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Abstract. We show that if A is a stable basis algebra satisfying the distributivity condi-
tion, then B is a reduct of an independence algebra A having the same rank. If this rank
is finite, then the endomorphism monoid of B is a left order in the endomorphism monoid
of A.

1. Introduction

It is well known that for any n ∈ N, the ring Mn(D) of n × n matrices over a division
ring D is simple, that is, it has no non-trivial ring ideals. As a semigroup, however, Mn(D)
is not simple. Indeed, Mn(D) has finitely many semigroup ideals Ik, 0 6 k 6 n, where

Ik = {A ∈Mn(D) : rank(A) 6 k}.

Clearly

I0 = {0} ⊆ I1 ⊆ I2 . . . ⊆ In = Mn(D);

moreover the Rees quotients Ik/Ik−1 of successive ideals, 1 6 k 6 n, are completely 0-
simple. The ring Mn(D) possesses further interesting ‘semigroup’ properties: by a result
of Laffey [16], proved in the case D is a field by J.A. Erdös [4], every singular element of
Mn(D) is a product of idempotents.

The matrix ring Mn(D) is of course isomorphic to the ring of linear maps of any n-
dimensional vector space V over D, so that as a semigroup, Mn(D) is isomorphic to the
endomorphism monoid End V of V . Vector spaces over division rings are particular exam-
ples of (universal) algebras belonging to the class of v∗-algebras. These appear first in an
article of Narkiewicz [19] and were inspired by Marczewski’s study of notions of indepen-
dence, initiated in [17] (see [14] and the survey article [21]). More recently v∗-algebras have
been referred to as independence algebras [12]. Such algebras may be defined via properties
of the closure operator 〈−〉 which takes a subset of an algebra to the subalgebra it gener-
ates. In an independence algebra, 〈−〉 must satisfy the exchange property, which guarantees
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that we have a well behaved notion of rank for subalgebras and hence for endomorphisms,
generalising that of the dimension of a vector space. Further, independence algebras are
relatively free. Precise definitions and further details may be found in Section 2. We re-
mark that free G-acts, for any group G, are further examples of independence algebras.
A study of endomorphism monoids of independence algebras was intiated by the author
in [12], where it is shown that for an independence algebra A of finite rank, EndA has
the same ideal structure as End V for a finite dimensional vector space V . Subsequently,
Fountain and Lewin [9] proved that every ‘singular’ endomorphism of A is a product of
idempotent endomorphisms.

The endomorphism monoid of an independence algebra A is regular. But perhaps sur-
prisingly, regularity of EndA is not necessary for the above results concerning idempotent
generation. For example, the results of Laffey [16] show that if A is a free module of
finite rank n over a Euclidean domain, then the set of non-identity idempotents of EndA
generates the subsemigroup of endomorphisms of rank strictly less than n.

Fountain and the author introduced in [6] a class of algebras called stable basis algebras
that generalise free modules over Euclidean domains, in an attempt to put the results of
Laffey, and later work of Fountain [5] and Ruitenberg [20], into a more general setting,
an aim achieved in [8]. Stable basis algebras are in particular relatively free algebras in
which the closure operator PC (pure closure) satisfies the exchange property. Certainly
independence algebras are stable basis algebras. Finitely generated free left modules over
Bezout domains and finitely generated free left T -sets over any cancellative monoid T such
that finitely generated left ideals of T are principal, are examples of stable basis algebras.
We recall that a Bezout domain is an integral domain (not necessarily commutative) in
which all finitely generated left and right ideals are principal. As for independence algebras,
rank is well defined for subalgebras and endomorphisms of basis algebras, where now the
rank is defined via the operator PC. The endomorphism monoid of a stable basis algebra
of finite rank has a ∗-ideal structure analogous to the ideal structure of the endomorphism
monoid of a finite rank independence algebra. Again, further details are given in Section 2
and Section 3.

We remind the reader that if A and B are algebras such that the universe (that is, the
underlying set) of B is contained in the universe of A, then B is a reduct of A if every
basic operation of B is the restriction to B of a basic operation of A. Let R be a Bezout
domain and let D be its division ring of (left) quotients. If F is a free module of finite
rank n over R, then it is well known that F is a reduct of V , where V is a vector space
over D: we have already observed that V is an independence algebra. On the other hand,
if B is a stable basis algebra having only unary and nullary basic operations, then the
results of [6] show that B is a reduct of an independence algebra. The first aim of this
paper is to show that every stable basis algebra satisfying the distributivity condition is a
reduct of an independence algebra. We remark that the distributivity condition is satisfied
for all known examples of basis algebras that are not independence algebras, and for the
examples of independence algebras mentioned above. We enlarge upon this discussion in
Section 4.
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Classical ring theory tells us that if R and D are as in the preceding paragraph, then
Mn(R) has ring of (left) quotients Mn(D), that is, Mn(R) is a (left) order in Mn(D). Of
course, the endomorphism monoid of an arbitrary algebra, indeed of an arbitrary inde-
pendence algbera A, need not be a ring, so it makes little sense to talk of left orders in
EndA in the sense of ring theory. Help is at hand however, in the notion due originally to
Fountain and Petrich [11] of a semigroup of (left) quotients, which we explain in Section 3;
if Q is a semigroup of (left) quotients of S then we say that S is a (left) order in Q. The
second aim of this paper is to show that if B is a stable basis algebra of finite rank n
satisfying the distributivity condition, then EndB is a left order in EndA, where A is the
independence algebra we have constructed, of which B is a reduct.

If a semigroup S is a left order in a semigroup Q, then we hope that the structure of
S is closely related to that of Q. This is certainly true if S has non-empty intersection
with every H-class of Q, a condition guaranteed if S is straight in Q (see Section 3). Our
final aim is to consider when EndB is straight in EndA, where B is a stable basis algebra
of finite rank n satisfying the distributivity condition, and A is the independence algebra
we have built from B. It might be anticipated that EndB would always be straight in
EndA, for we know from [7] that EndB is certainly a straight left order in some semigroup.
We know that for any such B, the monoid T of non-constant unary term operations is a
cancellative monoid that is right reversible (or left Ore), that is, for any a, b ∈ T there
exist c, d ∈ T with ca = db. The property of left reversibility is defined dually. Perhaps
surprisingly, we show that EndB is straight in EndA if and only if T acts by isomorphisms
on the constant subalgebra of B and (if n > 2), T is also left reversible.

The structure of the paper is as follows. In Section 2 we give a brief summary of
the relevant definitions and properties associated with independence algebras and basis
algebras. Section 3 contains the semigroup theoretic results needed for this article. In
particular, we recall Green’s relations and their ∗-generalisations, and their realisations in
EndA and EndB, where A is an independence algebra and B a stable basis algebra. The
three final sections contain our results as outlined above. That is, given a stable basis
algebra B satisfying the distributivity property, we construct in Section 4 an independence
algebra A of which B is a reduct. In Section 5 we show that (if B has finite rank) EndB
is a left order in EndA and we conclude in Section 6 by addressing the question of when
EndB is straight in EndA.

2. Independence algebras and basis algebras

By an algebra A we mean an algebra in the sense of universal algebra. Since this article
is concerned with two special classes of algebras, namely, independence and basis algebras,
we briefly recall their construction and make note of some of their properties for later
reference; further details may be found in [12, 7, 8]. We refer the reader to [3, 14, 18] for
standard concepts of universal algebra. A constant in an algebra A is the image of a basic
nullary operation.

Independence and basis algebras are approached via closure operators, defined below.
In the case of independence algebras we use the standard subalgebra closure operator 〈−〉,
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whereas for basis algebras we make use of the operator PC. These inter-related operators
coincide for an independence algebra, but are distinct for a general basis algebra.

Let A be a set and C : P(A) → P(A) be a function, where P(A) is the set of all subsets
of A. Then C is a closure operator on A if C satisfies the following conditions for all
X, Y ∈ P(A):

(i) X ⊆ C(X);
(ii) if X ⊆ Y then C(X) ⊆ C(Y );
(iii) C(X) = C(C(X)).

A subset of A of the form C(X) is said to be closed.
If A is any algebra, then 〈−〉 is a closure operator on A, where for all X ⊆ A, 〈X〉 is

the subalgebra of A generated by X. Where there is more than one algebra in question
and danger of ambiguity we denote the operator 〈−〉 on A by 〈−〉A. We remark that if A
has non-empty set of constants U , then 〈∅〉 = 〈V 〉 = 〈U〉 for any V ⊆ U , and 〈∅〉 consists
of those elements a for which there is a unary term operation with unique value a (see,
for example, [14, p.40, Corollary 3]). If A has no constants, then we make the convention
that ∅ is a subalgebra so that in this case, 〈∅〉 = ∅. We say that A is constant if A = 〈∅〉.
More generally, it is clear that for any subset X of an arbitrary algebra A, 〈X〉 is the set
of terms that can be built from the elements of X. In view of this it is easy to see that 〈−〉
is always an algebraic closure operator, where a closure operator C on a set A is algebraic
if for all X ⊆ A

C(X) =
⋃

{C(Y ) | Y ⊆ X, |Y | < ℵ0}.

A closure operator C on a set A satisfies the exchange property (EP) if for all X ⊆ A
and x, y ∈ A,

if x /∈ C(X) but x ∈ C(X ∪ {y}), then y ∈ C(X ∪ {x}).

Perhaps the most familiar example of a closure operator with (EP) is 〈−〉 on a vector
space. Where there is no danger of ambiguity we say that an algebra A satisfies (EP) if
〈−〉 does so.

Let C be a closure operator on a set A. A subset X of A is C-independent if x /∈
C(X \ {x}) for all x ∈ X. In case A is an algebra and C is 〈−〉, we say that a C-
independent subset is independent. Clearly for a vector space, a subset is independent if
and only if it is linearly independent.

Algebraic closure operators which satisfy the exchange property are intimately connected
with abstract dependence relations. Translating results of [3, Section VII.2] to the language
of algebraic closure operators yields the following result.

Lemma 2.1. [3, Lemma VII.2.2] Let C be an algebraic closure operator satisfying (EP)
on a set A and let Y ⊆ X ⊆ A. Then the following conditions are equivalent:

(1) Y is a maximal C-independent subset of X;
(2) Y is C-independent and C(Y ) = C(X);
(3) Y is minimal with respect to C(Y ) = C(X).

The next result is again classical, quoted here from [6].
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Theorem 2.2. [3] (c.f. [6, Theorem 1.4]) Let C be an algebraic closure operator satisfying
(EP) on a set A, and let X ⊆ Y ⊆ A. If X is C-independent, then there is a C-independent
subset Z with X ⊆ Z ⊆ Y and C(Z) = C(Y ).

Let C be an algebraic closure operator satisfying (EP) on a set A and let Y ⊆ A; the
C-rank of Y is the cardinality of any maximal C-independent subset of Y . As explained
in [6], classical results of universal algebra (see, for example, [3]) give that the C-rank of
Y is well-defined. Clearly C-rank is monotonic and from Lemma 2.1, for any X ⊆ A,
C-rank(X) = C-rank(C(X)). Again we refer to our canonical example of a vector space,
where the 〈−〉-rank of a subspace is its familiar dimension. In this article we frequently
refer to 〈−〉-rank more simply as rank.

We need one more concept in order to define independence algebras, which relates to
free generators. Let A be an algebra. A subset X of A is A-free if any map from X to A
can be extended to a morphism from 〈X〉 to A. As noted in [14], if |A| > 1 then every
A-free subset is independent. We say that the free basis property (FB) holds for A, if every
independent subset is A-free. An independence algebra is an algebra A satisfying (EP)
and (FB). An independence algebra V is therefore certainly relatively free, that is, it is a
free algebra in the variety it generates. As commented in the Introduction, vector spaces
are the archetypical example of independence algebras. Notice that any constant algebra
satisfies vacuously the conditions required to be an independence algebra.

The term ‘independence algebra’ was introduced in [12], where it is remarked that they
are precisely the v∗-algebras of Narkiewicz [19, 14]. The aim of [12] and subsequent papers
such as [9, 10, 1] was to investigate the structure of the endomorphism monoid End A of
an independence algebra A. Any such monoid has an ideal structure analogous to that of
the monoid of linear maps of a vector space. In the case where the algebra has finite rank,
Fountain and Lewin prove in [9] that, as was already known for vector spaces, every singular
endomorphism can be written as a product of idempotent endomorphisms. By singular,
we mean that the rank of the image of an endomorphism is strictly less than the rank of
the algebra. As remarked in the introduction, other algebras that are not independence
algebras, satisfy an analogous property, most particularly the endomorphism monoid of
a finite dimensional free abelian group. This phenomenon led to the development of the
second class of algebras we consider, namely basis algebras.

Essentially, basis algebras are approached in an analogous way to independence algebras,
but with the closure operator 〈−〉 replaced by the operator PC.

For an element a of an algebra A and a subset X of A we write a ≺ X if

a ∈ 〈∅〉 or 〈a〉 ∩ 〈X〉 6= 〈∅〉

and we put

PC(X) = {a ∈ A | a ≺ X}.

The operator PC need not be a closure operator [6, Theorem 1.6]. Where it is, it is
algebraic and the closed subsets are subalgebras. In this case we refer to PC-independent
subsets as directly independent. As remarked in [6], for any X ⊆ A we have that 〈X〉 ⊆
PC(X) and directly independent sets are independent, although the converse is not true
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in general. We say that A is a weak exchange algebra if PC is a closure operator satisfying
(EP); in this case we say that A satisfies the weak exchange property (WEP). Subsets of A
consequently have well defined PC-rank. We require the following result from [6], most of
which is classical and can be taken from [3].

Lemma 2.3. [6, Corollary 1.11 (Corollary 1.12 of revised version)] Let X be a subset of a
weak exchange algebra A. Then

(1) PC-rank(〈X〉) = PC-rank(X) = PC-rank(PC(X)) 6 |X| ;
(2) if X is finite and PC-rank(X) = |X|, then X is directly independent.

From [6, Lemmas 2.2, 2.3 of revised version], if A is a non-trivial algebra with constants,
or without constants but having no constant unary term operations, then every A-free
subset is directly independent. A weak independence algebra A is a weak exchange algebra
in which every directly independent set is A-free.

The monoid T1 of unary term operations of a weak independence algebra A is of partic-
ular importance to us. We let

TC = {κc : c ∈ 〈∅〉}

where κc denotes the constant map with image c ∈ C and put

T = T1 \ TC .

Clearly, if A has no constants, then TC = ∅ and T = T1.

Proposition 2.4. [6, Proposition 6.2 (Proposition 5.2 of revised version)] Let A be weak
independence algebra with constants such that A is not constant, that is, A 6= 〈∅〉. Then,
for t ∈ T1, the following are equivalent :

(1) t = κc for some c ∈ A;
(2) t(x) ∈ 〈∅〉 for all x ∈ A;
(3) t(x) ∈ 〈∅〉 for some x ∈ A�〈∅〉.

We say that a non-constant weak independence algebra A is torsion-free if each t ∈ T is
injective. We declare a constant algebra to be torsion-free.

Proposition 2.5. [6, Proposition 6.4 (Corollary 5.5 of revised version)] Let A be a non-
constant torsion-free weak independence algebra. Then TC is a prime ideal of T1, and T is
a cancellative right reversible monoid.

An A-free subset X of an algebra A is a basis of A if X ∩ 〈∅〉 = ∅ and X generates A. It
follows from the results of [6] that a basis of a subalgebra of a torsion-free weak indepen-
dence algebra is exactly the same thing as a generating set that is directly independent.

In a weak independence algebra A a pure subalgebra is a subalgebra B that is PC-closed,
that is, such that B = PC(B).

Lemma 2.6. [6, Corollary 5.4 (Corollary 6.4 of revised version)] Let A be a torsion free
weak independence algebra. If X is a basis for A and Y ⊆ X, then 〈Y 〉 is pure.
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A basis algebra A is a torsion free weak independence algebra which satisfies the following
condition:

(PEP) if P,Q are pure subalgebras in A with P ⊆ Q, and X is a basis for P , then there
is a basis Y for Q with X ⊆ Y .

It follows from this definition that every pure subalgebra of a basis algebra has a basis,
and in particular, every basis algebra has a basis. It is worth pausing to make some remarks
concerning PC-rank and the cardinality of bases. Let B be a basis algebra and C = 〈X〉
a subalgebra of B. If X is a basis for C, then we have observed that X is a directly
independent generating set for C. Since X generates C we see that X is maximal directly
independent in C, in other words, X is a PC-basis for C. Consequently, |X| = PC-rank(C)
and C ⊆ PC(X) = PC(C) with the inclusion being an equality if and only if C is pure.

Suppose now that A is a basis algebra, PC-rankA = n and B is a pure subalgebra of A
with PC-rankB = n. Since any basis of B can be extended to a basis of A, we must have
that A = B.

Finally we say that a basis algebra A is stable if every subalgebra of A having a generating
set of cardinality at most PC-rank A has a basis.

Independence algebras are stable basis algebras. Indeed in an independence algebra
PC(X) = 〈X〉, so that rank(X) = PC-rank(X) for any subset X. If R is a Bezout domain,
then a free left R-module of finite rank is a stable basis algebra [6]. Our third canonical
example of a stable basis algebra is a finitely generated free left T -act over a cancellative
principal left ideal monoid T .

3. Left orders in semigroups: semigroups of left quotients

We present here a brief resumé of the semigroup theory needed for the remainder of this
article, referring the reader to [15] for further details.

For any monoid S (that is, a semigroup with identity), the preorder 6L is defined by
the rule that a6L b if and only if Sa ⊆ Sb; the equivalence relation associated with 6L is
Green’s relation L. The relations 6L and L are relations of right divisibility, for it is easy
to see that for elements a, b ∈ S, a6L b if and only if a = sb for some s ∈ S, and aL b if
and only if a = sb, b = ta for some s, t ∈ S. The preorder 6R and associated equivalence
R are defined dually, using principal right ideals of S. The intersection of L and R is
denoted by H and their join is denoted by D; since L and R commute, D = L ◦ R. The
following crucial result is due to Green.

Theorem 3.1. [15, Theorem 2.2.5] Let S be a monoid. For any a ∈ S, a lies in a subgroup
of S if and only if aH a2.

For the endomorphism monoid of an independence algebra A, 6L and 6R, and so L and
R, have particularly pleasant realisations. We recall that for any map α : X → Y , Kerα
is the equivalence relation on X defined by the rule that

x Kerα y if and only if xα = yα.
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Proposition 3.2. [12, Proposition 4.5] Let A be an independence algebra. Then for any
α, β ∈ EndA,

α6L β if and only if Imα ⊆ Im β

and

α6R β if and only if Ker β ⊆ Kerα.

Consequently,

αLβ if and only if Imα = Im β

and

αRβ if and only if Kerα = Ker β.

Let A be an independence algebra. We define the rank ρ(α) of α ∈ EndA to be the rank
of Imα. The following result is a consequence of the ideal structure of EndA, as presented
in [12].

Proposition 3.3. [12, Proposition 4.5, Theorem 4.9] Let A be an independence algebra of
finite rank and let α, β ∈ EndA. Then

(i) ρ(α) = ρ(β) if and only if αD β;
(ii) αLα2 if and only if αRα2 if and only if αHα2;
(iii) if α6L β and ρ(α) = ρ(β), then αLβ; dually for 6R and R.

It follows from Proposition 3.3 that for an independence algebra A of finite rank, EndA
is local, that is, for any α ∈ EndA, αL IA if and only if αR IA, where we follow standard
convention in denoting by IA the identity map on A. For, if α ∈ EndA and αL IA, then as
L is right compatible with multiplication, α2 Lα, whence α2 Hα so that by Theorem 3.1,
α lies in a subgroup G. Let ε be the identity of G. Then εL IA, from which it follows that
ε = IA and αH IA. Dually, if αR IA then we again obtain that αH IA.

To make remarks corresponding to those in Propositions 3.2 and 3.3 for basis algebras,
we must consider the ∗-generalisations of Green’s relations.

Let S be a monoid. The relation 6L∗ on S is defined by the rule that a6L∗ b if and only
if for any x, y ∈ S,

bx = by implies that ax = ay.

It is clear that 6L∗ is a preorder; the associated equivalence relation is denoted by L∗. The
relation L∗ has another characterisation, namely that aL∗ b if and only if aL b in some
oversemigroup of S; this may easily be justified by employing the left regular representation
of S. The relations 6R∗ and R∗ are defined dually. We continue the analogy with the
notation for Green’s relations by putting H∗ = L∗ ∩ R∗ and D∗ = L∗ ∨ R∗. Unlike the
case for Green’s relations, L∗ and R∗ do not, in general, commute.

For a stable basis algebra B we define the rank ρ(α) of an element α ∈ EndB to be the
PC-rank of the image of α. As commented in Section 2, there is no danger of ambiguity
here, since in an independence algebra, rank and PC-rank coincide.

Proposition 3.4. [7, Lemmas 4.1, 4.5] Let B be a stable basis algebra. Then for any
α, β ∈ EndB,
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α6L∗ β if and only if PC(Imα) ⊆ PC(Im β)

α6R∗ β if and only if Ker β ⊆ Kerα.

Consequently,
αL∗ β if and only if PC(Imα) = PC(Im β)

and
αR∗ β if and only if Kerα = Kerβ.

Proposition 3.5. [7, Theorems 4.9, 7.4] Let A be a stable basis algebra of finite rank. Then
R∗ ◦ L∗ = L∗ ◦ R∗ so that consequently, D∗ = L∗ ◦ R∗. Further, for any α, β ∈ EndB:

(i) ρ(α) = ρ(β) if and only if αD∗ β;
(ii) αL∗ α2 if and only if αR∗ α2 if and only if αH∗ α2;
(iii) if α6L∗ β and ρ(α) = ρ(β), then αL∗ β; dually for 6R∗ and R∗.

A ∗-ideal of a monoid S is an ideal that is a union of L∗-classes and R∗-classes. In a
stable basis algebra B of finite rank n there are n+1 ∗-ideals, namely Ik, 0 6 k 6 n, where

Ik = {α ∈ EndB : rankα 6 k}.

The Rees quotients Ik/Ik−1 are the non-regular analogue of completely 0-simple semigroups,
being isomorphic to Rees matrix semigroups over cancellative monoids. We do not pursue
these ideas here, but the interested reader may find further details in [7].

Unlike the case for independence algebras, in a stable basis algebra B not all subalge-
bras, hence not all images of endomorphisms, are pure. Moreover, in general, not every
subalgebra of B will have a basis.

Proposition 3.6. [7, Corollary 4.4] Let B be a stable basis algebra and let α ∈ EndB.
Then Imα has a basis. Moreover, if α is idempotent then Imα is pure in B so that Imα
has a basis that can be extended to a basis for B.

We end this section by giving the necessary background on the concept of a semigroup of
left quotients, as introduced by Fountain and Petrich in [11]. We refer the reader to [13] for
further details. Let S be a semigroup. An element a of S is square-cancellable if aH∗ a2. By
a remark following the definition of Green’s ∗-relations above, together with Theorem 3.1,
we see that being square-cancellable is a natural necessary condition for an element of S
to lie in a subgroup of an oversemigroup. Suppose now that S is a subsemigroup of a
semigroup Q. Then Q is a semigroup of left quotients of S and S is a left order in Q if
every q ∈ Q can be written as q = a♯b, where a, b ∈ S and a♯ denotes the inverse of a in a
subgroup of Q, and if, in addition, every element square-cancellable element of S lies in a
subgroup of Q. In the case that every q ∈ Q can be written as q = a♯b, where a, b ∈ S and
aR b, then we say that S is straight in Q.

If Q is a group then our definition of semigroup of left quotients coincides with the
classical notion of group of left quotients. The next theorem is due to Ore and Dubreil.

Theorem 3.7. [2, Theorem 1.24] A monoid T has a group of left quotients if and only if
it is cancellative and right reversible.
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We will make repeated use of the classical ‘common denominator’ theorem for a group
of left quotients, easily proved via an inductive argument.

Theorem 3.8. Let T be a left order in a group G. Then for any g1, . . . , gn ∈ G, there
exist a, b1, . . . , bn ∈ T such that gi = a−1bi for 1 6 i 6 n.

4. A stable basis algebra B as a reduct of an independence algebra A

Throughout this section B denotes a non-constant stable basis algebra with monoid of
non-constant unary term operations T having identity 1 (so that 1 is the identity map
IB on B). We may regard B as a left T -act, that is, there is a map T × B → B, where
(α, b) 7→ αb = α(b), such that 1b = b and α(βb) = (αβ)b for all b ∈ B and α, β ∈ T .
We assume in addition that B satisfies the distributivity condition which says that for all
α ∈ T and n-ary basic term operations s, where n > 2, we have

α(s(x1, . . . , xn)) = s(α(x1), . . . , α(xn))

for all x1, . . . , xn ∈ B. Our aim is to show that B is the reduct of an independence algebra
A.

Before proceeding, we make some remarks concerning the distributivity condition. Cer-
tainly free modules over rings, and S-sets over monoids, hence our canonical examples
of stable basis algebras, satisfy this condition. We have observed that all independence
algebras are stable basis algebras. Independence algebras, under the original name of v∗-
algebras, were completely determined in the 1960’s; we refer the reader to the survey article
of Urbanik [21] for the details. One may then ask, which independence algebras (other than
vector spaces and free G-sets over a group G) have the distributivity property. What we
are trying to ascertain is whether or not it is possible, given an arbitrary independence
algebra, to pick a generating set of basic term operations which will have the property that
the elements of T will distribute over the chosen n-ary basic term operations for n > 2. For
the four element exceptional algebra and the affine independence algebras it is possible to
do so. Other independence algebras are either essentially unary-nullary, when the distribu-
tivity condition holds trivially, or the S-homogeneous algebras or Q-homogeneous algebras,
where S is a monoid and Q a quasifield. It is an open problem whether all S-homogeneous
and Q-homogeneous algebras satisfy the distributivity condition.

From Proposition 2.5 the monoid T is cancellative and right reversible. From Theo-
rem 3.7 we know that T has a group of left quotients G.

Put Σ = T × B and define ∼ on Σ by the rule that (α, a) ∼ (β, b) if and only if there
exist γ, δ ∈ T with

γα = δβ and γa = δb.

Lemma 4.1. The relation ∼ is an equivalence relation on Σ.

Proof. Clearly ∼ is symmetric, and as for any (α, a) ∈ Σ we certainly have 1α = 1α and
1a = 1a, ∼ is reflexive. It remains to show that ∼ is transitive.

To this end, let (α, a), (β, b), (γ, c) ∈ Σ and suppose that

(α, a) ∼ (β, b) ∼ (γ, c).
10



Then there exist δ, ǫ, µ, ν with

δα = ǫβ, δa = ǫb
µβ = νγ, µb = νc.

Since T is right reversible, there are elements ρ, π ∈ T with

ρǫ = πµ.

Then
ρδα = ρǫβ = πµβ = πνγ

and similarly, ρδa = πνc. Thus (α, a) ∼ (γ, c) and ∼ is an equivalence as required. �

We denote the ∼-equivalence class of (α, a) ∈ Σ by [α, a]. Let A = Σ/ ∼.

Lemma 4.2. Suppose that [1, a], [β, b] ∈ A and

[1, a] = [β, b].

then βa = b.

Proof. From the definition of ∼ we have that

α 1 = γβ and αa = γb

for some α, γ ∈ T . Hence
γβa = γb

and as γ is injective we have that βa = b. �

We now proceed to define basic operations on A, under which it becomes the indepen-
dence algebra we require.

The nullary operations on A are straightforward. For each nullary operation cB on B,
with image c, we define a nullary operation cA on A with image [1, c]. Similarly, for any
basic unary operation vc

B = κc ∈ TC , where c ∈ 〈∅〉, we define a basic unary operation vc
A

of A by the rule that vc
A([α, a]) = [1, c], for any [α, a] ∈ A.

The next lemma will help us to show that the remaining n-ary operations on A for n > 1,
as given below, are well-defined.

Lemma 4.3. Suppose that α, β, γ, δ, µ, ν ∈ T and a, b ∈ B are such that

γα = δβ, γa = δb and µα = νβ.

Then
µa = νb.

Proof. We have that γ−1δ = αβ−1 = µ−1ν, so that µγ−1δ = ν. Since T is right reversible
we can choose θ, ϕ ∈ T with

θµ = ϕγ.

Then µγ−1 = θ−1ϕ and so
ϕδ = θν.

Calculating, we have that
θµa = ϕγa = ϕδb = θνb.

11



Now θ is one-one and so µa = νb as required.
�

For each ξ ∈ G we define a unary operation uξ
A by the rule

uξ
A([γ, c]) = [µ, νc]

where ξγ−1 = µ−1ν and µ, ν ∈ T .

Lemma 4.4. The operation uξ
A is well-defined.

Proof. Suppose that (γ1, c1) ∼ (γ2, c2) and µi, νi, i = 1, 2 are chosen such that

ξγ−1

1 = µ−1

1 ν1 and ξγ−1

2 = µ−1

2 ν2.

We aim to show that (µ1, ν1c1) ∼ (µ2, ν2c2).
Since (γ1, c1) ∼ (γ2, c2) there exist ρ, κ ∈ T with

ργ1 = κγ2 and ρc1 = κc2.

By the right reversibility of T we can choose η, π ∈ T with

ηµ1 = πµ2.

We have that
ξ = µ−1

1 ν1γ1 = µ−1

2 ν2γ2 and µ1µ
−1

2 = η−1π

so that
ην1γ1 = πν2γ2.

Since in addition we have that

ργ1 = κγ2 and ρc1 = κc2,

we call upon Lemma 4.3 to deduce that ην1c1 = πν2c2. Thus (µ1, ν1c1) ∼ (µ2, ν2c2) as
required. �

If tB = α ∈ T is a unary operation on B, then we declare tA to be uα
A.

For each n-ary basic operation tB on B, where n > 2, we define an n-ary operation tA
on A by the rule that

tA([α1, a1], . . . , [αn, an]) = [α, tB(β1a1, . . . , βnan)]

where α, βi ∈ T (1 6 i 6 n) are chosen by Lemma 3.8 such that α−1

i = α−1βi (1 6 i 6 n).

Lemma 4.5. The operation tA is well-defined.

Proof. Suppose that (αi, ai), (α
′
i, a

′
i) ∈ Σ and

(αi, ai) ∼ (α′
i, a

′
i), 1 6 i 6 n,

and α, α′, βi, β
′
i are chosen such that

α−1

i = α−1βi and (α′
i)
−1 = (α′)−1β ′

i

for 1 6 i 6 n. We must show that

(α, tB(β1a1, . . . , βnan)) ∼ (α′, tB(β ′
1a

′
1, . . . , β

′
na

′
n)).
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First, we choose γ, δ ∈ T with
γα = δα′.

Since for 1 6 i 6 n we have that (αi, ai) ∼ (α′
i, a

′
i), there are elements ρi, τi such that

ρiαi = τiα
′
i and ρiai = τia

′
i, 1 6 i 6 n.

Notice that for any i ∈ {1, . . . , n} we have that

α(α′)−1 = γ−1δ = βiαi(β
′
iα

′
i)
−1

and so
γβiαi = δβ ′

iα
′
i.

Calling upon Lemma 4.3 we deduce that

γβiai = δβ ′
ia

′
i, 1 6 i 6 n.

Using the distributivity condition we have that

γtB(β1a1, . . . , βnan) = tB(γβ1a1, . . . , γβnan) = tB(δβ ′
1a

′
1, . . . , δβ

′
na

′
n) = δtB(β ′

1a
′
1, . . . , β

′
na

′
n)

and so
(α, tB(β1a1, . . . , βnan)) ∼ (α′, tB(β ′

1a
′
1, . . . , β

′
na

′
n))

as required.
�

We show via a series of lemmas that A, together with the basic nullary, unary and n-ary
(n > 2) operations defined as above, is an independence algebra. As a first step we gather
together some useful elementary observations.

Lemma 4.6. (i) For any α, β ∈ T and b ∈ B we have

uα
A([1, b]) = [1, αb], uα−1

A ([1, b]) = [α, b] and [αβ, αb] = [β, b].

(ii) For any θ ∈ G, (uθ
A)−1 = uθ−1

A .
(iii) If C is a subalgebra of A, then for any a ∈ B and α, β, γ, δ ∈ T we have

[α, βa] ∈ C if and only if [γ, δa] ∈ C.

Proof. (i) We have that
α 1−1 = α 1 = 1α = 1−1 α

so that by definition
uα

A([1, b]) = [1, αb].

Similarly,
α−11−1 = α−11

and so
uα−1

A ([1, b]) = [α, 1 b] = [α, b].

Finally,
1 (αβ) = αβ and 1 (αb) = α b

so that the third statement follows from the definition of ∼.
13



(ii) Let [α, a] ∈ A and θ ∈ G. Then θ−1α−1 = µ−1ν for some µ, ν ∈ T , so that

uθ−1

A ([α, a]) = [µ, νa].

Now θµ−1 = α−1ν−1 = (να)−1 = (να)−1 1, so that

uθ
Au

θ−1

A ([α, a]) = uθ
A([µ, νa]) = [να, νa] = [α, a]

by (i). It follows that uθ
A and uθ−1

A are mutually inverse.
(iii) Let C be a subalgebra of A and suppose that [γ, δa] ∈ C. Suppose that α, β ∈ T

and let θ = α−1βδ−1γ. Then θγ−1 = µ−1ν say, where µ, ν ∈ T , so that

uθ
A([γ, δa]) = [µ, νδa].

We have that α−1βδ−1 = µ−1ν so that α−1β = µ−1νδ. Writing µα−1 as τ−1κ we have that
τµ = κα and τνδa = κβa, whence

[α, βa] = uθ
A([γ, δa]) ∈ C.

�

Lemma 4.7. For any term operation tB and z1, . . . , zn ∈ B,

tA([1, z1], . . . , [1, zn]) = [1, tB(z1, . . . , zn)].

Proof. For a basic nullary operation cB, we have that

cA(∅) = [1, c] = [1, cB(∅)].

Similarly, for a basic unary operation of the form vc
B = κc ∈ TC , we have that

vc
A([1, a]) = [1, c] = [1, vc

B(a)];

for basic unary operations of the form uα
A where α ∈ T we call upon Lemma 4.6 (i). For a

basic n-ary operation tB for n > 2, the statement follows immediately from the definition of
tA. The result can now be argued using induction on the number of basic term operations
needed to build an arbitrary term operation tB. �

For a subset D of B we write [T,D] as shorthand for

{[α, d] | α ∈ T, d ∈ D}.

Lemma 4.8. Let X = {[αi, ai] | i ∈ I} ⊆ A and put Y = {ai | i ∈ I}. Then

〈X〉A = [T, 〈Y 〉B].

Proof. It is clear that

〈X〉A ⊆ [T, 〈Y 〉B].

For the converse, we show by induction on the number of basic term operations needed to
build y ∈ 〈Y 〉B from elements of Y , that [1, y] ∈ 〈X〉A.

If y ∈ Y , then y = ai for some i ∈ I and pair [αi, ai] ∈ X. Since [αi, y] ∈ X, Lemma 4.6
gives that [1, y] ∈ 〈X〉A.

14



If y is the image of a nullary operation yB, then [1, y] is the image of the nullary operation
yA, so that [1, y] ∈ 〈X〉A. Similarly, if y = vc

B(u) where c ∈ 〈∅〉B and u ∈ 〈Y 〉B with
[1, u] ∈ 〈X〉A, then

[1, y] = [1, c] = vc
A([1, u]) ∈ 〈X〉A.

If y = αz where α ∈ T, z ∈ 〈Y 〉B and [1, z] ∈ 〈X〉A, then Lemma 4.6 gives directly that
[1, y] ∈ 〈X〉A.

Finally, suppose that y = tB(z1, . . . , zn) for some basic n-ary operation tB (n > 2) and
z1, . . . , zn ∈ 〈Y 〉B with [1, zi] ∈ 〈X〉A for 1 6 i 6 n. Then Lemma 4.7 yields that

[1, y] = [1, tB(z1, . . . , zn)] = tA([1, z1], . . . , [1, zn]) ∈ 〈X〉A.

The result now follows from Lemma 4.6. �

Lemma 4.9. The algebra A satisfies (EP).

Proof. Let X = {[αi, ai] | i ∈ I}, and suppose that

[α, a] ∈ 〈X ∪ {[β, b]}〉A

but that
[α, a] /∈ 〈X〉A.

By Lemma 4.8,
[α, a] = [γ, tB(b1, . . . , bn, b)]

for some b1, . . . , bn ∈ Y = {ai | i ∈ I}. By definition of ∼ we have that

µα = νγ and µa = νtB(b1, . . . , bn, b)

for some µ, ν ∈ T .
If a ∈ 〈∅〉B, then by Lemma 4.8, [α, a] ∈ 〈∅〉A ⊆ 〈X〉A, a contradiction. Thus a /∈ 〈∅〉B

and by Proposition 2.4 we have that

µa = νtB(b1, . . . , bn, b) /∈ 〈∅〉B

so that
a ≺ {b1, . . . , bn, b}.

If a ≺ {b1, . . . , bn}, then, as a /∈ 〈∅〉B, we must have that

πa = sB(b1, . . . , bn) /∈ 〈∅〉B

for some term operation sB. It follows that [1, πa] ∈ 〈X〉A, so that from Lemma 4.6,
[α, a] ∈ 〈X〉A, a contradiction.

We deduce that a 6≺ {b1, . . . , bn} and so, as B has (WEP), b ≺ {b1, . . . , bn, a}.
If b ∈ 〈∅〉B, then we must have that [β, b] ∈ 〈X ∪ {[α, a]}〉A. On the other hand, if

κb = vB(b1, . . . , bn, a) /∈ 〈∅〉B, then from Lemma 4.8 we have that [1, κb] ∈ 〈X ∪ {[α, a]}〉A
and so finally from Lemma 4.6, [β, b] ∈ 〈X ∪ {[α, a]}〉A. Thus A satifies (EP). �

Lemma 4.10. Let X = {[αi, ai] | i ∈ I}, where we suppose that [αi, ai] 6= [αj , aj ] for i 6= j,
and let Y = {ai | i ∈ I}. Then X is independent in A if and only if ai 6= aj for all i, j ∈ I
with i 6= j and Y is directly independent in B.
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Proof. Suppose first that X is independent. We first observe that if i 6= j then ai 6= aj .
For if ai = aj , then by Lemma 4.6

[αi, ai] ∈ 〈{[αj, aj]}〉A ⊆ 〈X \ {[αi, ai]}〉A,

contradicting the independence of X.
Suppose now that for some i ∈ I,

ai ≺ Y \ {ai},

so that either ai ∈ 〈∅〉B or γai = tB(y1, . . . , yn) /∈ 〈∅〉B for some γ ∈ T , y1, . . . , yn ∈ Y \{ai}
and term tB. The first possibility would lead to the contradiction that [αi, ai] ∈ 〈∅〉A ⊆
〈X \ {[αi, ai]}〉A. The second would lead via a now familiar argument using Lemmas 4.8
and 4.6 to [1, γai] ∈ 〈X \ {[αi, ai]}〉A and then to [αi, ai] ∈ 〈X \ {[αi, ai]}〉A . We deduce
that Y is directly independent.

Suppose conversely that ai 6= aj for all i, j ∈ I with i 6= j, and that Y is directly
independent. If

[αi, ai] ∈ 〈X \ {[αi, ai]}〉A

for some i ∈ I then by Lemma 4.8 we have that

[αi, ai] = [β, tB(y1, . . . , yn)]

for some β ∈ T and term tB with y1, . . . , yn ∈ Y \ {ai}. Using the definition of ∼ we must
have that

γαi = δβ and γai = δtB(y1, . . . , yn)

for some γ, δ ∈ T . Since Y is directly independent, we have that ai /∈ 〈∅〉 so that by
Proposition 2.4

γai = δtB(y1, . . . , yn) /∈ 〈∅〉.

But this says that

ai ≺ Y \ {ai},

contradicting the fact that Y is directly independent. We deduce that X is independent.
�

In order to conclude that A is an independence algebra, it remains to show that A
satisfies (FB). To this end we need one further subsidiary lemma.

Lemma 4.11. Let [αi, ai], [βi, bi] ∈ A for 1 6 i 6 n. Then there exist γi, δi ∈ T , 1 6 i 6 n,
such that for any n-ary term operation tA, there is an n-ary term operation sB and an
element ε ∈ T (depending on tA) such that

tA([α1, a1], . . . , [αn, an]) = [ε, sB(γ1a1, . . . , γnan)]

and

tA([β1, b1], . . . , [βn, bn])] = [ε, sB(δ1b1, . . . , δnbn)].

16



Proof. We employ Lemma 3.8 to find elements ε, γ1, . . . , γn, δ1, . . . , δn of T such that

α−1

i = ε−1γi and β−1

i = ε−1δi, 1 6 i 6 n.

Consequently,

[αi, ai] = [ε, γiai] and [βi, bi] = [ε, δibi], 1 6 i 6 n.

Suppose that tA is the i’th projection pi
A. We therefore have that

tA([α1, a1], . . . , [αn, an]) = [αi, ai] = [ε, γiai] = [ε, pi
B(γ1a1, . . . , γnan)]

and similarly,

tA([β1, b1], . . . , [βn, bn]) = [ε, pi
B(δ1b1, . . . , δnbn)].

We proceed by induction on the number of basic term operations of A needed to construct
tA. Suppose that t is constructed in m > 2 steps, and the result is true for all term
operations constructed in fewer moves. If tA is a constant term operation then the result
is clear with ε = 1.

Suppose now that tA = vc
AsA where c ∈ 〈∅〉B; by the inductive assumption we can find

π ∈ T and term function wB of B such that

sA([α1, a1], . . . , [αn, an]) = [π, wB(γ1a1, . . . , γnan)]

and

sA([β1, b1], . . . , [βn, bn]) = [π, wB(δ1b1, . . . , δnbn)].

Now

tA([α1, a1], . . . , [αnan]) = vc
A([π, wB(γ1a1, . . . , γnan)]) = [1, c] = [1, vc

Bp
1

B(γ1a1, . . . , γnan)]

and similarly,

tA([β1, b1], . . . , [βn, bn]) = [1, vc
Bp

1

B(δ1b1, . . . , δnbn)].

On the other hand, suppose that tA = uρ
AsA for some ρ ∈ G; let π, wB be as above. Then

ρπ−1 = µ−1ν for some µ, ν ∈ T , giving that

tA([α1, a1], . . . , [αn, an]) = uρ
A([π, wB(γ1a1, . . . , γnan)]) = [µ, νwB(γ1a1, . . . , γnan)],

and

tA([β1, b1], . . . , [βn, bn]) = [µ, νwB(δ1b1, . . . , δnbn)].

Finally, we suppose that

tA = sA(w1

A, . . . , w
m
A )

for some m > 2 and basic m-ary operation sB of B. By our inductive assumption we can
find π1, . . . , πm ∈ T and n-ary term operations v1

B, . . . , v
m
B of B such that for 1 6 i 6 m,

wi
A([α1, a1], . . . , [αn, an]) = [πi, v

i
B(γ1a1, . . . , γnan)]

and

wi
A([β1, b1], . . . , [βn, bn]) = [πi, v

i
B(δ1b1, . . . , δnbn)].

Choose π, ρi with

π−1

i = π−1ρi for 1 6 i 6 m,
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so that

tA([α1, a1], . . . , [αn, an]) = sA([π1, v
1
B(γ1a1, . . . , γnan)], . . . , [πm, v

m
B (γ1a1, . . . , γnan)])

= [π, sB(ρ1v
1
B(γ1a1, . . . , γnan), . . . , ρmv

m
B (γ1a1, . . . , γnan))]

and similarly,

tA([β1, b1], . . . , [βn, bn]) = [π, sB(ρ1v
1

B(δ1b1, . . . , δnbn), . . . , ρmv
m
B (δ1b1, . . . , δnbn))]

as required. �

Lemma 4.12. The algebra A satisfies (FB).

Proof. It only remains to show that every independent subset of A is A-free. To this end
let

X = {[αi, ai] | i ∈ I}

be an independent subset of A, where we assume that for i 6= j, [αi, ai] 6= [αj, aj ]. By
Lemma 4.10, ai 6= aj for i 6= j, and Y = {ai | i ∈ I} is directly independent.

Suppose that θ : X → A is a map such that

[αi, ai]θ = [βi, bi].

We define

θ : 〈X〉A → A

by

tA([α1, a1], . . . , [αn, an])θ = tA([β1, b1], . . . , [βn, bn]).

If θ is well-defined, it is clear that it is a morphism and extends θ.
Suppose now that

tA([α1, a1], . . . , [αn, an]) = sA([α1, a1], . . . , [αn, an])

for some [α1, a1], . . . , [αn, an] ∈ X. From Lemma 4.11 there exists µ, ν, γ1, . . . , γn, δ1, . . . , δn ∈
T and n-ary term operations uB and vB such that

tA([α1, a1], . . . , [αn, an]) = [µ, uB(γ1a1, . . . , γnan)]
tA([β1, b1], . . . , [βn, bn]) = [µ, uB(δ1b1, . . . , δnbn)]
sA([α1, a1], . . . , [αn, an]) = [ν, vB(γ1a1, . . . , γnan)]

and

sA([β1, b1], . . . , [βn, bn]) = [ν, vB(δ1b1, . . . , δnbn)].

We have that

[µ, uB(γ1a1, . . . , γnan)] = [ν, vB(γ1a1, . . . , γnan)]

and so there exists π, τ ∈ T with

πµ = τν and πuB(γ1a1, . . . γnan) = τvB(γ1a1, . . . , γnan).

From [7, Lemma 2.8],

{γ1a1, . . . , γnan}
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is a directly independent subset of B of cardinality n. Now B is a basis algebra, so that
{γ1a1, . . . , γnan} is therefore A-free, and the function γiai 7→ δibi, 1 6 i 6 n, lifts to a
morphism from 〈{γ1a1, . . . , γnan}〉B to B. It follows that

πuB(δ1b1, . . . δnbn) = τvB(δ1b1, . . . , δnbn)

and consequently,

tA([β1, b1], . . . , [βn, bn]) = sA([β1, b1], . . . , [βn, bn])

so that θ is well-defined.
�

Having constructed the independence algebra A, we now define ι : B → A by bι = [1, b],
for any b ∈ B.

Lemma 4.13. The function ι is one-one and embeds B as a reduct of A.

Proof. If bι = cι for some b, c ∈ B, then from [1, b] = [1, c] we must have that

α 1 = β 1 and αb = βc

for some α, β ∈ T . Hence α = β so that αb = αc. By torsion-freeness we deduce that
b = c and ι is one-one. That ι embeds B as a reduct of A follows immediately from
Lemma 4.7. �

We can now present the main result of this section.

Theorem 4.14. Let B be a stable basis algebra satisfying the distributivity condition. Then
B is a reduct of an independence algebra A. Moreover, the rank of B is equal to the rank
of A.

Proof. We suppose that B is non-constant, else the result is clearly true with A = B. With
A constructed as above, it only remains to show that A and B have the same rank. We
can say rather more than this. Let Y ⊆ B. Observe that Y ι = {[1, y] | y ∈ Y } and
immediately from Lemma 4.10 we have that Z ⊆ Y is directly independent if and only if
Zι ⊆ Y ι is independent, so that PC-rankY = rankY ι.

Let X be a maximal directly independent subset of B, so that |X| = PC-rankB. Then
Xι is a maximal independent subset of Bι, so that by Lemma 2.1, X is a maximal inde-
pendent subset of 〈Bι〉 = A, and rankA = |Xι| = |X|. �

Corollary 4.15. Let B be a non-constant stable basis algebra satisfying the distributivity
condition, and let T be the monoid of non-constant unary term operations on B. Then the
following conditions are equivalent:

(i) T is a group;
(ii) B is an independence algebra;
(iii) End B is regular.

Proof. (i) ⇒ (ii) If T is a group, then T coincides with its group of left quotients G. Let
A be constructed as above and let ι : B → A be the given embedding. For any [α, a] ∈ A
we observe that [α, a] = [1, α−1a], so that Bι = A. Identifying B with its image in A we
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notice that the term operations of A and Bι coincide (although in general A has more
basic operations than B) so that for any X ⊆ A = B, 〈X〉A = 〈X〉B and clearly B is an
independence algebra.

(ii) ⇒ (iii) This follows from [12, Proposition 4.7].
(iii) ⇒ (i) Let X be a basis for B, fix x ∈ X and let α ∈ T . Define θ : B → B by

yθ = α(x) for all y ∈ X. Since End B is regular by assumption, there is an endomorphism
ϕ of B such that θϕθ = θ.

We have that

α(x) = xθ = xθϕθ = (α(x))ϕθ = α(xϕθ),

so that x = xϕθ since α is injective. Let xϕ = t(y1, . . . , yn) for some term t and y1, . . . , yn ∈
X. Consequently,

x = t(y1, . . . , yn)θ = t(y1θ, . . . , ynθ) = t(α(x), . . . , α(x)) = β(α(x))

for some β ∈ T . But {x} is B-free, so we deduce that b = βα(b) for all b ∈ B.
We have shown that β is a left inverse for α in the monoid T ; but T is cancellative, so

that α and β are mutually inverse. Consequently, T is a group. �

We end this section with an illustrative example. Let T be a cancellative monoid such
that its finitely generated left ideals are principal, and let B be the free left T -act on a
finite set X. We have commented that B is a finite rank stable basis algebra. The monoid
T is (isomorphic to) the monoid of (non-constant) unary term operations on B; we know
from our general theory that T must be right reversible; this is also easy to see directly,
since for any a, b ∈ T we have that Ta and Tb are comparable. Vacuously, B has the
distributivity property. The independence algebra constructed in Theorem 4.14 is the free
left G-act on X, where G is the group of left quotients of T .

5. End B is a left order in End A

Throughout this section we let B be a non-constant stable basis algebra satisfying the
distributivity condition, and let A be the independence algebra constructed as in Section 4.
We show that if B has finite rank, then End B is a left order in End A. For our preliminary
lemmas, however, we need impose no condition on the rank of B.

Lemma 5.1. The endomorphism monoid of B can be embedded in the endomorphism
monoid of A.

Proof. Let Y be a basis for B. It follows from Lemma 4.10 that X = Y ι = {[1, y] | y ∈ Y }
is independent in A. Moreover, from Lemma 4.8, X generates A and is thus a basis for A.

Let θ ∈ End B and define θ ∈ End A by the rule that

[1, y]θ = [1, yθ]
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for all [1, y] ∈ X. Let b ∈ B; as Y is a basis for B we have that b = tB(y1, . . . , yn) for some
yi ∈ Y . In view of Lemma 4.7,

[1, b]θ = [1, tB(y1, . . . , yn)]θ
= tA([1, y1], . . . , [1, yn])θ
= tA([1, y1]θ, . . . , [1, yn]θ)
= tA([1, y1θ], . . . , [1, ynθ])
= [1, tB(y1θ, . . . , ynθ)]
= [1, t(y1, . . . , yn)θ]
= [1, bθ].

Indeed we can say a little more than this. If [α, a] ∈ A, then

[α, a]θ = (uα−1

A ([1, a]))θ

= uα−1

A ([1, a]θ)

= uα−1

A ([1, aθ])
= [α, aθ].

Suppose now that θ = ϕ. Then for any b ∈ B, [1, b]θ = [1, b]ϕ, so that [1, bθ] = [1, bϕ]
and so bθ = bϕ since ι is an embedding. Hence θ = ϕ.

We now define Φ : EndB → EndA by the rule that

θΦ = θ.

By the above, Φ is an injection, and clearly IBΦ = IA.
Let θ, ϕ ∈ EndB. For any y ∈ Y we have that

[1, y]θ ϕ = [1, yθ]ϕ = [1, yθϕ] = [1, y]θϕ

so that θ ϕ and θϕ agree on a basis. Consequently, θ ϕ = θϕ and Φ is an embedding as
required. �

In what follows, for ψ ∈ EndB, ψ will denote the endomorphism of A constructed as in
Lemma 5.1.

Lemma 5.2. (i) Let θ ∈ EndB and let Y be a PC-basis for Im θ. Then

X = {[1, y] | y ∈ Y }

is a basis for Im θ.
(ii) If θ, ϕ ∈ EndB, then θL∗ ϕ in EndB if and only if θLϕ in EndA.

Proof. (i) Since Y is directly independent, X is independent by Lemma 4.10. Let C =
〈X〉A.

For any y = y′θ ∈ Y we have from Lemma 5.1 that

[1, y] = [1, y′θ] = [1, y′]θ ∈ Im θ,

so that X ⊆ Im θ and consequently, C ⊆ Im θ.
Let Z be a basis for B so that Zι is a basis for A. Certainly

Im θ = 〈{[1, z] | z ∈ Z}〉Aθ = 〈{[1, z]θ | z ∈ Z}〉A = 〈{[1, zθ] | z ∈ Z}〉A.
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For any z ∈ Z we have that
zθ ≺ Y

so that
zθ ∈ 〈∅〉 or α(zθ) = sB(y1, . . . , yn) /∈ 〈∅〉

for some y1, . . . , yn ∈ Y and term operations α and sB. In the first case, [1, zθ] ∈ C and in
the second, we must have that zθ /∈ 〈∅〉 and α ∈ T , so that

[1, αzθ] = [1, sB(y1, . . . , yn)] = sA([1, y1], . . . , [1, yn]) ∈ C,

using Lemma 4.7. But then [1, zθ] ∈ C and we deduce that Im θ ⊆ C. Hence C = Im θ as
required.

(ii) In view of the comments following the definition of L∗ and R∗, we need only show
that if θL∗ ϕ in EndB, then θLϕ in EndA. Suppose therefore that θL∗ ϕ, so that by
Proposition 3.4, PC(Im θ) = PC(Imϕ). Let Y and Z be bases (and hence PC-bases) for
Im θ and Imϕ respectively, so that

PC(Y ) = PC(Im θ) = PC(Imϕ) = PC(Z).

By (i) we have that

Im θ = 〈{[1, y] | y ∈ Y }〉A and Imϕ = 〈{[1, z] | z ∈ Z}〉A.

For any z ∈ Z we have that

z ∈ Imϕ ⊆ PC(Imϕ) = PC(Y )

so that z ≺ Y . Hence z ∈ 〈∅〉B, or αz = u(y1, . . . , yn) /∈ 〈∅〉B for some α ∈ T, y1, . . . , yn ∈ Y
and term function uB. In the first case, [1, z] ∈ 〈∅〉A ⊆ Im θ and in the second,

[1, αz] = [1, u(y1, . . . , yn)] ∈ Im θ,

by Lemma 4.8. But then [1, z] ∈ Im θ, whence Imϕ ⊆ Im θ. Together with the dual
argument we obtain that Im θ = Imϕ so that θLϕ by Proposition 3.2.

�

We can now state the second of the two main results of this article.

Theorem 5.3. Let B be a stable basis algebra satisfying the distributivity condition, with
finite PC-rank n > 1. Then B is a reduct of an independence algebra A such that EndB
is a left order in EndA.

Proof. Let A be constructed as given in Section 4. It only remains to show that EndB is
a left order in EndA.

Let Y = {b1, . . . , bn} be a basis for B, so that as in Lemma 5.1,

X = Y ι = {[1, b1], . . . , [1, bn]}

is a basis for A. Let θ ∈ EndA; by a now standard argument using the common denomi-
nator theorem we can write

[1, bi]θ = [α, ai],

for some α ∈ T and ai ∈ B, 1 6 i 6 n.
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Define κ ∈ EndB by biκ = αbi, 1 6 i 6 n. Then κ ∈ EndA is given by

[1, bi]κ = [1, αbi], 1 6 i 6 n.

We now define τ ∈ EndA by the rule that

[1, bi]τ = [α, bi], 1 6 i 6 n.

We claim that κ and τ are mutually inverse in EndA. To see this, we calculate that for
i ∈ {1, . . . , n},

[1, bi]κτ = [1, αbi]τ = (uα
A([1, bi]))τ = uα

A([1, bi]τ) = uα
A([α, bi]) = [1, bi],

so that consequently, κτ = IA. The monoid EndA is local, so we obtain that κ and τ are
mutually inverse.

Finally we define ϕ ∈ EndB by the rule that

biϕ = ai, 1 6 i 6 n.

Then ϕ ∈ EndA and
[1, bi]τϕ = [α, bi]ϕ

= (uα−1

A ([1, bi]))ϕ

= uα−1

A ([1, bi]ϕ)

= uα−1

A ([1, biϕ])

= uα−1

A ([1, ai])
= [α, ai]
= [1, bi]θ.

Consequently, θ = τϕ = κ−1ϕ.
It remains to show that every square-cancellable element of EndB lies in a subgroup of

EndA; more properly, that if θ ∈ EndB and θH∗ θ2, then θ lies in a subgroup of EndA.
Suppose then that θ ∈ EndB is square-cancellable, so that in particular, θL∗ θ2. By

Lemma 5.2,

θL θ2 = θ
2
.

Proposition 3.3 tells us that θH θ
2
, whence by Theorem 3.1, θ lies in a subgroup of EndA.

�

6. When is End B straight in End A?

The main success achieved in characterising left orders in semigroups, and the most
natural examples of left orders have, to date, been in the case where the left orders are
straight (see Section 3). Rather surprisingly, not all of our left orders of the form EndB
where B is a finite rank stable basis algebra satisfying the distributivity condition, need
be straight. We prove in this section that for such a B, EndB is straight in EndA,
where A is the independence algebra constructed as in Section 4, if and only the monoid
T of non-constant unary term operations satisfies a rather natural property we call the
‘constant isomorphism’ condition, and, if n > 2, T is left reversible. This result is all the
more curious, since Theorem 6.12 of [7] tells us that EndB is a straight left order in some
semigroup.
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We remark that for any α ∈ T ,

α|〈∅〉B : 〈∅〉B → 〈∅〉B

is a one-one map since B is torsion-free. We say that B satisfies the constant isomorphism
condition (CI) if

α|〈∅〉B : 〈∅〉B → 〈∅〉B

is onto, hence an isomorphism of the constant subalgebra.
We begin our argument with a subsidiary result.

Lemma 6.1. Let A be an independence algebra with basis {x1, . . . , xn}. Let k ∈ {0, . . . , n}
and let θ ∈ EndA be defined by the rule

xiθ = xi, 1 6 i 6 k

and
xjθ = uj ∈ 〈{x1, . . . , xk}〉, k + 1 6 j 6 n.

Then
Ker θ = 〈{(xj, uj) | k + 1 6 j 6 n}.

Proof. Let ρ = 〈{(xj, uj) | k + 1 6 j 6 n}〉; clearly, ρ ⊆ Ker θ. On the other hand, if
v(x1, . . . , xn), w(x1, . . . , xn) ∈ A and

v(x1, . . . , xn)θ = w(x1, . . . , xn)θ,

then

v(x1, . . . , xn) ρ v(x1, . . . , xk, uk+1, . . . , un) = w(x1, . . . , xk, uk+1, . . . , un) ρw(x1, . . . , xn),

so that Ker θ ⊆ ρ. �

Our first characterisation of straightness is technical; we will simplify later to the con-
ditions given at the beginning of this section.

Proposition 6.2. Let B be a stable basis algebra of finite rank n > 1, satisfying the
distributivity condition, let A be the independence algebra constructed as in Section 4, and
let − : EndB → EndA be the embedding as given in Section 5. Then EndB is a straight
left order in EndA if and only if for any k ∈ {0, . . . , n}, k-ary term operations tk+1

B , . . . , tnB
and α ∈ T , there exist directly independent a1, . . . , ak ∈ B with

tjB(a1, . . . , ak) ∈ α(B), k + 1 6 j 6 n.

Proof. Let {b1, . . . , bn} be a basis for B, so that as in Lemma 5.1, {[1, b1], . . . , [1, bn]} is a
basis for A.

Suppose first that EndB is straight in EndA and let k, α and tk+1

B . . . , tnB be as given.
Define θ ∈ EndA by the rule that

[1, bi]θ = [1, bi], 1 6 i 6 k

and
[1, bj ]θ = [α, tjB(b1, . . . , bk)], k + 1 6 j 6 n.
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Since [α, tjB(b1, . . . , bk)] ∈ 〈{[1, bi] | 1 6 i 6 k}〉A we have that

Im θ = 〈{[1, bi] | 1 6 i 6 k}〉A.

Further, θ restricts to the identity on 〈{[1, bi] | 1 6 i 6 k}〉A, so that for k + 1 6 j 6 n,

[1, bj ]θ = [α, tjB(b1, . . . , bk)]θ

and moreover by Lemma 6.1,

Ker θ = 〈{([1, bj], [α, t
j
B(b1, . . . , bk)]) | k + 1 6 j 6 n}〉.

By assumption, EndB is straight in EndA, so that by [13, Proposition 3.1], θHϕ for
some ϕ ∈ EndB. Put biϕ = ai so that [1, bi]ϕ = [1, ai], 1 6 i 6 n. Since Ker θ = Kerϕ we
have that for k + 1 6 j 6 n,

[1, aj ] = [1, bj]ϕ

= [α, tjB(b1, . . . , bk)]ϕ

= [α, tjB(a1, . . . , ak)],

using Lemma 5.1, so that

Imϕ = 〈{[1, a1], . . . , [1, ak]〉A.

We know that k = rank θ = rankϕ, whence [1, a1], . . . , [1, ak] are independent. From
Lemma 4.10, a1, . . . , ak are directly independent. For k + 1 6 j 6 n we use Lemma 4.2 to
deduce from [1, aj ] = [α, tjB(a1, . . . , ak)] that tj(a1, . . . , ak) = αaj .

Conversely we suppose that the given condition holds. We begin by considering an
endomorphism θ : A→ A of rank k defined by the rule that

[1, bi]θ = [1, bi] 1 6 i 6 k

[1, bj ]θ = vj
A([1, b1], . . . , [1, bk]) k + 1 6 j 6 n.

Notice that from Lemma 6.1,

Ker θ = 〈{([1, bj], v
j
A([1, b1], . . . , [1, bk]) | k + 1 6 j 6 n}〉.

In view of Lemmas 3.8 and 4.8, we can find term operations tjB, k + 1 6 j 6 n and α ∈ T
such that

[1, bj ]θ = [α, tjB(b1, . . . , bk)], k + 1 6 j 6 n.

We now invoke our hypothesis to choose directly independent a1, . . . , ak in B such that

tjB(a1, . . . , ak) = αaj, k + 1 6 j 6 n

for some ak+1, . . . , an ∈ B. Defining ϕ : B → B by the rule that biϕ = ai, 1 6 i 6 n, we
claim that ϕR θ.

Making use of an observation in Lemma 5.1,

[α, tjB(b1, . . . , bk)]ϕ = [α, tjB(a1, . . . , ak).]

On the other hand, by Lemma 4.2,

[1, bj]ϕ = [1, aj ] = [α, tjB(a1, . . . , ak)],
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and we deduce that Ker θ ⊆ Kerϕ. Clearly Imϕ = 〈{[1, a1], . . . , [1, ak]}〉A, so that as
{a1, . . . , ak} are directly independent by assumption, ϕ has rank k. By Proposition 3.3
now gives that θRϕ.

Now choose an arbitrary ψ ∈ EndA with rank k. Without loss of generality we may
assume that

Imψ = 〈{[1, b1]ψ, . . . , [1, bk]ψ}〉A

where [1, b1]ψ, . . . , [1, bk]ψ are independent, and for for k + 1 6 j 6 n,

[1, bj]ψ ∈ 〈{[1, b1]ψ, . . . , [1, bk]ψ}〉A.

Define µ : Imψ → A by the rule that

[1, bi]ψµ = [1, bi].

By [12, Lemma 3.7], µ is a one-one morphism, so that Kerψµ = Kerψ and ψµRψ. From
the above we know that ψµRϕ for some ϕ ∈ EndB, so that ψRϕ. We conclude that
every R-class of EndA contains an element of (the image of ) EndB.

For the remainder of the proof, suppose that θ ∈ EndA and ϕ ∈ EndB with θRϕ. We
aim to show that there exists κ ∈ EndB with θHκ.

By Proposition 3.3 and Lemma 5.2, θ, ϕ and ϕ all have the same rank. From [7, Theorem
4.9], ϕL∗ ε for some ε = ε2 ∈ EndB so that from Lemma 5.2. ϕL ε. Now [7, Lemma 4.7]
tells us that Im ε is pure in B, so that as B is a basis algebra, Im ε has a basis Y which
can be extended to a basis Y ∪ Z of B. Certainly Y is a PC-basis for Im ε so that from
Lemma 5.2,

X = {[1, y] | y ∈ Y }

is a basis for Im ε = Imϕ.
Since θ and ϕ have the same rank, we have a basis T = {[αy, ay] | y ∈ Y } for Im θ,

where [αy, ay] 6= [ay′ , ay′ ] for y 6= y′. Clearly U = {[1, ay] | y ∈ Y } generates Im θ and by
two applications of Lemma 4.8, U is independent and hence a basis for Im θ.

Define ξ ∈ EndB by fixing its value on the basis Y ∪ Z by

yξ = ay, zξ = b for y ∈ Y, z ∈ Z and fixed b ∈ B.

Then Imϕ ξ = Im θ, whence ϕ ξ = ϕξ L θ. Further, ξ|X is one-one and Xξ = U is
independent, so that by [12, Lemma 3.7], ξ|〈X〉A is one-one. Thus Kerϕξ = Ker θ giving

that ϕξR θ. We have therefore shown that ϕξH θ so that by [13, Proposition 3.1], EndB
is straight in EndA as claimed. �

We can now prove our final result.

Theorem 6.3. Let B be a stable basis algebra of finite rank n > 1, satisfying the distribu-
tivity condition, and let T be the monoid of non-constant unary term operations. Let A be
the independence algebra constructed as in Section 4, and let − : EndB → EndA be the
embedding as given in Section 5. Then EndB is a straight left order in EndA if and only
if B satisfies (CI) and if n > 2, T is left reversible.
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Proof. Suppose first that EndB is straight in EndA. Let α ∈ T ; we are required to argue
that α|〈∅〉B : 〈∅〉B → 〈∅〉B is onto. To this end, let c ∈ 〈∅〉B. Let k = 0 and consider
the nullary term operation wc

B : B → B with image c. Put ti = wc
B for 1 6 i 6 n; by

Proposition 6.2, c = wc
B(∅) = αb for some b ∈ B. But we are then forced to have b ∈ 〈∅〉B,

so that α|〈∅〉 : 〈∅〉B → 〈∅〉B is onto.
Suppose now that n > 2. In order to show that T is left reversible, let α, β ∈ T , put

k = 1 and let t2B = . . . = tnB be the unary term operations given by

tjB(x) = β(x).

From Proposition 6.2, there is a element a1 ∈ B with {a1} directly independent such that

β(a1) = t2B(a1) = α(a2)

for some a2 ∈ B. It follows that β(a1) /∈ 〈∅〉B, so that a2 /∈ 〈∅〉B and a2 ≺ {a1}. Let {d}
be a basis for PC({a1}), so that

〈{d}〉B = PC({a1}).

We therefore have that

a1 = γ(d) and a2 = δ(d)

for some unary term operations γ, δ. Clearly γ, δ ∈ T and we have that

βγ(d) = αδ(d).

Now {d} is B-free, whence βγ(b) = αδ(b) for all b ∈ B. But this says that βγ = αδ and T
is left reversible as required.

Conversely, we suppose that B has (CI) and in the case that n > 2, that T is left
reversible. We show that the condition given in Proposition 6.2 holds.

Consider first the case where k = 0. Let α ∈ T and let t1B, . . . , t
n
B be nullary term

operations on B. Let cj ∈ 〈∅〉B be the image of tjB for 1 6 j 6 n. By our assumption that

B has (CI), there exist d1, . . . , dn ∈ 〈∅〉B such that for 1 6 j 6 n, tjB(∅) = cj = αdj.
Suppose now that k > 1. Notice that if k = n then the condition of Proposition 6.2 is

vacuously satisfied. We assume therefore that k < n so that n > 2 and T is therefore left
reversible.

At this stage it is convenient to consider the free term algebra Tk on {x1, . . . , xk} having
the same signature as B. We write 〈∅〉 for 〈∅〉Tk

and denote elements of 〈∅〉 by c, where
c is the corresponding element of 〈∅〉B, and write α for a basic unary operation with
interpretation α in T . For an arbitrary term u of Tk we denote by uB its interpretation in
B.

Let u1, . . . , um be a finite list of k-ary term operations in Tk. Assume for the moment
that this list is of the form

p1, . . . , pk, v1, . . . , vh

where for 1 6 ℓ 6 k, pℓ is the ℓ’th projection and for 1 6 i 6 h, vi = κci where (with
some abuse of notation), κci is the k-ary constant term operation having constant image
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ci ∈ 〈∅〉. Since B has (CI) we can find elements di ∈ 〈∅〉B such that ci = αdi, 1 6 i 6 h.
Let {b1, . . . , bn} be a basis for B and put aℓ = αbℓ, 1 6 ℓ 6 k. Then

pℓ
B(a1, . . . , ak) = pℓ

B(αb1, . . . , αbk) = αbℓ and vi
B(a1, . . . , ak) = ci = αdi

for 1 6 ℓ 6 k and 1 6 i 6 h. Moreover, {a1, . . . , ak} is directly independent, by [7, Lemma
2.8].

We now consider an arbitrary finite list L

u1, . . . , um

of k-ary term operations of Tk and show by induction on

N(L ) = Σm
j=1N(uj)

where N(uj) is the number of basic operations needed to construct uj from projections and
elements of 〈∅〉, that for any α ∈ T there are directly independent elements a1, . . . , ak ∈ B
such that

uj
B(a1, . . . , ak) ∈ α(B), 1 6 i 6 m,

whence the condition of Proposition 6.2 follows immediately.
The case for N = 0 has been successfully argued. Suppose now that N(L ) > 0 and

the result is true for all lists L ′ with N(L ′) < N(L ). Fix α ∈ T . Since N(L ) > 0 we
must be able to find an element of the list, which without loss of generality we may take
to be um, such that um is neither a projection nor of the form κc. There are three cases to
consider.

We first look at the situation where um = δs(y1, . . . , yk), where δ is unary and δ = κc ∈
TC . Let L ′ be the list

u1, . . . , um−1, s

so that N(L ′) < N(L ) and by our inductive assumption, there are directly independent
a1, . . . , ak ∈ B with

uj
B(a1, . . . , ak) = αdj, sB(a1, . . . , ak) = αd

for some d1, . . . , dm−1, d ∈ B. We then observe that

um
B (a1, . . . , ak) = δsB(a1, . . . , ak) = c = αb

for some b, by our assumption that B has (CI).
Next, we consider the case where um = βs(y1, . . . , yk), where β ∈ T . Now T is left

reversible, so that βαδ = αγ for some δ, γ ∈ T . Using our inductive assumption for the
element αδ ∈ T , we can find directly independent a1, . . . , ak ∈ B with

uj
B(a1, . . . , ak) = (αδ)dj = α(δdj) and sB(a1, . . . , ak) = (αδ)d

for some d1, . . . , dm−1, d ∈ B. Then

um
B (a1, . . . , ak) = βsB(a1, . . . , ak) = β(αδd) = (βαδ)d = (αγ)d = α(γd).

Our final case is straightforward. We assume that

um(y1, . . . , yk) = t(s1(y1, . . . , yk), . . . , s
ℓ(y1, . . . , yk))
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where ℓ > 2 and t is a basic ℓ-ary operation. Let L ′ be the list

u1, . . . , um−1, s1, . . . , s
ℓ

so that N(L ′) < N(L ) and our inductive assumption provides us with directly indepen-
dent elements a1, . . . , ak ∈ B such that

ui
B(a1, . . . , ak) = αdi, s

j
B(a1, . . . , ak) = αbj ,

for 1 6 i 6 m− 1 and 1 6 j 6 ℓ. But B has the distributivity condition, so that

um
B (a1, . . . , ak) = tB(s1

B(a1, . . . , ak), . . . , s
ℓ
B(a1, . . . , ak)) = tB(αb1, . . . , αbℓ) = αtB(b1, . . . , bℓ)

thus completing our proof that the condition of Proposition 6.2 holds. By that result,
EndB is straight in EndA as required. �

Our final result follows immediately from the comments at the end of Section 4.

Corollary 6.4. Let B be a free T -act on a finite set X with |X| > 2, where T is a
cancellative monoid such that finitely generated left ideals are principal, so that B is a
finite rank stable basis algebra. Let A be the free G-set on X, so that A is an independence
algebra and B is a reduct of A and EndB is a left order in EndA. Then EndB is straight
in EndA if and only if T is left reversible.

To see that not all cancellative monoids in which the principal left ideals are linearly
ordered are left reversible, we consider the R-class of a certain Bruck-Reilly monoid. It is
clear that for any monoid S, R1, that is, the R-class of the identity, is a right cancellative
monoid.

Example 6.5. Let G be the free group on the set X = {x1, x2, . . .} and let θ be the
endomorphism of G determined by xiθ = xi+1. Then for BR(G, θ) the monoid R1 is
cancellative with principal left ideals linearly ordered, but is not left reversible.

Proof. Notice that θ is certainly one-one. Hence if

(0, g, n)(0, h,m) = (0, g, n)(0, k, ℓ)

we calculate that

(0, g hθn, m+ n) = (0, g kθn, ℓ+ n)

and so m = ℓ and (as θn is one-one), h = k and (0, h,m) = (0, k, ℓ) and R1 is cancellative
as required.

Suppose now that (0, w, n), (0, v, n+ k) ∈ R1, where k > 0. Then

(0, v, n+ k) = (0, v(wθk)−1, k)(0, w, n)

so that
R1(0, v, n+ k) ⊆ R1(0, w, n)

and the principal left ideals of T are linearly ordered.
Finally, R1 is not left reversible. For if

(0, x1, 1)(0, g, n) = (0, ε, 1)(0, h,m)
29



where ε is the identity of G, then we would obtain x1 = (hθ)(gθ)−1 ∈ Im θ, a contradiction.
�
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