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Abstract. This article considers those monoids S satisfying one or both of the finitary
properties (R) and (r), focussing for the most part on inverse monoids. These properties
arise from questions of axiomatisability of classes of S-acts, and appear to be of interest
in their own right. If S weakly right noetherian (WRN), that is, S has the ascending chain
condition on right ideals, then certainly (r) holds. Other than this, we show that (R), (r)
and (WRN) are independent. Our most detailed results are for Clifford monoids, in which
case we completely characterise those S with trivial structure homomorphisms satisfying
(R) or (r).

1. Introduction

This article investigates finitary conditions for a monoid S arising from questions of
axiomatisability of classes of right S-acts. The classes we consider are defined in terms
of flatness properties. To explain the finitary conditions in question, we begin with a
definition.

Definition 1.1. If S is a monoid, s, t ∈ S, we define

rS(s, t) = {u : su = tu} and RS(s, t) = {(u, v) : su = tv}.

We usually suppress the superscript S unless there is danger of ambiguity. For conve-
nience, we allow ∅ to be a right ideal of S and a subact of any right S-act. Then clearly,
r(s, t) is a right ideal of S, and R(s, t) is an S-subact of the right S-act S × S. We say
that S satisfies (r) (resp. (R)) if each non-empty r(s, t) is finitely generated (resp. each
non-empty R(s, t) is finitely generated).
The motivation for studying monoids satisfying (r) and (R) is given in the result below:

here SF denotes the class of strongly flat right S-acts. It is known that a right S-act is
strongly flat if and only if it satisfies interpolation conditions known as (E) and (P). We
denote the class of right S-acts satisfying (E) (resp. (P)) by E (resp. P). Further details
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of these concepts can be found in [2]. The following result is proven in [1] but stated in
the form we require in [2].

Theorem 1.2. [2] Let S be a monoid. Then

(1) E is axiomatisable if and only if S satisfies (r);
(2) P is axiomatisable if and only if S satisfies (R);
(3) SF is axiomatisable if and only if S satisfies (r) and (R).

Certainly projective acts are strongly flat: discussion of the relationship between the S-
act properties of Condition (P), strongly flat and projective can be found in, for example,
[9] and [8].
A monoid S is weakly right noetherian (WRN) if every right ideal is finitely generated.

If S is (WRN), then it certainly satisfies (r), but is the converse true? Moreover, how
does satisfaction of (r) and (R) affect the structure of the monoid? Such questions being
too broad as posed, we focus here largely on the inverse case. Investigations into (r) and
(R) were begun in [3] (where they were referred to as (FGr) and (FGR)). The Bicyclic
semigroup must satisfy (r) since it has (WRN). It is shown in [3] that the Bicyclic semigroup
also satisfies (R). On the other hand, if D is the extended Bicyclic semigroup, that is,
D = Z× Z under the multiplication

(a, b)(c, d) = (a− b+max {a, b}, d− c+max {a, b}),

then D1 satisfies neither (WRN) nor (R), but does satisfy (r). Preliminary investigations
in [3] were also made into Clifford monoids. The complicated behaviour of (r) and (R)
revealed in [3] prompted the investigations in this current article.
In Section 2 we consider closure properties of the classes of monoids satisfying (r) and

(R). The classes are closed under finite direct product and retract, but not under taking
substructures and homomorphic images.
Since some of the conditions on a semilattice Y of groups in Sections 4 and 5 are in terms

of the corresponding conditions for Y , in Section 3 we consider semilattices satisfying (r)
and (R). Whilst not true for an arbitrary monoid, any semilattice satisfying (R) satisfies
(r). If a semilattice satisfies (R) then it is finite above, hence a lattice. Conversely, any
distributive lattice that is finite above satisfies (R). We remark that as this is a paper
about monoids, all our semilattices are semilattice monoids, that is, they have a greatest
element.
We then turn our attention to Clifford monoids in Sections 4 and 5. Recall that an

inverse semigroup is Clifford (that is, the idempotents of S are central) if and only if S
is a (strong) semilattice Y of groups Gα, α ∈ Y . We will say that such an S has trivial
structure homomorphisms if the structure homomorphisms ϕα,β where α > β are all trivial.
Our most complete results are in the case where Y has a least element 0, or where the
structure homomorphisms are trivial. If both of these conditions hold, then S satisfies (R)
if and only if S \G0 is finite.
For background details of the theory of acts over monoids, we refer the reader to [5].
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2. (R), (r) and constructions

In this section, we are going to investigate how the properties (R) and (r) behave with
respect to certain universal algebraic operators. The following example shows that (R)
and (r) are not preserved under taking submonoids and homomorphic images.

Example 2.1. Let Y be the semilattice of finite subsets of N under union (that is, the free
semilattice on N), and let T = Y \ {{1}}. (Notice that T is both a monoid subsemilattice
and homomorphic image of Y .) Then Y satisfies both (R) and (r), however, T satisfies
neither.

Proof. That Y satisfies (R) and (r) follows from Lemmas 3.2 and 3.5. On the other hand,

rT ({2}, {1, 2}) = {A ∈ T : {1} ⊆ A},

and this ideal has infinitely many maximal elements ({1, n} is maximal for all n 6= 1), so
it cannot be finitely generated. Since T does not satisfy (r), by Lemma 3.2 neither can it
satisfy (R). �

Definition 2.2. Let S be a semigroup, and let T ≤ S. We say that T is a retract of S if
there exists a surjective homomorphism ϕ : S → T such that ϕ2 = ϕ.

Theorem 2.3. If S is a monoid satisfying (R) (respectively, (r)), and T is a retract of S,
then T also satisfies (R) (respectively, (r)).

Proof. Since T is a retract of S, there exists a surjective homomorphism ϕ : S → T such
that ϕ2 = ϕ.
Let now t, t′ ∈ T . Then RS(t, t′) = X · S for some finite X ⊆ S × S. We claim that

RT (t, t′) = (Xϕ) · T , where

Xϕ = {(uϕ, vϕ) : (u, v) ∈ X}.

First note that if (u, v) ∈ X, then tu = t′v, thus

t(uϕ) = tϕuϕ = (tu)ϕ = (t′v)ϕ = t′(vϕ),

so (uϕ, vϕ) ∈ RT (t, t′), that is, Xϕ ⊆ RT (t, t′), which implies that (Xϕ) · T ⊆ RT (t, t′).
For the converse inclusion, let (x, y) ∈ RT (t, t′), that is, tx = t′y. This means that

(x, y) ∈ RS(t, t′) also, so there exist (u, v) ∈ X and z ∈ S such that (x, y) = (u, v)z.
However, in this case (x, y) = (xϕ, yϕ) = (uϕ, vϕ)zϕ, that is, (x, y) ∈ (Xϕ) · T .
The case of (r) is similar; if rS(t, t′) = X ·S for someX ⊆ S, then rT (t, t′) = (Xϕ)·T . �

Theorem 2.4. If S and T are monoids satisfying (R) (respectively, (r)), then S × T also
satisfies (R) (respectively, (r)).

Proof. It is entirely routine to check that if R(s, s′) = X · S and R(t, t′) = Y · T for some
finite sets X ⊆ S × S and Y ⊆ T × T , then

R((s, t), (s′, t′)) = (X ⊗ Y ) · (S × T ),

where
X ⊗ Y = {((p, h), (q, k)) : (p, q) ∈ X, (h, k) ∈ Y }.
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Similarly, if r(s, s′) = X · S and r(t, t′) = Y · T for some finite sets X ⊆ S and Y ⊆ T ,
then

r((s, t), (s′, t′)) = (X × Y ) · (S × T ).

�

It is more surprising that the conditions (R) and (r) are preserved by taking semidirect
products of groups by monoids.

Theorem 2.5. Let Y be any monoid satisfying (R) (respectively, (r)) and let G be a group
acting on Y . Then Y ⋊G satisfies (R) (respectively, (r)).

Proof. Suppose that Y satisfies (R), and let (α, g), (β, h) ∈ Y ⋊G. Then RY (α, β) = X ·Y
for some finite X ⊆ Y × Y . We claim that R((α, g), (β, h)) is generated by the finite set

X ′ = {(( g−1

µ, g−1), ( h−1

ν, h−1)) : (µ, ν) ∈ X}.

Clearly, X ′ ⊆ R((α, g), (β, h)). Now let ((γ, i), (δ, j)) ∈ R((α, g), (β, h)), that is, α · gγ =
β · hδ and gi = hj. Since X generates RY (α, β), the first equality implies that there exist
(µ, ν) ∈ X and ǫ ∈ Y such that ( gγ, hδ) = (µ, ν)ǫ. It is routine to check now that

(γ, i) = ( g−1

µ, g−1) · (ǫ, gi), (δ, j) = ( h−1

ν, h−1) · (ǫ, hj),

and since gi = hj, this shows that ((γ, i), (δ, j)) ∈ X ′ · (Y ⋊G).
For the other part, suppose that Y satisfies (r), and let (α, g), (β, h) ∈ Y ⋊G. Note that

if g 6= h, then r((α, g), (β, h)) = ∅, so we suppose that g = h. We have that rY (α, β) = X ·Y
for some finite X ⊆ Y . It is now routine to check that the finite set

X ′ = {( g−1

µ, 1) : µ ∈ X}

generates r((α, g), (β, h)). �

Note that the submonoid {(α, 1) : α ∈ Y } of Y ⋊G is not necessarily a retract, that is,
we cannot conclude that if Y ⋊G satisfies (R) or (r), then so does Y . However, if Y is a
semilattice, we can prove an equivalence.

Theorem 2.6. Let Y be a semilattice, and let G be a group acting on Y . Then the
semidirect product Y ⋊ G satisfies (R) (respectively, (r)) if and only if Y satisfies (R)
(respectively, (r)).

Proof. Let S = Y ⋊ G. From Theorem 2.5, if Y satisfies (R) (respectively (r)), then so
does S.
Conversely, suppose that S satisfies (R), and let α, β ∈ Y . Then

RS((α, e), (β, e)) = X · S

for some finite set X ⊆ S × S, where e denotes the identity of G.
Suppose now that ((γ, g), (δ, h)) ∈ X. Then

(αγ, g) = (α, e)(γ, g) = (β, e)(δ, h) = (βδ, h),

that is, (γ, δ) ∈ RY (α, β) and g = h.
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We claim that RY (α, β) is generated by the finite set

X ′ = {(γ, δ) : ((γ, g), (δ, g)) ∈ X}.

We have just verified that X ′ ⊆ RY (α, β), so X ′ · Y ⊆ RY (α, β).
For the converse inclusion, suppose that αµ = βν. Then (α, e)(µ, e) = (β, e)(ν, e), so

((µ, e), (ν, e)) = ((γ, g), (δ, g)) · (τ, h) = ((γ gτ, gh), (δ gτ, gh))

for some ((γ, g), (δ, g)) ∈ X. That is, we have (µ, ν) = (γ, δ) · gτ , which shows that
(µ, ν) ∈ X ′ · Y , so the direct part for (R) is proved.
The case of (r) is very similar, it is easy to check that if rS((α, e), (β, e)) is generated by

some finite set X ⊆ S, then the finite set

X ′ = {γ ∈ Y : (γ, g) ∈ X}

generates rY (α, β). �

3. Semilattices

We now present some results regarding semilattices. We assume the reader is familiar
with the basic notions of lattice theory, such as distributive and complete lattices (see for
example [4] or [7]). Note that a semilattice satisfies the condition (WRN) if and only if
its underlying set is well partially ordered by the dual of the partial order induced by the
semilattice operation.
For an element a of a semilattice Y we will use the notation a↑ and a↓ to denote the

principal filter and the principal left ideal generated by a, that is,

a↑= {b ∈ Y : b ≥ a} and a↓= {b ∈ Y : b ≤ a}.

First we characterise the condition (WRN) for semilattices. The following proposition
is almost folklore (see for example results in [6]). For completeness, we incorporate its
proof.

Proposition 3.1. A semilattice satisfies (WRN) if and only if it has neither infinite
antichains nor infinite ascending chains.

Proof. For the direct part, let Y be a semilattice satisfying (WRN). For every β ∈ Y ,
denote by β↓ the ideal generated by β. Note that in a semilattice, the union of ideals is
again an ideal. Now suppose that α1, α2, . . . is an infinite antichain. In this case

α1↓⊂ α1↓ ∪α2↓⊂ . . . ⊂ α1↓ ∪α2↓ ∪ . . . ∪ αi↓⊂ . . .

is an infinite ascending chain of ideals of Y , contradicting (WRN). Similarly, if α1 < α2 <
. . . is an infinite ascending chain, then the sequence α1 ↓⊂ α2 ↓⊂ . . . is again an infinite
ascending chain of ideals. Thus, if Y satisfies (WRN), then it cannot have any infinite
antichains or infinite ascending chains.
For the converse part, suppose that Y has no infinite ascending chains nor infinite

antichains, and let I0 ⊂ I1 ⊂ . . . be an infinite ascending chain of ideals. For every i ≥ 1,
let αi ∈ Ii \ Ii−1. Since the Ii’s are ideals, we have that αi 6≥ αj for every j > i.
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We show first that for every i ≥ 1, there exists j > i such that αj ⊥ αk for every k > j.
Suppose on the contrary, that such a j does not exist for some i. That is, there exists an
i such that for every j > i there exists kj > j such that αj < αkj . Let j0 = i + 1. In this
case the sequence αj0 < αkj0

< αkkj0
< . . . is an ifinite ascending chain, contradicting our

assumptions.
So we have shown that for every i, there exists ji > i such that αji ⊥ αk for every

k > ji. However, this property implies the existence of an infinite antichain, namely
αj1 ⊥ αjj1

⊥ αjjj1
⊥ . . ., which is a contradiction. So Y cannot have an infinite ascending

chain of ideals, thus it satisfies (WRN). �

Lemma 3.2. If a semilattice Y satisfies (R), then it satisfies (r).

Proof. Let α, β ∈ Y , and let R(α, β) = X · Y for some finite X ⊆ Y × Y . Then define the
set

X ′ = {µiνi : (µi, νi) ∈ X}.

We claim that the right ideal r(α, β) is generated by X ′. Clearly X ′ ⊆ r(α, β). Let
γ ∈ r(α, β), that is, αγ = βγ. This equality implies that (γ, γ) ∈ R(α, β), so there
exist (µi, νi) ∈ X and ǫ ∈ Y such that γ = µiǫ = νiǫ. In this case γ ≤ µi, νi, so
γ = µiνi · ǫ ∈ X ′ · Y . �

Definition 3.3. We say that a semilattice Y is finite above if its principal filters are finite.

Lemma 3.4. If a semilattice Y satisfies (R), then it is finite above.

Proof. Let α ∈ Y . In this case (1, β) ∈ R(α, α) for every β ≥ α. However, if (1, β) =
(µ, ν)ǫ, then necessarily µ = ǫ = 1 and ν = β, that is, the pairs of the form (1, β) cannot be
consequences of any other pairs. These two facts imply that if R(α, α) is finitely generated,
then the principal filter generated by α must be finite. �

Denote by N
∞ the set of natural numbers with the infinity adjoined. As remarked in

Section 1, every chain having a greatest element satisfies (r), so in particular, (N∞,min)
satisfies (r). However, it is not finite above, so cannot satisfy (R). For a more sophisticated
counterexample, note that the following semilattice Y satisfies (r) since from Proposition
3.1 it satisfies (WRN), and it is finite above also. However, (αi, βi) ∈ R(γ, γ) for each i,
but if (αi, βi) = (µ, ν)ǫ, then ǫ = 1 and µ = αi, ν = βi. Thus it is impossible to find a
finite set of generators for R(γ, γ), so that (R) does not hold. This example shows that
condition (WRN) does not imply (R).
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Note that if a semilattice is finite above, then it is necessarily a lattice, where the join
operation is defined by

α ∨ β =
∏

{γ ∈ Y : γ ≥ α, β}.

In the sequel we are going to investigate lattices, where the meet operation will be mul-
tiplication. That is, the operation of the semilattice Y is multiplication, but we have an
additional operation ∨ such that (Y,∨, ·) becomes a lattice.

Lemma 3.5. If Y is a distributive lattice that is finite above, then Y satisfies (R).

Proof. Let α, β ∈ Y , and let

X = {(µ, ν) : µ, ν ≥ αβ and αµ = βν}.

We claim that R(α, β) is generated by the finite set X.
Clearly X · Y ⊆ R(α, β). To show the converse inclusion, let (γ, δ) ∈ R(α, β), that is,

αγ = βδ. Note that γ ≥ αγ = βδ, so

γ = (βδ) ∨ γ = (β ∨ γ)(γ ∨ δ),

and similarly δ = (α ∨ δ)(γ ∨ δ). Furthermore,

α(β ∨ γ) = (αβ) ∨ (αγ) = (αβ) ∨ (βδ) = β(α ∨ δ),

and since β ∨ γ, α ∨ δ ≥ αβ, we have that (β ∨ γ, α ∨ δ) ∈ X, and so (γ, δ) ∈ X · Y . �

Definition 3.6. We say that a distributive lattice Y is a Boolean lattice if it has a smallest
element, denoted by 0, and if there exists a unary operation ′ on B such that αα′ = 0 for
every α ∈ Y .

Notice that if Y is a Boolean lattice, then for any α ∈ Y , we have α ∨ α′ = 1. This is
used in the proof of the next result.

Theorem 3.7. If Y is a Boolean lattice, or a completely distributive lattice, then Y satisfies
(r).

Proof. Note that if Y is a (completely) distributive lattice, then r(α, β) is closed under
(infinite) finite joins. This implies that if Y is completely distributive, then r(α, β) is
generated by

∨
r(α, β).
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On the other hand, if Y is a Boolean lattice, then it is easy to check that r(α, β) is
generated by (α△ β)′, where

γ △ δ = (γδ′) ∨ (γ′δ).

�

As the following example shows, distributive lattices need not satisfy (r) in general.

Example 3.8. Let Y be the sublattice (not complete sublattice) of P(N) generated by the
following sets, together with N:

A = {n : n ≡ 1 (mod 3)}
B = {n : n ≡ 2 (mod 3)}

Ci = {n : 3 | n, n ≤ 3i} for all i ≥ 1

Then the lattice Y is a distributive lattice such that (Y,∩) does not satisfy (r).

Proof. Since A∩B = A∩Ci = B ∩Ci = ∅ for all i, it is easy to check that Y is isomorphic
to the direct product of the chain ∅ ⊂ C1 ⊂ C2 ⊂ . . . by the diamond {∅, A,B,A ∪ B},
with a greatest element (N) adjoined.
The Hasse diagram of Y is the following (where Ai = Ci ∪ A and Bi = Ci ∪B):

r
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PPPPPP r@
@

BPPPPPP

r�
�
APPPPPP r

A ∪ BPPPPPP

r@
@

�
�

C1

p
p

p

r@
@

B1r�
�
A1

p
p

p

r
A1 ∪ B1

p
p
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Being a sublattice of P(N), Y is clearly a distributive lattice, and it is easy to see that
Y is a complete lattice also. The join operation in Y is the finite union inherited from
P(N), however the infinite join in Y is different from the one in P(N), for example in Y ,∨∞

i=1Ci = N. Note that Y is not a completely distributive lattice, for
∨∞

i=1(A ∩ Ci) = ∅ 6=
A = A ∩

∨∞

i=1Ci.
To see that Y does not satisfy (r), note that

r(A,B) = {Ci : i = 1, 2, . . .},

which is not a finitely generated right ideal of (Y,∩). �

4. Clifford monoids with finite semilattice of idempotents

If the semilattice of idempotents of a Clifford monoid is finite, we can give a local
condition which is equivalent to (R), while (r) holds always in these cases. In the sequel,
S denotes a Clifford monoid having a finite semilattice of idempotents E. The structure
semilattice of S (which is isomorphic to E) is denoted by Y . If α ∈ Y , we denote by Gα the
H = J -class corresponding to α, and denote by eα the identity of Gα. We identify Y with
S/J so that for a ∈ Gα we have aJ = α where aJ is the image of a under the natural
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morphism. Notice that if a semilattice has a greatest element, and it is finite above, then
least upper bounds exist, thus it has an operation ∨ such that (Y, ·,∨) is a lattice.
At this point it is useful to introduce the following concept.

Definition 4.1. Let s, t ∈ S and α, β ∈ Y . Then we say that the set

R(s, t, α, β) = R(s, t) ∩ (Gα ×Gβ)

is locally finitely generated if there exists a finite subset X ⊆ R(s, t, α, β) such that
R(s, t, α, β) = X ·Gα∨β.

Lemma 4.2. The set R(s, t) is finitely generated if and only if R(s, t, α, β) is locally finitely
generated for every α, β ∈ Y .

Proof. For the converse part, suppose that for every α, β ∈ Y , we have that R(s, t, α, β) =
Xα,β ·Gα∨β for some finite set Xα,β. Let

X =
⋃

α,β∈Y

Xα,β,

so that X is a finite subset of R(s, t). For every α, β ∈ Y , we have that

R(s, t) ∩ (Gα ×Gβ) = R(s, t, α, β) = Xα,β ·Gα∨β ⊆ X · S,

thus R(s, t) =
⋃

α,β∈Y R(s, t, α, β) ⊆ X · S and R(s, t) is generated by X.

Note that in the following argument for the direct part, to show that R(s, t, α, β) is
finitely generated, we need a weaker condition than Y being finite, namely that α ∨ β
exists. Suppose that R(s, t) = X · S for some finite set X ⊆ S × S. Let α, β ∈ Y be fixed
and let

Xα,β = {(ueα, veβ) : (u, v) ∈ X, ueγ ∈ Gα, veγ ∈ Gβ for some γ ∈ Y }.

Notice that Xα,β is contained in R(s, t) and is finite, since X is finite. Of course, Xα,β can
be empty if there do not exist suitable γ’s.
We claim that

R(s, t, α, β) = Xα,β ·Gα∨β.

To show this, first let (a, b) ∈ R(s, t, α, β). Then there exist (u, v) ∈ X and z ∈ S such that
(a, b) = (u, v)z, that is, uz ∈ Gα and vz ∈ Gβ, which in turn implies that (ueα, veβ) ∈ Xα,β.
Also, a = uz implies that zJ ≥ α, and similarly, zJ ≥ β. Using these facts we deduce
that a = uz = ueαzeα∨β and similarly b = veβzeα∨β. That is,

(a, b) = (u, v)z = (ueα, veβ)zeα∨β ∈ Xα,β ·Gα∨β.

Conversely, if (a, b) ∈ Xα,β · Gα∨β, then clearly a ∈ Gα and b ∈ Gβ, and since Xα,β ⊆
R(s, t), we have that (a, b) ∈ R(s, t) ∩Gα ×Gβ, completing the proof that R(s, t, α, β) is
locally finitely generated. �

Though the following theorem concerns all Clifford monoids (not just those which have
a finite structure semilattice), we include it here, for it follows from the proof of Theorem
4.2.
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Corollary 4.3. If S is any Clifford monoid satisfying (R), then the kernels of the structure
homomorphisms must be finite.

Proof. Let β ≥ α, and let ϕ be the structure homomorphism Gβ → Gα. It is easy to check
that

R = R(eα, eα, β, β) = {(a, b) ∈ Gβ ×Gβ : aϕ = bϕ}.

From the direct part of Theorem 4.2, R is locally finitely generated, for β ∨β always exists
in any semilattice, and it equals β. Let X ⊆ Gβ × Gβ be such that R = X · Gβ with X
finite. For any g ∈ Ker ϕ, (g, eβ) ∈ R, so (g, eβ) = (u, v)z for some (u, v) ∈ X, giving
g = ge−1

β = (uz)(vz)−1 = uv−1. Consequently, Ker ϕ is finite.
Note that if Ker ϕ = {g1, . . . , gn} is finite, then {(eβ, gi) : 1 ≤ i ≤ n} locally finitely

generates R. �

By making use of the previous theorems, we can concentrate on the question of when
R(s, t, α, β) is locally finitely generated. For this, the following lemma will be useful.

Lemma 4.4. If s, t ∈ S and α, β ∈ Y such that R(s, t, α, β) 6= ∅, then

R(s, t, α, β) = R(seγ, teγ, α, β)

for γ = (sJ )α = (tJ )β.

Proof. Let (a, b) ∈ R(s, t, α, β). Then sa = tb, and let γ = (sa)J = sJ ·α = tJ ·β. Notice
that for every (a′, b′) ∈ Gα ×Gβ, we have that sa′, tb′ ∈ Gγ .
Now if (a′, b′) ∈ R(s, t, α, β), then sa′ = sa′eγ = seγa

′, and tb′ = tb′eγ = teγb
′, so

(a′, b′) ∈ R(seγ, teγ , α, β). Conversely, if (a
′, b′) ∈ R(seγ, teγ, α, β), then seγa

′ = teγb
′, but

(sa′)J = γ = (tb′)J , so sa′ = seγa
′ = teγb′ = tb′, giving (a′, b′) ∈ R(s, t, α, β). �

As a consequence of Theorem 4.2 and Lemma 4.4, we have the following theorem.

Theorem 4.5. Let S be a Clifford monoid having a finite structure semilattice Y . Then
R(s, t) is finitely generated for all s, t ∈ S if and only if R(s′, t′, α, β) is locally finitely
generated for all s′, t′ ∈ S and α, β ∈ Y satisfying s′J = t′J ≤ αβ.

Corollary 4.6. If S is a Clifford monoid having a finite structure semilattice Y with trivial
structure homomorphisms, then S satisfies (R) if and only if S \G0 is finite where 0 is the
least element of Y .

Proof. If S satisfies (R), then by Corollary 4.3, the kernels of the structure homomorphisms
must be finite, and so as the (non-identity) ones are trivial, Gα is finite for all α 6= 0.
For the converse, note that if Gα is finite for all α 6= 0, then R(s, t, α, β) is clearly finite

for every α, β > 0. If α > 0 and β = 0, and (u, v) ∈ R(s, t, α, β), then su = tv, and
since u ∈ Gα, but su ∈ G0, we have that se0 = su = tv, and since v ∈ G0, this yields
v = t−1se0, that is, R(s, t, α, β) = Gα × {t−1se0}, which is finite. Similarly, if α = 0 < β,
then R(s, t, α, β) is finite. Furthermore, if α = β = 0, then R(s, t, 0, 0) is generated by
(e0s

−1t, e0). �

By making use of Theorem 4.5, one can give a necessary and sufficient condition on the
structure homomorphisms.
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Theorem 4.7. Let S be a Clifford monoid with a finite structure semilattice Y , let α, β, γ ∈
Y be such that γ ≤ αβ, and let s, t ∈ Gγ. Denote the structure homomorphisms ϕα∨β,α, ϕα∨β,β, ϕα,γ

and ϕβ,γ by ϕα, ϕβ, ψα and ψβ, respectively. Define the subgroups

H = {(u, v) : uψα = vψβ} ⊆ Gα ×Gβ

K = {(gϕα, gϕβ) : g ∈ Gα∨β} ⊆ Gα ×Gβ.

Then K ≤ H, and for every s, t ∈ Gγ, we have that if R(s, t, α, β) is non-empty, then it is
locally finitely generated if and only if [H : K] is finite.

Proof. Note that if (u, v) ∈ Gα ×Gβ, then

{(u, v)g : g ∈ Gα∨β} = {(u(gϕα), v(gϕβ)) : g ∈ Gα∨β = (u, v)K.

This equality shows that any subset of Gα×Gβ that is locally finitely generated, is a union
of left cosets of K, and one pair generates one left coset. That is, R(s, t, α, β) is locally
finitely generated if and only if it is a finite union of left cosets of K.
Suppose now that (u, v) ∈ R(s, t, α, β), and let (u′, v′) ∈ H. Then

suu′ = su · u′ψα = tv · v′ψβ = tvv′,

that is, (u, v)(u′, v′) ∈ R(s, t, α, β) as well, so R(s, t, α, β) is a union of left cosets of H.
However, if (u, v), (u′, v′) ∈ R(s, t, α, β), then su = tv and su′ = tv′, so that

(u−1u′)ψα = u−1eγu
′ = (u−1s−1) · su′ = (v−1t−1) · tv′ = v−1eγv

′ = (v−1v′)ψβ,

that is, if R(s, t, α, β) is non-empty, then it is a left coset of H. Summing up: if R(s, t, α, β)
is non-empty, then it is locally finitely generated if and only if [H : K] is finite. �

Note that in case γ < α ≤ β, if Ker ϕα,γ = {gi : i ∈ I}, then H =
⋃̇

i∈I(gi, eβ)K, so
that [H : K] = |Ker ϕα,γ|. Thus in this case, R(s, t, α, β) is locally finitely generated if
and only if the kernel of ϕα,γ is finite. If γ = α ≤ β, then actually H = K, so R(s, t, α, β)
is locally finitely generated. That is, the previous theorem gives a new condition only if
α ⊥ β. We summarize the results of this section in the following theorem.

Theorem 4.8. If S is a Clifford monoid with finite structure semilattice Y , then

• S satisfies (r),
• S satisfies (R) if and only if for every α, β, γ ∈ Y such that γ ≤ αβ, the index
[Hα,β,γ : Kα,β,γ] is finite where

Hα,β,γ = {(u, v) : uϕα,γ = vϕβ,γ} ≤ Gα ×Gβ,
Kα,β,γ = {(gϕα∨β,α, gϕα∨β,β) : g ∈ Gα∨β} ≤ Gα ×Gβ.

As a special case, if all homomorphisms are trivial, then S satisfies (R) if and only if
Gα is finite for all 0 6= α ∈ Y , and if all homomorphisms are injective, then S satisfies (R)
if and only if [Gαϕα,γ ∩Gβϕβ,γ : Gδϕδ,γ ] is finite for all α, β ≥ γ ∈ Y , where δ = α ∨ β.

Proof. For the first part, notice that in S all right ideals are finitely generated, so S clearly
satisfies (r).
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For the second part, first note that if [Hα,β,γ : Kα,β,γ] is finite for all α, β, γ satisfying
γ ≤ αβ, then by Theorem 4.7, R(s, t, α, β) is locally finitely generated for all s, t ∈ S and
α, β ∈ Y , which by Lemma 4.2 implies that S satisfies (R).
Conversely, if S satisfies (R), then let α, β, γ ∈ Y such that γ ≤ αβ. In this case

R(eγ, eγ, α, β) is not empty (because it contains (eα, eβ), so [Hα,β,γ : Kα,β,γ] must be finite
by Theorem 4.7.
Suppose now that the structure homomorphisms are injective, let α, β, γ ∈ Y such that

γ ≤ αβ, and let δ = α ∨ β. In this case it is routine to check that the map

ι : Hα,β,γ → Gγ, (u, v) 7→ uϕα,γ = vϕβ,γ

is an injective homomorphism with image Gαϕα,γ ∩Gβϕβ,γ which maps Kα,β,γ onto Gδϕδ,γ ,
thus [Hα,β,γ : Kα,β,γ ] = [Gαϕα,γ ∩Gβϕβ,γ : Gδϕδ,γ ].
The case when the structure homomorphisms are trivial was already settled in Corollary

4.6. �

5. Clifford monoids with trivial structure homomorphisms

In this section we suppose that the structure homomorphisms of the Clifford monoid
S are all trivial, but its structure semilattice Y does not have to be finite. We introduce
notation as follows:

R(s, t)J = {(uJ , vJ ) : su = tv}

Note that R(s, t)J is a subact of Y ×Y , and it is contained in RY (sJ , tJ ), but in general
this containment is strict.

Theorem 5.1. Let S be a Clifford monoid with trivial structure homomorphisms and
structure semilattice Y . Then S satisfies (R) if and only if the following are true:

(1) Y is finite above;
(2) for every 0 6= α ∈ Y , Gα is finite;
(3) for every α ∈ Y , the set {β : β ⊥ α, |Gβ| > 1} is finite;
(4) for every s ∈ Gα, t ∈ Gβ there exists a finite set X ⊆ Y × Y such that R(s, t)J =

X · Y .

Proof. Suppose first that S satisfies (R). Since E is a retract of S, by Theorem 2.3, it
satisfies (R), which by Lemma 3.4 implies that E ∼= Y is finite above. Corollary 4.3 shows
that Condition (2) also holds.
For Condition (3) note that if β ⊥ α then Gβ ×Gβ ⊆ R(eα, eα). However, if s 6= t ∈ Gβ,

and (s, t) = (u, v)z for some u, v, z ∈ S, then it is easy to check that either u ∈ Gβ or v ∈ Gβ

holds (otherwise uz = vz, contradicting s 6= t). This fact shows that if R(eα, eα) = X · S
for some set X, then for every β ⊥ α, |Gβ| > 1, X must contain a pair having an element
of Gβ. This implies that if X is finite, then the set {β : β ⊥ α, |Gβ| > 1} is finite also.
To show that Condition (4) holds, let s ∈ Gα, t ∈ Gβ. Then R(s, t) = X ′ · S for some

finite X ′ ⊆ S × S. Let

X = {(uJ , vJ ) : (u, v) ∈ X ′}.
12



We claim that X satisfies Condition (4). By definition, X ⊆ R(s, t)J , and so X · Y ⊆
R(s, t)J . On the other hand, if (γ, δ) ∈ R(s, t)J , then there exists (u, v) ∈ R(s, t) such
that uJ = γ and vJ = δ. Since (u, v) ∈ R(s, t), we have that there exists (u′, v′) ∈ X ′

and z ∈ S such that (u, v) = (u′, v′)z, which implies that (γ, δ) = (u′J , v′J )zJ , and since
(u′J , v′J ) ∈ X, this shows that (γ, δ) ∈ X · Y .
For the converse part,we suppose that the conditions are satisfied. Note that if Y has a

0, then by Condition (1) it is finite. In this case, by Corollary 4.6, Condition (2) implies
that S satisfies (R). Therefore, in the sequel, we assume that Y does not have a 0, and so
Gα is finite for each α ∈ Y .
Let s ∈ Gα, t ∈ Gβ and let X be as in (4). Define the following sets:

X1 = {(u, v) : su = tv, (uJ , vJ ) ∈ X},
X2 = {(u, v) : su = tv, uJ , vJ ≥ αβ},

X3 = {(u, v) : su = tv, u /∈ E, uJ ⊥ α}, Xd
3 = {(u, v) : su = tv, v /∈ E, vJ ⊥ β}

Notice that X is finite, therefore X1 is finite by (2). Since Y is finite above and every
Gα is finite, we have that X2 is finite also. Furthermore, X3 is finite, because there are
only finitely many non-idempotent u’s such that uJ ⊥ α, and for any such fixed u, there
are only finitely many v’s such that su = tv, because in this case vJ ≥ (su)J , and there
are only finitely many v’s satisfying this property. Dually, Xd

3 is finite. We claim that the
finite set

X ′ = X1 ∪X2 ∪X3 ∪X
d
3

generates R(s, t).
By definition, X ′ ⊆ R(s, t). Suppose now that (u, v) ∈ R(s, t), that is, su = tv. By the

definition of X, there exists a pair (γ, δ) ∈ X and ǫ ∈ Y such that (uJ , vJ ) = (γ, δ)ǫ.
Furthermore, there exists a pair (u′, v′) ∈ R(s, t) such that u′ ∈ Gγ and v′ ∈ Gδ. There
are several different cases.

(1) Suppose that both u and v are idempotents. If (eγ, eδ) ∈ R(s, t), then (eγ, eδ) ∈ X1,
and since (u, v) = (eγ, eδ)eǫ, we have that (u, v) ∈ X1 · S.
If (eγ, eδ) 6∈ R(s, t), then we have that seγ 6= teδ, however su = seγeǫ = teδeǫ =

tv. Note that seγ and teδ are contained in the same J -class, because (γ, δ) ∈
RY (α, β). Now if we multiply seγ and teδ by eǫ, they become equal, and this
can only happen if multiplication by ǫ brings these elements into a strictly lower
J -class, that is, (su)J = (seγeǫ)J < (seγ)J and (tv)J = (teδeǫ)J < (teδ)J .
However, in this case we must have that uJ = γǫ < γ and vJ = δǫ < δ. Since
u and v are idempotents, these inequalities imply that u = u′eǫ and v = v′eǫ, so
(u, v) = (u′, v′)eǫ ∈ X1 · S.

(2) If uJ ≥ α, then α = (su)J = (tv)J ≤ vJ , which shows that (u, v) ∈ X2. Note
that we have just shown that uJ ≥ α implies that vJ ≥ α, and dually one can
show that vJ ≥ β implies that uJ ≥ β as well.

(3) If uJ ⊥ α, u /∈ E, then (u, v) ∈ X3.
(4) If uJ ⊥ α, u ∈ E, then either v ∈ E, which case is already settled. Suppose now

that v /∈ E. If vJ ≥ β, then also uJ ≥ β, and in this case (u, v) ∈ X2. If vJ ⊥ β,
13



then (u, v) ∈ Xd
3 . So the only remaining case is when v 6∈ E, vJ < β. But in this

case note that v = tv = su ∈ E, a contradiction.
(5) By duality the only remaining case is when uJ < α and vJ < β. However, in

this case u = su = tv = v ∈ Gǫ for some ǫ ∈ Y . This implies that seǫ = teǫ and
(u, v) = (eǫ, eǫ)u. The pair (eǫ, eǫ) is contained in X1 · S as we have already seen in
Part 1, so (u, v) ∈ X1 · S as well.

So we have shown that (u, v) ∈ X ′ · S, which means that R(s, t) = X ′ · S, and the
theorem is proved. �

The condition that R(s, t)J has to be finitely generated in fact means that some pairs of
RY (α, β) for certain α, β ∈ Y are excluded from the generating set, because they cannot be
realized in S. This view allows the following reformulation of Condition (4) of the previous
theorem.

Theorem 5.2. Let S be a Clifford monoid with trivial structure homomorphisms such that
conditions (1)-(3) of Theorem 5.1 hold, and let s ∈ Gα, t ∈ Gβ. Then the following are
true.

(1) If α ≤ β and s 6= teα, or dually, if α ≥ β and t 6= seβ, then R(s, t)J is finitely
generated if and only if there exists a finite set X ⊆ RY (α, β) satisfying the property
that for every (γ, δ) ∈ RY (α, β), there exist (µ, ν) ∈ X and ǫ ∈ Y with (γ, δ) =
(µ, ν)ǫ such that if γ ⊥ α and δ ⊥ β, then also µ ⊥ α and ν ⊥ β.

(2) In every other case R(s, t)J = RY (α, β).

Proof. (1) Suppose α ≤ β and s 6= teα. First we prove that

(1) R(s, t)J = RY (α, β) \ {(γ, δ) : γ, δ > α}.

Note that R(s, t)J ⊆ RY (α, β) in every case, and also note that if γ, δ > α such
that αγ = βδ = α, then su = s 6= teα = tv for every u ∈ Gγ and v ∈ Gδ, thus
(γ, δ) 6∈ R(s, t)J . This shows that R(s, t)J ⊆ RY (α, β) \ {(γ, δ) : γ, δ > α}. For
the converse part, let (γ, δ) ∈ RY (α, β)\{(µ, ν) : µ, ν > α}, so that αγ = βδ. There
are several cases now, and all have the same conclusion that (γ, δ) ∈ R(s, t)J :
(a) If γ > α, then δ 6> α, however, α = βδ, that is, δ ≥ α, which implies that

δ = α. In this case s · eγ = t · t−1s.
(b) If γ = α, then again α = βδ, and we have s · s−1t = t · eδ.
(c) If γ < α or γ ⊥ α, then s · eγ = eαγ = eβδ = t · eδ.
Suppose now that R(s, t)J is generated by a finite set X ′ ⊆ Y × Y . Define the

finite set
X = X ′ ∪ {(µ, ν) : µ, ν > α, αµ = βν}.

By the previous observation it is straightforward that X generates RY (α, β). How-
ever, we still need to check that X satisfies the required property. For this, let
(γ, δ) ∈ RY (α, β) such that γ ⊥ α and δ ⊥ β. In this case s · eγ = eαγ = eβδ = t · eδ,
that is, (γ, δ) ∈ R(s, t)J . This implies that there exist (µ, ν) ∈ X ′ and ǫ ∈ Y such
that (γ, δ) = (µ, ν)ǫ. Note that if µ ≤ α, then clearly γ = µǫ ≤ α, a contradiction.
So µ 6≤ α, and similarly, ν 6≤ β. If µ > α, then necessarily ν 6> α. However,
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α = αµ = βν implies that ν ≥ α, thus ν = α, contradicting the previous observa-
tion. That is, we have proven that µ ⊥ α, but in this case βν = αµ < α ≤ β, which
implies that either ν < β or β ⊥ ν. Since the first case leads to contradiction, we
have that ν ⊥ β, which shows that X has the required property.
For the converse part, suppose now that RY (α, β) is generated by X satisfying

the required property. Define the finite set

X ′ = (X \ {(µ, ν) : µ, ν > α}) ∪ {(α, ν) : α = βν} ∪ {(µ, α) : µ ≥ α}.

We claim that X ′ generates R(s, t)J . First, note that by equation (1), X ′ ⊆
R(s, t)J . Now let (γ, δ) ∈ R(s, t)J . Recall that in this case γ > α implies that
δ 6> α. Furthermore, since R(s, t)J ⊆ RY (α, β), there exist (µ, ν) ∈ X and ǫ ∈ Y
such that (γ, δ) = (µ, ν)ǫ. If µ 6> α or ν 6> α, then (µ, ν) ∈ X ′, which implies that
(γ, δ) ∈ X ′ ·Y , so we can suppose that µ > α and ν > α. There are several different
cases.
(a) If γ > α, then δ 6> α. However, α = αγ = βδ, so δ ≥ α, which implies that

δ = α, thus (γ, δ) = (γ, α) ∈ X ′.
(b) If γ = α, then similarly to the previous case we have that α = βδ, and so

(γ, δ) = (α, δ) ∈ X ′ also.
(c) If γ < α, then the facts that µ > α, γ = µǫ imply that αǫ ≤ µǫ = γ ≤ αǫ, that

is, γ = αǫ. In this case (γ, δ) = (α, ν)ǫ. Furthermore, α = αµ = βν implies
that (α, ν) ∈ X ′, thus we have that (γ, δ) ∈ X ′ · Y .

(d) If δ < α, then similarly to the previous case we have that δ = αǫ, and so
(γ, δ) = (µ, α)ǫ ∈ X ′ · Y also.

(e) If γ ⊥ α, then αδ ≤ βδ = αγ < α ≤ β, so either δ < α, which case was settled
before, or δ ⊥ β, which means that there exist (µ′, ν ′) ∈ X and ǫ′ ∈ Y such
that (γ, δ) = (µ′, ν ′)ǫ′ and µ′ ⊥ α, ν ′ ⊥ β. This latter property implies that
(µ′, ν ′) ∈ X ′, thus (γ, δ) ∈ X ′ · Y .

(2) There are several subcases here:
(a) α = β and s = t: in this case we can in fact suppose that s = t = eα,
(b) α < β and s = eα,
(c) α > β and t = eβ,
(d) α ⊥ β.
It is easy to check that in all these cases if αγ = βδ for some γ, δ ∈ Y , then
necessarily seγ = teδ holds, which shows that RY (α, β) = R(s, t)J .

�

In the remainder of this section we are going to investigate Condition (r). Note that for
any s, t ∈ S, r(s, t) is an ideal of S, so is a union of maximal subgroups, that is, a union
of Gα’s. First we handle some basic cases.

Lemma 5.3. If α, β ∈ Y then r(eα, eβ) =
⋃

γ∈rY (α,β)Gγ.

Proof. Let s ∈ r(eα, eβ), with s ∈ Gγ. Then eαs = eβs so that αγ = βγ and γ ∈ rY (α, β).
Thus r(eα, eβ) ⊆

⋃
γ∈rY (α,β)Gγ.
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On the other hand, if t ∈ Gγ where γ ∈ rY (α, β), then eαeγ = eβeγ gives us eαt = eβt
and so t ∈ r(eα, eβ). Hence rS(eα, eβ) ⊇

⋃
γ∈rY (α,β)Gγ. �

Lemma 5.4. If α > β, s ∈ Gα, and t ∈ Gβ, then r(s, t) = r(eα, t).

Proof. Let u ∈ S such that su = tu. In this case (su)J = (eαu)J < α, which implies
that eαu = su = tu. Vice versa, if eαu = tu, then necessarily su = tu also. Thus
r(s, t) = r(eα, t). �

To characterize condition (r) we first need some notation. For every α, β ∈ Y let

Dα = {τ ∈ Y : τ 6≥ α} and Uα,β = {γ ∈ Y : αγ < β}

so that Dα, Uα,β are ideals of Y , and let

Iα =
⋃

τ∈Dα

Gτ and Jα,β =
⋃

τ∈Uα,β

Gτ ,

so that Iα and Jα,β are ideals of S.

Lemma 5.5. Let s, t ∈ Gα with s 6= t. Then Iα = r(s, t).

Proof. Let eτ ∈ Iα so that τ 6≥ α, which implies that ατ < α. We have

seτ = seαeτ = seατ = eατ = . . . = teτ .

Therefore eτ ∈ r(s, t), and so Gτ ⊆ r(s, t). Hence Iα ⊆ r(s, t).
Conversely, suppose that Gκ ⊆ r(s, t) so that in particular seκ = teκ. From s 6= t we

deduce κ 6≥ α, and so Gκ ⊆ Iα. We therefore have r(s, t) ⊆ Iα. �

Lemma 5.6. If α ⊥ β then for any s ∈ Gα, t ∈ Gβ, r(s, t) = ∪γ∈rY (α,β)Gγ.

Proof. If γ ∈ rY (α, β) then as α ⊥ β we have αγ = βγ < α, β, so seγ = eαγ = eβγ = teγ,
implying that Gγ ⊆ r(s, t) and so ∪γ∈rY (α,β)Gγ ⊆ r(s, t).
Conversely, if g ∈ r(s, t) ∩Gγ then sg = tg so αγ = βγ and g ∈ ∪γ∈rY (α,β)Gγ . Therefore

the claim is proved. �

Lemma 5.7. Suppose β < α and t ∈ Gβ \ {eβ}. Then r(eα, t) = Jα,β.

Proof. Let u ∈ Gγ be such that u ∈ r(eα, t). Then eαu = tu implies eαeγ = teγ so that
αγ = βγ ≤ β. If αγ = β then β ≤ γ so that eβ = teγ = t, a contradiction. Therefore
αγ < β, so that γ ∈ Uα,β and u ∈

⋃
τ∈Uα,β

Gτ . Hence r(eα, t) ⊆ Jα,β.

Conversely, let u ∈ Jα,β. Then u ∈ Gτ for some τ with ατ < β, so that

ατ = ατβ = βτ < β

and

eαu = eαeτu = teαeτu = teβeτu = tu

so that u ∈ r(eα, t) and Jα,β ⊆ r(eα, t). �
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Theorem 5.8. Let S be a monoid which is a semilattice Y of groups Gα such that the
structure homomorphisms are trivial. Then S satisfies (r) if and only if
(i) Dα is finitely generated for any α ∈ Y with |Gα| > 1,
(ii) rY (α, β) is finitely generated for any α, β ∈ Y ,
(iii) Uα,β is finitely generated for any α, β ∈ Y with Gβ 6= {eβ} and α > β.

Proof. Let a ∈ Gα and b ∈ Gβ. If α ⊥ β, then by Lemma 5.6, r(a, b) =
⋃

γ∈rY (α,β)Gγ .

If α > β, then r(a, b) = r(eα, b) by Lemma 5.4. If b = eβ, then r(a, b) = r(eα, eβ) =⋃
γ∈rY (α,β)Gγ by Lemma 5.3. If t 6= eβ, then r(a, b) = Jα,β by Lemma 5.7. Finally, if

α = β, then either a = b so that r(a, b) = S, or if s 6= t, then r(s, t) = Iα by Lemma 5.5.
The result now follows from the observation that every (right) ideal K of S is of the

form K =
⋃

α∈I Gα for some ideal I of Y , and that K is finitely generated if and only if I
is finitely generated. �

Note that if Y satisfies (WRN) then clearly all these properties hold.
Consider the case where Y is a chain. Then for α < β we have that rY (α, β) = αY is

finitely generated. However, Dα = {γ : γ < α} is finitely generated if and only if α has a
greatest predecessor. Furthermore, if α > β, then Uα,β = Dβ. Thus S satisfies (r) if and
only if for every α ∈ Y , if |Gα| > 1 then α has a greatest predecessor.
As we have seen before, (R) implies (r) in case of semilattices. As the following example

shows, this is not true for Clifford monoids in general.

Example 5.9. Let Y be the semilattice of finite subsets of N under union, let Gα = {eα}
for all α 6= ∅ and let G∅ = {e∅, a} be the two-element group. Let S be the Clifford monoid
having Y as its structure semilattice, and the groups Gα as its H-classes (so every structure
homomorphism has to be trivial). Then S satisfies (R), but not (r).

Proof. It is routine to check that R(s, t)J = RY (sJ , tJ ) for every s, t ∈ S, thus it is
finitely generated Lemma 3.5. In this case S satisfies (R) by Theorem 5.1. However,
D∅ = Y \ {∅}, which is not finitely generated (it has infinitely many maximal elements),
so S does not satisfy (r). �

The examples and results given so far enables us to investigate the connection between
the conditions (R), (r) and (WRN).

Theorem 5.10. The only valid implication between the conditions (R), (r) and (WRN)
is that (WRN) implies (r).
In case of semilattices, (R) implies (r) as well, but no other implications become valid.

Proof. By definition, (WRN) implies (r), and if S is a semilattice, then (R) implies (r) by
Lemma 3.2. We have already seen examples contradicting all other implications. �
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