,−} BA Yes Yes
Injections {D,R, ; } ⊆ S ⊆ {D,R,0,1′, ·, ; } ∞ No No
Relations {+, ·,1′, ; } ⊆ S ⊆ RA

{·,^, ; } ⊆ S ⊆ RA
{+, ·, ; } ⊆ S ⊆ RA \ {^}
{≤,−, ; } ⊆ S ⊆ RA \ {^}

∞ No No

Relations {1′, ·, ; } ∞ No ?
Relations {−, ; } ? ? ?
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Atom Structure

If boolean part is atomic (e.g. if A is finite)

• which atoms are below identity?

• converse of each atom?

• composition of each pair of atoms?

determines the operators.
For composition, list the forbidden triples (a, b, c) : a; b · c = 0.
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Representation of a Relation Algebra

A = (A,0,1,+,−,1′,^, ; )

h : A → ℘(X ×X)

such that

a 6= 0 ⇒ h(a) 6= ∅ (h is 1-1)

h(0) = ∅
h(a+ b) = h(a) ∪ h(b)

h(−a) = h(1) \ h(a)

h(1′) = {(x, x) : x ∈ X}
(x, y) ∈ h(a^) ⇐⇒ (y, x) ∈ h(a)

(x, y) ∈ h(a; b) ⇐⇒ ∃z [(x, z) ∈ h(a) ∧ (z, y) ∈ h(b)]

In a square representation h(1) = X ×X.
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Point Algebra (temporal reasoning)

3 atoms 1′, L,G (so 8 elements)

; 1′ L G
1′ 1′ L G
L L L 1
G G 1 G

where 1 = 1′+ L+G, (1′)^ = 1′, L^ = G, G^ = L.

Representation over Q.

h(L) = {(q, r) : q < r}
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Outline of rest of talk

• How can you tell if a relation algebra is representable?

• Two player games to test representability.

• Obtaining first-order axioms from the games.

• Constructing relation algebras with required properties.
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Characterising representability

Can consider various types of representations: classical, relativized, com-
plete, etc. One approach: find first-order theory (or better, an equational
theory) ∆ such that

A |= ∆ ⇐⇒ A has approp. rep.

This may or may not be possible, and it is almost always fearsomely diffi-
cult.
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Characterising representability by games

Our approach: devize two player game G such that

∃ has a w.s. in G(A) ⇐⇒ A has an approp. rep.

Actually, in many cases we can use these games to obtain first-order the-
ories as above.
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Abelarde and Héloı̈se
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Representation — Finite Algebra Case

(x, y) ∈ h(1) ⇒ ∃! atom α(x, y) ∈ h(α).
If h is a square, we can define a labelled graph (X,λ) by

λ : X ×X → At(A)

λ(x, y) =
∧
{a ∈ A : (x, y) ∈ h(a)}

Conversely, if λ : X ×X → At(A) satisfies

λ(x, y) ≤ 1′ ⇐⇒ x = y

λ(x, y)^ = λ(y, x)

λ(x, z);λ(z, y) ≥ λ(x, y)

and for all atoms α, β ∈ At(A),

λ(x, y) ≤ α;β ⇒ ∃z [λ(x, z) = α ∧ λ(z, y) = β]

16



then λ defines a square representation h, by

h(a) = {(x, y) : a ≥ λ(x, y)}



Atomic A-network: N = (X,λ)

λ : X ×X → At(A)

satisfies

λ(x, y) ≤ 1′ ⇐⇒ x = y

λ(x, y)^ = λ(y, x)

λ(x, z);λ(z, y) ≥ λ(x, y)

But maybe there are nodes x, y and atoms a, b such that

λ(x, y) ≤ a; b yet 6 ∃z [λ(x, z) = a ∧ λ(z, y) = b]

Then (x, y, a, b) is a defect of the atomic network.

Write N instead of X or λ.
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Games on atomic A-networks

Two players: ∀ and ∃. The game Gn(A) has n rounds (where n ≤ ω). A
play of the game will be

N0 ⊆ N1 ⊆ . . . ⊆ Nt−1 ⊆ Nt ⊆ . . . (t < n)

Round 0:

• ∀ picks a0 ∈ AtA.

• ∃ plays an atomic network N0 with a0 occurring as a label in it.

Round t (1 ≤ t < n): Suppose that the current atomic network at the start
of the round is Nt−1. Play goes as follows:
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Round t of Gn(A)
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Round t of Gn(A)
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Round t of Gn(A)
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Who wins?

In any round, if ∃ cannot play, or if she plays a labelled graph that fails to
be an atomic network, then ∀ wins.

If ∃ plays a legitimate atomic network in each round then she wins.

22



Characterising representability for finite RAs, by games

Theorem 1 Let A be a finite relation algebra.

1. A ∈ RRA iff ∃ has a winning strategy in Gω(A).

2. ∃ has a winning strategy in Gω(A) iff she has one in Gn(A) for all
finite n.

3. One can construct first-order sentences σn for n < ω (independently
of A) such that A |= σn iff ∃ has a winning strategy in Gn(A).

Conclude that for a finite relation algebra A,

A ∈ RRA ⇐⇒ A |= {σn : n < ω}.
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The axioms σn (sketch)

Given an atomic network N , and k < ω, we write an axiom τk(N) saying
that ∃ can win Gk(A) starting from N . We go by induction on k. All
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quantifiers are implicitly relativised to atoms.

τ0(N) =
∧
x∈N

(
N(x, x) ≤ 1

,

∧
∧
y∈N\{x}N(x, y) 6≤ 1

,)
∧

∧
x,y∈N

N(x, y) = N(y, x)`

∧
∧

x,y,z∈N
N(x, y) ≤ N(x, z) ;N(z, y).

τk+1(N) =
∧

x,y∈N
∀a, b

(
N(x, y) ≤ a ; b→ ∃N ′ ⊇ N(

τk(N ′) ∧
∨
z∈N ′

(N ′(x, z) = a

∧N ′(z, y) = b)
))
.

σk = ∀a0∃N(τk−1(N) ∧
∨
x,y∈N N(x, y) = a0).



McKenzie’s algebra

4 atoms: 1
,
, <,>, ].

1
,^ = 1

,
, <^= >, >^= <, ]^ = ].

; < > ]
< < 1 (< +])
> 1 > (> +])
] (< +]) (> +]) −]
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McKenzie’s algebra

]~ ~

26



McKenzie’s algebra
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McKenzie’s algebra
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McKenzie’s algebra
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McKenzie’s algebra
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McKenzie’s algebra
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McKenzie’s algebra
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Maddux algebra

4 atoms: 1
,
, r, b, g.

x^ = x for all atoms x (‘symmetric algebra’)

All triples are consistent except Peircean transforms of:
(1

,
, a, a′) for a 6= a′, and (r, b, g).
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Maddux algebra (∀’s first kind of move)
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Maddux algebra (∀’s first kind of move)
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Maddux algebra (∀’s first kind of move)
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Maddux algebra (∀’s second kind of move)
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Maddux algebra (∀’s second kind of move)
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Maddux algebra (∀’s second kind of move)
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Hence

1. McKenzie’s algebra K 6∈ RRA.

So RRA ⊂ RA, as Lyndon (1950) showed.

In fact, K is one of the smallest non-representable relation algebras.
All relation algebras with ≤ 3 atoms are representable.

2. The Maddux algebraM∈ RRA.

Exercise: show that if (X,λ) is any representation of M, then X is
infinite.

This is perhaps surprising, given thatM is symmetric.
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Infinite Case

For infinite relation algebras there may not be atoms.
For atomic A with countably many atoms:

∃ has winning strategyin Gω(A) ⇐⇒ A ∈ CRA.

Could define a slightly different game and get axiomatisation of RRA.
Alternatively,

A ∈ RRA ⇐⇒ A+ ∈ CRA

so to determine ifA is representable, play the atomic game over the canon-
ical extension A+.
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Constructing Relation Algebras

We want to construct algebras A and we want to control who will win
Gn(A).
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Ehrenfeucht–Fraı̈ssé Game

Let A,B be structures in a binary signature (e.g. graphs). We can easily
test whether positive existential properties of A hold in B or not — much
easier than checking if an RA is representable.

EFr(A,B)

Game with r rounds (r ≤ ω).
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Rules of EFr(A,B)

• ∀ has pebbles α0, α1, . . .

• ∃ has corresponding pebbles β0, β1, . . ..

• Initially ∀ places α0 at some a ∈ A, ∃ must respond by picking b ∈ B
and placing β0 at b.

• In each subsequent round ∀ can place a new pebble αi on some ai ∈
A, ∃ must choose bi ∈ B and place βi at bi.
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• ∀wins if αi, αj, βi, βj are at ai, aj, bi, bj resp., (ai, aj) ∈ rA but (bi, bj) 6∈
rB (some binary predicate r).

• After r rounds, if ∀ hasn’t won so far then ∃ is the winner.

• Can assume ∀ never puts two pebbles on same spot.



Rules of EFpr(A,B)

• Similar, but each player has only p pebbles.

• After p rounds, ∀ must pick up a pebble in play and can re-use it (∃
does the same).
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Example game
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Example game
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Example game
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Example game
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Example game
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Example game
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Example game
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But ∀ needs 3 turns with 3 different pebbles to win.

• ∀ has winning strategy in EF3
3(T, S).

• ∃ has winning strategy in EF2
r (T, S).
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EFω(A,B)
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EFω(A,B)
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EFω(A,B)
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EFω(A,B)
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∃ wins.
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Third Example Game

x x x x x x xx - - - - - - - -

A B

︸ ︷︷ ︸
2r+1

︸ ︷︷ ︸
2r

• Successor relation.

• ∀ has winning strategy in EF2
r+1(A,B).

• ∃ has winning strategy in EF2
r (A,B).
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• With three pebbles on (transitive) linear orders can do binary search
— ∀ can win on linear orders of different lengths, < 2r.



Fourth example game

A = Kω, B =
•⋃
n<ω

Kn

• ∀ wins EFω(A,B), but

• ∃ wins EFpω(A,B) for any p < ω (∃’s places all her pebbles in Kp).
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Extra rule

Initial round changed. ∀ picks distinct a0, a1 ∈ A and places α0, α1 at
these points. ∃ responds by picking b0, b1 ∈ B and placing β0, β1 there.
This counts as two rounds (combined).

At any point, ∀ may remove pebbles as before, but he must always leave
at least two distinct points of A covered.
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Converting to RA

Idea: given binary structures A,B make RA AA,B such that

∃ has w.s. in EFpr(A,B) ⇐⇒ ∃ has w.s. in G2+p
1+r(AA,B)
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Atoms

• 1′, ga (a ∈ A), rbb′ (b, b′ ∈ B), y, b,w.

• All atoms self-converse, except r^bb′ = rb′b.
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Forbidden triangles

Forbid (1′, x, y) unless x = y.

indices match⇐
rb2.b3

��

rb1,b2

??

rb3,b1
oo

rb,b′

��

ga

??

ga′
//

⇒
{(a, b), (a′, b′)}
is well-def.
partial hom.

y

��

y∨b
//

y
??

ga

��

ga′
??

ga∗∨w
//

At this point we have

∀ has w.s. in EFpr(A,B)⇒ ∀ has w.s. in G2+p
1+r(AA,B)
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Correspondence between games.
∃ wins G2+p

1+r(AA,B) ⇒ ∃ wins EFpr(A,B)
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Correspondence between games.
∃ wins G2+p

1+r(AA,B) ⇒ ∃ wins EFpr(A,B)
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Correspondence between games.
∃ wins G2+p

1+r(AA,B) ⇒ ∃ wins EFpr(A,B)
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Correspondence between games.
∃ wins G2+p

1+r(AA,B) ⇒ ∃ wins EFpr(A,B)
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Correspondence between games.
∃ wins G2+p

1+r(AA,B) ⇒ ∃ wins EFpr(A,B)
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Correspondence between games.
∃ wins G2+p

1+r(AA,B) ⇒ ∃ wins EFpr(A,B)
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Correspondence between games.
∃ wins G2+p

1+r(AA,B) ⇒ ∃ wins EFpr(A,B)
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Correspondence between games.
∃ wins G2+p

1+r(AA,B) ⇒ ∃ wins EFpr(A,B)
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Correspondence between games.
∃ wins G2+p

1+r(AA,B) ⇒ ∃ wins EFpr(A,B)
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Correspondence between games.
∃ wins G2+p

1+r(AA,B) ⇒ ∃ wins EFpr(A,B)
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Correspondence between games.
∃ wins G2+p

1+r(AA,B) ⇒ ∃ wins EFpr(A,B)
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Correspondence between games.
∃ wins G2+p

1+r(AA,B) ⇒ ∃ wins EFpr(A,B)
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Correspondence between games.
∃ wins G2+p

1+r(AA,B) ⇒ ∃ wins EFpr(A,B)
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Correspondence between games.
∃ wins G2+p

1+r(AA,B) ⇒ ∃ wins EFpr(A,B)
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Correspondence between games.
∃ wins G2+p

1+r(AA,B) ⇒ ∃ wins EFpr(A,B)
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Correspondence between games.
∃ wins G2+p

1+r(AA,B) ⇒ ∃ wins EFpr(A,B)
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How ∃ can win G2+p
1+r(AA,B)

∃’s strategy will be to play white if possible, else black if possible, else red.
But this isn’t working.
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∀ finds loophole

x x-rbb′
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∀ finds loophole
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∀ finds loophole

x x-rbb′
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∀ finds loophole
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∀ finds loophole
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∀ finds loophole
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How to fix this

The idea was that ∃ could freely choose red atoms.
Don’t want ∀ to choose red edge and then force a ‘red clique’ including that
edge.
Final atoms to add:-

wS : S ⊆ A, |S| ≤ 2

all self-converse.
Forbid

(wS, ga, y)

unless a ∈ S.
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The atom structure in full

Atoms

1′, ga,w,wS, y, b, rbb′ : a ∈ A, S ⊆ A |S| ≤ 2, b, b′ ∈ B

All self-converse except r^bb′ = rb′b.
Forbidden triples

PTs of

(1′, x, y) x 6= y
(ga, ga′, γ) a, a′ ∈ A, γ is white or green
(y, y, y), (y, y, b)
(rb0b1, rb′1b

′
2
, rb′′0b

′′
2
) unless b0 = b′′0, b1 = b′1, b

′
2 = b′′2

(ga, ga′, rbb′) if (a, a′) ∈ rA but (b, b′) 6∈ rB
(wS, ga, y) unless a ∈ S
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We now have

∃ has winning strategy in EFpr(A,B)
m

∃ has winning strategy in G2+p
1+r(AA,B)
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RRA is not finitely axiomatisable

• Let An = AKn+1,Kn
.

• ∀ has winning strategy in EFn+1(Kn+1,Kn) so ∀ has winning strategy
in Gn+2(An) and An 6∈ RRA.

• But ∃ has winning strategy in EFn(Kn+1,Kn) so ∃ has winning strat-
egy in Gn+1(An). So An |= σn+1.

• Let A = ΠUAn be a non-principal ultraproduct. Then A |= σn, all n.
Hence A ∈ RRA.

• No finite axiomatisation of RRA exists.
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CRA is not elementary

Let A = Kω, B =
•⋃
n<ω Kn.

∀ has winning strategy in EFω(A,B)

⇒ ∀ has winning strategy in Gω(AA,B)

⇒ AA,B 6∈ CRA

But

∃ has winning strategy in EFn(A,B)

⇒ ∃ has winning strategy in Gn(AA,B)

⇒ AA,B |= σn

Hence

CRA 63 AA,B ≡ ΠUAA,B � B ∈ CRA
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RAn+1 not finitely axiomatisable over RAn

x
x
x

x

x x

x x x
x

'

&

$

%
6

6

6

6

Kn
Ir

0′

1′

(r − 1)′

0 1 2

(n− 1)

Kn is complete irreflexive graph over {0,1, . . . , n− 1}.
Ir is successor relation over {0′,1′, . . . , (r − 1)′}.
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Anr has nodes n ∪ r′ and has edges

{(i, j) : i 6= j < n} ∪ {(i′, (i+ 1)′) : i < r}
∪ {(i, j′), (j′, i) : i < n, j < r}



Some corollaries

Rainbow construction produces relation algebras that we can use to prove:-

• Non-finite axiomatisability of RRA [Monk, 1964]

• Non-finite axiomatisability of the representation class of any sub-signature
of RA including compostion, converse and intersection [Hodkinson
Mikulas, 2000]

• No set of equations using a finite number of variables can define RRA
[Jónsson, 1991]
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• Class of completely representable relation algebras not closed under
elementary equivalence.

• Can be extended to cover similar results for cylindric algebras.



Open Problems

• Is this decidable: does a given finite relation algebra have a represen-
tation on a finite base??

•
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No k-variable first order axiomatisation of RRA?

Find two finite graphs A,B with A 6∼= B but can’t distinguish A,B using a
k colour game.

Say A cannot embed in B. Then AA,B 6∈ RRA but AB,B ∈ RRA and
no k-variable formula distinguishes AA,B from AB,B.
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