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Abstract. A monoid S is right coherent if every finitely generated subact of every finitely
presented right S-act is finitely presented. This is a finiteness condition, and we investi-
gate whether or not it is preserved under some standard algebraic and semigroup theoretic
constructions: subsemigroups, homomorphic images, direct products, Rees matrix semi-
groups, including Brandt semigroups, and Bruck–Reilly extensions. We also investigate
the relationship with the property of being weakly right noetherian, which requires all
right ideals of S to be finitely generated.

1. Introduction

A finitary property for a class of algebraic structures A is a property that is certainly
satisfied by all finite algebras in A. Of course, one hopes that the property will also be
satisfied by some infinite members of A, in such a way that it forces finite-like behaviour.
Studying algebras via their finitary properties is a classical tool, introduced by Noether
and Artin in the early part of the last century in the context of descending and ascending
chain conditions for ‘classical’ algebras such as rings. It has very broad implications today
in areas ranging from structure theory to decidability problems.

In this paper we work with the class of monoids, and the finitary property is that of
right coherency. We arrive at this property by considering representations of monoids by
mappings of sets, as we now describe. Let S be a monoid with identity 1. A right S-act
is a set A together with a map A × S → A where (a, s) 7→ as, such that for all a ∈ A
and s, t ∈ S we have a1 = a and a(st) = (as)t. A right action of S on A may also be
viewed as a morphism from S to the monoid of all mappings of A to itself (with left-to-right
composition). We also have the dual notion of a left S-act. Right S-acts over a monoid S
may be regarded as the non-additive analogue of right R-modules over a (unital) ring R.
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Although the study of the two notions diverges considerably once technicalities set in, one
can often begin by forming analogous notions and asking corresponding questions.

A monoid S is said to be right coherent if every finitely generated subact of every finitely
presented right S-act is finitely presented. Left coherency is defined dually; S is coherent
if it is both right and left coherent. These notions are analogous to their name-sakes for
a ring R [3] (where, of course, S-acts are replaced by R-modules). Coherency is a finitary
condition for both rings and monoids. As demonstrated by Wheeler [19], it is intimately
related to the model theory of S-acts and R-modules. Indeed, the first order theory of right
S-acts (respectively, right R-modules) has a model companion if and only if S (respectively,
R), is right coherent. Having a model companion ensures that the first order theory is well
behaved, in particular, it is amenable to the application of concepts of stability [4, 5, 13].

This paper is the third in a recent series [9, 8] investigating coherency of monoids. Its
predecessors were concerned with free monoids in certain varieties of monoids and unary
monoids. In particular, [9] showed that all free monoids are coherent, building upon the
earlier observation in [6] that free commutative monoids are coherent, and resolving an
open question from that paper. This theme is continued in [8], where it was shown that
any free left ample monoid is coherent, while free inverse monoids and free ample monoids
of rank > 1 are not. In this paper we change tack somewhat, and note that little is
known concerning the preservation of right coherency of monoids under standard algebraic
constructions. Our primary aim is to start investigations exploring this strand. This also
entails establishing connections between right coherency and finitary properties relating to
the lattice of right ideals of a monoid.

In what follows we outline the organisation and content of the paper. In Section 2 we
introduce the background material needed for the rest of the paper. This in particular
includes the relationship between coherency and right congruences. In the case of rings,
coherency can be characterised by properties of certain right ideals. Although monoids
have right ideals, where a right ideal I of S is a subset such that IS ⊆ I, they do not play
the same role as in the case for rings, because we do not obtain all single generator right
S-acts by factoring out by a right ideal. In this regard the natural notion corresponding
to a right ideal in a ring is that of a right congruence of a monoid, that is, an equivalence
relation ρ on S such that ac ρ bc for all a, b, c ∈ S with a ρ b. Right ideals give rise to right
congruences, but not all right congruences are obtained in this way. In Section 2 we will
review the standard conditions expressing coherency in terms of properties of congruences,
as well as all other background material needed for the rest of the paper.

In Section 3 we explore further the link between congruences and coherency, and relate the
latter with another finiteness condition, that of being weakly right noetherian. A monoid
S has this property if every right ideal is finitely generated, and is right noetherian if every
right congruence is finitely generated. From Normak [15], a right noetherian monoid is
right coherent. In the parallel situation for rings, it is well known that the notions of being
right noetherian and of being weakly right noetherian coincide, and that they imply right
coherency (see, for example, [17]). On the other hand, for a monoid, the notion of being
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weakly right noetherian is easily seen to be weaker than that of being right noetherian.
For example, any group is weakly right noetherian, but, since (finitely generated) right
congruences correspond to (finitely generated) subgroups, it follows that not all groups
are right noetherian. Moreover, [6, Example 3.1] tells us that, in general, a weakly right
noetherian monoid need not be right coherent. However, if we restrict our attention to
regular monoids S, meaning that for all a ∈ S there exists b ∈ S such that a = aba, then
we can demonstrate a stronger link between right ideals and coherency (Theorem 3.2),
from which we are able to deduce:

• Any weakly right noetherian regular monoid is right coherent (Corollary 3.3).

It is known that there are right coherent monoids that are not weakly right noetherian, for
example, any free monoid of rank greater than one [9]. We exhibit two further examples
at the end of Section 3, both of them regular, in order to demonstrate the independence
of various conditions we consider.

In Section 4 we show that certain natural submonoids of right coherent monoids are right
coherent. In particular:

• For any right coherent monoid S, any monoid ideal and any monoid J -class are right
coherent (Corollary 4.2 and Theorem 4.8).

In the final part of Section 4 and the entire Section 5 we focus on Brandt monoids B(M, I)1,
for which we can present a complete picture:

• A monoid M is right coherent if and only if any Brandt monoid B(M, I)1 is right
coherent (Corollary 4.10 and Theorem 5.1).

We also consider two related constructions – Rees matrix semigroups and Bruck–Reilly
extensions – but for them are only able to present partial results in Proposition 3.5 and
Corollaries 3.4, 4.11.

Section 6 is devoted to right coherency of direct products. We exhibit an example which
shows that direct products do not preserve coherency in general, and then prove:

• If S is a right coherent monoid and T is a finite monoid, then S × T is right coherent
(Theorem 6.4).

We regard the work in this paper as an opener in the discussion of the behaviour of
coherency with regard to natural semigroup constructions, and its relation to other finitary
properties. As we proceed we suggest a number of directions for future work. As far as
possible we have attempted to make the material self contained, but refer the reader to
[11] and [12] for more details of the terminology.
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2. Preliminaries

Let S be a monoid with identity 1. We allow ∅ to be a subact of any S-act. The monoid
S may be regarded as a right S-act over itself, and as such its subacts are exactly its right
ideals, so that, in particular, we allow ∅ to be a right ideal. In the category of right S-acts,
a morphism between right S-acts A and B is a map θ : A → B such that (as)θ = (aθ)s
for all a ∈ A and s ∈ S; we refer to θ as an S-morphism. Since S-acts form a variety
of algebras, the free S-act FS(X) over any set X exists. The following describes its very
transparent structure.

Proposition 2.1 ([12, Construction 1.5.14]). Let X be a set and S a monoid. Then
FS(X) = X × S with the action of S defined as (x, s) · t = (x, st).

For simplicity in the above we abbreviate (x, s) to xs and x1 to x.

For a right S-act A and a ∈ A define aS := {as : s ∈ S}. Then A is finitely generated if
there exist a1, . . . , an ∈ A such that

A = a1S ∪ a2S ∪ . . . ∪ anS.
This is equivalent to A being an image of a finitely generated free S-act FS(X) where
|X| = n, under an S-morphism. Thus A is S-isomorphic to a quotient of FS(X), as we
now explain.

Definition 2.2. Let A be a right S-act. An equivalence relation ρ on A is a right S-act
congruence on A (congruence for short, when there is no danger of confusion) if a ρ b
implies as ρ bs for all a, b ∈ A and s ∈ S.

If ρ is a congruence on a right S-act A, then the quotient

A/ρ = {aρ : a ∈ A}
is a right S-act under (aρ)s = (as)ρ, for any a ∈ A and s ∈ S. The congruences of S
considered as a right S-act are precisely the right congruences of S considered as a monoid.
For any right S-act A, and any a ∈ A, the annihilator of a is

r(a) :=
{

(u, v) ∈ S × S : au = av
}

;

this is a right congruence on S and S/ r(a) ∼= aS.

Generating sets for congruences, and, in particular, congruences that can be generated
by finite sets, play a key role in this paper. For a set H consisting of ordered pairs we
let H−1 :=

{
(x, y) : (y, x) ∈ H

}
. We then let H = H ∪ H−1, which is the symmetric

closure of H. This notation will be used throughout the paper without further comment.
If H ⊆ A × A, where A is an S-act, we denote by 〈H〉 the congruence on A generated
by H; that is the least congruence on A that contains H. Note that 〈H〉 = 〈H〉, which
enables us to replace a (finite) generating set by a symmetric (finite) generating set for
any congruence. When we want to emphasise the act within which we are generating a
congruence, we will write 〈H〉A for 〈H〉. The following is a standard description of 〈H〉:
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Lemma 2.3 ([12, Lemma 1.4.37]). Let S be a monoid, A an S-act, and H ⊆ S×S. Then
for a, b ∈ A we have (a, b) ∈ 〈H〉 if and only if a = b or there exist (c1, d1), . . . , (cn, dn) ∈ H
and t1, . . . , tn ∈ S such that

(1) a = c1t1, d1t1 = c2t2, . . . , dntn = b.

Definition 2.4. A sequence of the form (1) is called an H-sequence connecting a and b.

Definition 2.5. A right S-act A over a monoid S is finitely presented if it is isomorphic
to FS(X)/ρ for some finite set X and finitely generated congruence ρ.

It is well-known from universal algebra that the notion of finite presentability does not
depend on the choice of finite generating set; see [2, Section 1.5 and Theorem 2.5.5]. In
particular, any finitely presented monogenic (single-generator) S-act is of the form S/ρ
where ρ is a finitely generated right congruence on S. Having set up all the necessary
notations, we now give some equivalent characterisations of right coherent monoids that
will be used interchangeably throughout the paper:

Theorem 2.6 ([5, 6]). The following are equivalent for a monoid S:

(1) S is right coherent;

(2) for any finitely generated right congruence ρ on S and any elements a, b ∈ S:
(i) the subact (aρ)S ∩ (bρ)S of the right S-act S/ρ is finitely generated;

(ii) the annihilator
r(aρ) =

{
(u, v) : au ρ av

}
is a finitely generated right congruence on S;

(3) for any finite X and finitely generated right congruence ρ on FS(X) and any a, b ∈
FS(X):

(i) the subact (aρ)S ∩ (bρ)S of the right S-act FS(X)/ρ is finitely generated;

(ii) the annihilator
r(aρ) =

{
(u, v) : au ρ av

}
is a finitely generated right congruence on S.

The equivalence of (1) and (2) in Theorem 2.6 is [6, Corollary 3.4]; that of (2) and (3)
follows from [5, Theorem 6] and [6, Proposition 3.2].

Let us briefly review some basic concepts of semigroup theory which will be used through-
out. For a monoid S we will denote by E(S) the set of all idempotents of S. There is
a natural partial order on E(S) defined by e ≤ f if and only if ef = fe = e. Green’s
relation R is defined as follows: for a, b ∈ S we have aR b if and only if aS = bS, or,
equivalently, a = bs, b = at for some s, t ∈ S. The relation L is defined dually, H = R∩L
and D = R ◦ L = L ◦ R. Finally, aJ b if and only if SaS = SbS. A monoid is regular if
and only if every R-class contains an idempotent, or equivalently, every L-class contains
an idempotent. If there is a unique idempotent in each R-class and in each L-class then
the monoid is inverse.
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Associated to J is a preorder ≤J defined by a ≤J b if and only if SaS ⊆ SbS. Clearly,
aJ b if and only if a ≤J b and b ≤J a. More details about Green’s relations and of other
semigroup notions may be found in [11].

In this paper we will consider some standard semigroup constructions, built over a monoid
M . For convenience we now briefly introduce them; further details may be found in [11].

Let M be a monoid, I,Λ non-empty sets, and P = (pλi) a Λ× I matrix with entries from
M . Then the Rees matrix semigroup M(M ; I,Λ;P ) over M is the set I ×M × Λ with
multiplication

(i, a, λ)(j, b, µ) = (i, apλjb, µ).

When M is a group M(M ; I,Λ;P ) is a completely simple semigroup (i.e. a semigroup
with no proper two-sided ideals possessing minimal left and right ideals), and all such
semigroups arise in this way; see [11, Theorem 3.3.1].

This construction can be generalised to a Rees matrix semigroup with zero M0(M ; I,Λ;P )
as follows: this time the entries of P come from M ∪ {0}, where 0 is a new symbol not in
P . The set of elements of M0(M ; I,Λ;P ) is (I ×M × Λ) ∪ {0}, and the multiplication is
given by:

(i, a, λ)(j, b, µ) =

{
(i, apλjb, µ) if pλj ∈M,

0 if pλj = 0,

0(i, a, λ) = (i, a, λ)0 = 0 · 0 = 0.

Rees matrix semigroups with 0 over a group with the additional condition that every row
and every column of P contain at least one entry over M are precisely completely 0-simple
semigroups, i.e. semigroups with 0, with no proper non-zero ideals, and possessing minimal
non-zero left and right ideals.

A special case of the latter construction is obtained by taking I = Λ, and P the I × I
identity matrix. This yields a Brandt semigroup B(M ; I). Here the the set of elements is
(I ×M × I) ∪ {0} and the multiplication is given by

(i, a, j)(j, b, `) =

{
(i, ab, `) if j = k,

0 if j 6= k,

0(i, a, j) = (i, a, j)0 = 0 · 0 = 0.

Brandt semigroups over groups are precisely completely 0-simple inverse semigroups.

Rees matrix semigroups, or Brandt semigroups, are not (except in degenerate cases)
monoids; if we adjoin an identity we refer to them as Rees matrix monoids or Brandt
monoids, respectively.

The final construction we introduce here is that of a Bruck–Reilly extension BR(M, θ) of
a monoid M . Here, M is any monoid, θ : M → M an endomorphism, the set of elements
is N0 ×M ×N0, where N0 denotes the natural numbers including zero, and multiplication
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is given by

(a, g, b)(c, h, d) = (a− b+ t, (gθt−b)(hθt−c), d− c+ t) where t = max{b, c}.
Special instances of this construction were introduced by Bruck [1] and Reilly [16], after
whom it is now named. In the case where the image of θ is contained in the group of
units of M , properties such as regularity pass between M and BR(M, θ); making such a
restriction here does not advance our results and so we do not impose it.

Bruck–Reilly extensions of groups are precisely bisimple inverse ω-semigroups, i.e. inverse
semigroups with a single D-class in which the natural order on idempotents is isomorphic
to the inversely ordered chain ω, i.e. 0 > 1 > 2 > . . . .

3. Coherency and noetherian properties

We have commented that, in general, a weakly right noetherian monoid need not be right
coherent. However, this implication does hold for regular monoids. In fact, we can prove
a more general result, building on [7, Theorem 5.2], where Gould showed that any regular
monoid in which every right ideal is principal is right coherent.

We make repeated use of the following straightforward observation.

Lemma 3.1. [7, Lemma 5.1] Let I be a right ideal of a monoid S, let ρ be a right congruence
on S and let x, y ∈ S.

(i) The set

Iρ = {s ∈ S : s ρ a for some a ∈ I} =
⋃
{aρ : a ∈ I}

is a right ideal of S containing I.

(ii) The set

(I, x) = {t ∈ S : xt ∈ I}
is a right ideal of S.

(iii) If x ρ y then (Iρ, x) = (Iρ, y).

The right ideal Iρ defined in (i) above is known as the ρ-closure of I. In the following
result, the reader should keep in mind the following notational subtlety: for an element
a ∈ S, (aS)ρ is a right ideal of S, whereas (aρ)S is the monogenic subact of S/ρ generated
by aρ.

Theorem 3.2. If S is a regular monoid in which for every finitely generated right con-
gruence ρ and every a, b, x, y ∈ S the right ideals (aS)ρ ∩ (bS)ρ and (aS, x) ∩ (bS, y) are
finitely generated, then S is right coherent.

Proof. Let ρ be a finitely generated right congruence on S, where S satisfies the conditions
of the hypothesis. We may assume that ρ = 〈X〉 for some finite symmetric subset X ⊆
S × S.
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We show that the conditions of Theorem 2.6(2) hold. To see that (2)(i) holds, let a, b ∈ S.
Note that the map ι : (aS)ρ ∩ (bS)ρ → (aρ)S ∩ (bρ)S such that x 7→ xρ is a surjective
morphism between right S-acts. Since the right ideal (aS)ρ ∩ (bS)ρ is finitely generated
by assumption, so also is its image (aρ)S ∩ (bρ)S.

Still with a ∈ S we now show that the right congruence r(aρ) is finitely generated, so that
the condition from Theorem 2.6(2)(ii) holds. We proceed by identifying a finite subset Y
of r(aρ), and then by showing that Y is indeed a generating set.

By assumption the right ideal (aS)ρ is finitely generated, so that, as S is regular,

(aS)ρ =
⋃
e∈K

eS

for some finite non-empty set K ⊆ E(S). For each e ∈ K choose ze ∈ S with e ρ aze. Since
a ∈ (aS)ρ so we may choose and fix f ∈ K such that a ∈ fS, so that a = fa ρ azfa, giving
that (1, zfa) ∈ r(aρ).

For p, q ∈ K and x, y ∈ S we have by assumption that (pS, x)∩(qS, y) is a finitely generated
right ideal. Hence there exists a finite (possibly empty) set L(p, q, x, y) ⊆ E(S) with

(pS, x) ∩ (qS, y) =
⋃

h∈L(p,q,x,y)

hS.

Now let

Y :=
{

(1, zfa)
}
∪
{

(zpxh, zqyh) ∈ r(aρ) : p, q ∈ K, (x, y) ∈ X,
h ∈ L(p, p, x, x) ∪ L(p, q, x, y)

}
.

The set Y is finite and Y ⊆ r(aρ). Let τ = 〈Y 〉 so that τ ⊆ r(aρ); we need to prove the
reverse inclusion. To this end we state and verify two claims.

Claim 1. Suppose (c, d) ∈ X, p ∈ K and t ∈ S with pct = ct. Then there exists q ∈ K
such that (zpct, zqdt) ∈ τ and qdt = dt.

Proof. From pct = ct we have t ∈ (pS, c), and hence there exists h ∈ L(p, p, c, c) such that
ht = t. Also we have pch = ch, and so

(2) azpch ρ pch = ch ρ dh.

It follows that dh ∈ (aS)ρ, and so there exists q ∈ K with qdh = dh. Now

(3) dh = qdh ρ azqdh.

Together with (2) this yields (azpch, azqdh) ∈ ρ and so (zpch, zqdh) ∈ r(aρ), giving
(zpch, zqdh) ∈ Y by definition. Now, to verify the claim, we have

zpct = zpcht τ zqdht = zqdt and qdt = qdht = dht = dt,

as required. �

Claim 2. Suppose (c, d) ∈ X, p ∈ K and t, w ∈ S. If pct = ct and dt = aw then
(zpct, w) ∈ τ .
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Proof. Note that fdt = faw = aw = dt, implying t ∈ (pS, c) ∩ (fS, d), and hence ht = t
for some h ∈ L(p, f, c, d). Now,

azpch ρ pch = ch ρ dh = fdh ρ azfdh,

implying (zpch, zfdh) ∈ r(aρ), and hence (zpch, zfdh) ∈ Y ⊆ τ . But then

zpct = zpcht τ zfdht = zfdt = zfaw τ w,

as claimed. �

Returning to the main proof, suppose (u, v) ∈ r(aρ), i.e. (au, av) ∈ ρ. Then either au = av,
or else there is a sequence

(4) au = c1t1, d1t1 = c2t2, . . . , dntn = av,

where for 1 ≤ j ≤ n we have (cj, dj) ∈ X and tj ∈ S. In the first case we have

u = 1u τ zfau = zfav τ 1v = v.

Consider now the second case. First note that fc1t1 = fau = au = c1t1. Thus, repeatedly
applying Claim 1 along the sequence (4), yields idempotents f = p0, p1, . . . , pn ∈ K such
that

(5) zp0c1t1 τ zp1d1t1 = zp1c2t2 τ . . . τ zpndntn

and
piditi = diti for all 1 ≤ i ≤ n.

Furthermore, using Claim 2 with (c, d) = (cn, dn), p = pn−1, t = tn and w = v, yields
v τ zpn−1cntn τ zpndntn. Similarly, Claim 2 with (c, d) = (d1, c1), p = p1, t = t1 and w = u,
gives u τ zp1d1t1 τ zp0c1t1. Combining this with (5) yields (u, v) ∈ τ , as required. �

Corollary 3.3. Every weakly right noetherian regular monoid is right coherent.

Examples of weakly right noetherian regular monoids include completely regular monoids
which can be expressed as a weakly (right) noetherian semilattice Y of completely simple
semigroups Sα, α ∈ Y , where, additionally, for each α ∈ Y we have that Sα has finitely
manyR-classes. They also include any regular ω-semigroup, that is, any regular semigroup
whose semilattice of idempotents is isomorphic to an inversely well-ordered chain ω, i.e.
0 > 1 > 2 > . . . . If S is of this kind, then it is well known that any right (and, indeed,
left) ideal of S is principal, so that, by Theorem 3.2, S must be coherent. As we mentioned
in Section 2, bisimple inverse ω-semigroups are precisely the Bruck–Reilly extensions of
groups, and so we have:

Corollary 3.4. Every Bruck–Reilly extension BR(G, θ) of a group G is coherent.

The conditions of Theorem 3.2 are in fact weaker than the condition of being weakly right
noetherian, as we now show via two examples. The first concerns a Rees matrix semigroup
M =M(G; I,Λ;P ) over a group G (i.e. a completely simple semigroup). It is easy to see
that for any i ∈ I, the set Ri = {(i, g, λ) : g ∈ G, λ ∈ Λ} is a right ideal, and is generated
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by any of its elements. Thus any right ideal K ofM is of the form K =
⋃
j∈J Rj for some

J ⊆ I.

Proposition 3.5. Let S =M(G; I,Λ;P )1 be a Rees matrix monoid over a group G. Then
S satisfies the conditions of Theorem 3.2 and hence is right coherent. However, S is weakly
right noetherian if and only if I is finite.

Proof. We begin by noting that the proper right ideals of S are exactly the right ideals of
M, and thus of the form K =

⋃
j∈J Rj where J ⊆ I. Moreover, K is finitely generated if

and only if J is finite. The final statement of the proposition follows immediately. We also
observe that if K and L are finitely generated right ideals of S, then so is K ∩L. Thus to
show that the conditions of Theorem 3.2 hold, it is sufficient to show that for any finitely
generated right congruence ρ on S and any a,b ∈ S the right ideals (aS)ρ and (aS,b) are
finitely generated.

Let X be a finite symmetric set of generators for ρ. Suppose first that 1ρ = {1}, so
that X consists entirely of pairs of the form

(
(i, g, λ), (j, h, µ)

)
. If a = 1 then (aS)ρ =

S = 1S. Otherwise, let a = (`, k, ν) so that aS = {`} × G × Λ. If (o, x, κ) ρ (`, y, τ) for
some (`, y, τ) then either (o, x, κ) = (`, y, τ) or (o, x, κ) = (i, g, λ)t for some (i, g, λ) with(
(i, g, λ), (j, h, µ)

)
∈ X and t ∈ S. In the first case o = ` and in the second o = i. Since X

is finite we deduce that (aS)ρ is finitely generated.

Suppose now that 1ρ 6= {1}, so that X contains at least one pair of the form
(
(i, g, λ), 1

)
.

Again, if a = 1 then (aS)ρ = S. On the other hand, if a = (`, k, ν) then

1 ρ (i, g, λ) = (i, g, λ)(`, p−1λ` , λ) ρ 1(`, p−1λ` , λ) = (`, p−1λ` , λ),

so that 1 ∈
(
(`, p−1λ` , λ)S

)
ρ = (aS)ρ, giving that (aS)ρ = S.

Now we have:

• if a = 1 then (aS,b) = S;

• if b = 1 then (aS,b) = aS;

• if a,b 6= 1 and a,b ∈ Ri for some i ∈ I, then (aS,b) = S;

• if a,b 6= 1 with a ∈ Ri, b ∈ Rj where i 6= j, then (aS,b) = ∅.

In any case (aS,b) is finitely generated, which concludes the proof. �

We end this section by giving two examples of regular monoids that are right coherent but
are not weakly right noetherian. The first of them is a Brandt monoid over a group, and
it does not even satisfy the conditions of Theorem 3.2.

Proposition 3.6. Let S = B(G; I)1, where G is a group and I is infinite, and let ρ =〈(
(i, g, i), 1

)〉
for fixed i ∈ I, g ∈ G. Then S is right coherent, but the ideal (0S)ρ is not

finitely generated.
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Proof. That S is right coherent will be proved in Theorem 5.1. To prove the second
assertion, let J = {0} ∪

⋃
j∈I,j 6=iRj, and we claim that J = (0S)ρ. For any j ∈ I with

j 6= i we have

(j, h, j) = 1(j, h, j) ρ (i, g, i)(j, h, j) = 0,

and it follows that the right ideal J ⊆ (0S)ρ = 0ρ. We claim that 1, or equivalently (i, g, i),
cannot be in (0S)ρ. Recall that since Ri is a right ideal, we have (i, g, i) ∈ (0S)ρ if and
only if (i, h, λ) ∈ (0S)ρ for any (i, h, λ) ∈ Ri. But, the latter is impossible, as we now
show. Suppose that (i, h, λ) ∈ Ri and (i, h, λ) is related to s ∈ S via an X-sequence of
length 1. Then (i, h, λ) = ct and dt = s, where (c,d) or (d, c) is

(
(i, g, i), 1

)
and t ∈ S.

If (c,d) =
(
(i, g, i), 1

)
, then either t = 1 and then s = 1, or t = (i, g−1h, λ) and then also

s = (i, g−1h, λ). Similarly, if (d, c) =
(
(i, g, i), 1

)
, then s = (i, gh, λ). Since a single step in

an X-sequence starting from 1 can only take us to (i, g, i), our claim follows by induction
on the length of X-sequences. Consequently, (0S)ρ = J . As I is infinite, (0S)ρ is not
finitely generated as a right ideal of S. �

For our second example, we return to a regular semigroup S with ω-chain of idempotents.
If S is bisimple, then, as commented in Section 2, S is isomorphic to a Bruck–Reilly
extension BR(G, θ). This construction was extended by Warne [18], who noticed that one
could replace N0 by Z, and, using the same rule for multiplication, obtain an inverse monoid
with chain of idempotents isomorphic to Z (where the natural correspondence inverts the
order). This construction yields an extended Bruck–Reilly extension EBR(G, θ). Note that
EBR(G, θ) is inverse, and is neither a monoid nor weakly right noetherian.

Proposition 3.7. Let G be a group, θ : G → G a homomorphism, and S = EBR(G, θ)1.
Then S is right coherent, but not weakly right noetherian.

Proof. Denote the identity of G by e. It is entirely routine to check that the right ideals
of S are precisely S, S \ {1}, ∅ and Ri = {(j, g, k) : j ≥ i} for every i ∈ Z, and that S \ {1}
is the only right ideal that is not finitely generated.

To prove that S is right coherent we make use of Theorem 3.2. To this end, let ρ be a right
congruence on S generated by the finite symmetric set X ⊆ S × S. Since the right ideals
of S are linearly ordered, it is enough to show that for any a ∈ S and e ∈ E(S) we can
have neither (aS)ρ nor (eS, a) being equal to the non-finitely generated right ideal S \{1}.
We first consider (aS)ρ. If {1} is not a ρ-class then as (aS)ρ is a union of ρ-classes, we
have (aS)ρ 6= S \ {1}. On the other hand, if {1} is a ρ-class then let n be an integer
smaller than any number appearing in any of the first coordinates of elements of X. Then
(n, e, n)ρ = {(n, e, n)}, because (n, e, n) cannot be written as ct where (c,d) ∈ X and
t ∈ S. As a consequence, (aS)ρ 6= S \ {1} for any a ∈ S.

Consider now the right ideal (eS, a). If a ∈ eS then (eS, a) = S and if a = 1, then
(eS, a) = eS. Otherwise, e = (i, e, i) and a = (p, c, q) where p < i, and then an easy
calculation yields (eS, a) = (q + i− p, e, q + i− p)S. �
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4. Submonoids

In this section we begin the examination of when right coherency of a monoid S is inherited
by certain monoid subsemigroups. Recall that if T is a subsemigroup of a monoid S then
T is a retract of S if there is a morphism (called retraction) θ : S → S such that Im θ = T
and θ|T : T → T is the identity map on T . It is clear that if T is a retract of S then it
must be a monoid subsemigroup.

Proposition 4.1. [8, Theorem 6.3] Let S be a right coherent monoid and let T be a retract
of S. Then T is right coherent.

Corollary 4.2. Let I be an ideal of a right coherent monoid S such that I has an identity.
Then I is right coherent.

Proof. If e is the identity of I, then it is easy to see that θ : S → I given by aθ = ea is a
retraction onto I. The result now follows by Proposition 4.1. �

For a semigroup M , we denote by M1 the monoid obtained by adjoining an identity 1
whether or not M already possesses one. As another application of the above result, we
obtain one half of the following:

Proposition 4.3. Let M be a monoid. Then M is right coherent if and only if M1 is right
coherent.

Proof. In what follows we denote the identity of M by 1M , and that of M1 by 1. If M1 is
right coherent, then so is M by Corollary 4.2, since it is a monoid ideal.

For the converse, let ρ be a finitely generated right congruence on M1, and let ν = ρ ∩
(M ×M) be its restriction to M . We claim that ν is finitely generated. Specifically, we
prove that if ρ is generated by a finite set H then

ν = 〈K〉M where K =
(
H ∩ (M ×M)

)
∪
{

(1M , a) : a ∈M, (1, a) ∈ H
}
.

That K ⊆ ν and hence 〈K〉M ⊆ ν follows from the definition, and the observation that
(1, a) ∈ H implies (1M , a) = (1 1M , a 1M) ∈ ρ. For the reverse inclusion, let a, b ∈ M with
a 6= b and (a, b) ∈ ρ. Then there is an H-sequence

a = c1t1, d1t1 = c2t2, . . . , dntn = b,

where (ci, di) ∈ H and ti ∈ M1 for 1 ≤ i ≤ n. Multiplying this sequence on both sides by
1M yields a K-sequence over M from a to b, as required.

We now want to prove that r(aρ) is finitely generated for any a ∈ M1. If a = 1 then
r(aρ) = ρ and there is nothing to prove. So suppose a ∈M . We claim that:

(6) r(aρ) = κ where κ =
〈
r(aν) ∪ {(1M , 1)}

〉
M1 .

Since r(aν) ∪ {(1M , 1)} ⊆ r(aρ), so κ ⊆ r(aρ). For the reverse inclusion, consider (u, v) ∈
r(aρ). If (u, v) ∈ M ×M then au ρ av, so au ν av, and hence (u, v) ∈ r(aν) ⊆ κ. Clearly
(1, 1) belongs to both r(aρ) and to κ. Finally, if u = 1 and v ∈ M , then we have
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a1 = a = a1M ρ av, so that (1M , v) ∈ r(aν) ⊆ κ; together with (1, 1M) ∈ κ this implies
(1, v) ∈ κ, as required.

Having established (6) it immediately follows that r(aρ) is finitely generated. Indeed,
since M is right coherent by assumption, and ν is finitely generated, it follows that r(aν)
is finitely generated as an M -act. Thus, any finite generating set for r(aν) together with
(1M , 1) will generate r(aρ) as an M1-act.

Now let a, b ∈ M1; we need to show that (aρ)M1 ∩ (bρ)M1 is finitely generated. If
(aρ)M1 = (1ρ)M1 then (aρ)M1 ∩ (bρ)M1 = (bρ)M1; likewise if (bρ)M1 = (1ρ)M1. So
suppose neither (aρ)M1 nor (bρ)M1 equals (1ρ)M1. Then a, b ∈M and

(aρ)M1 ∩ (bρ)M1 = (aν)M ∩ (bν)M.

The right hand side is finitely generated as an M -act, because M is right coherent by
assumption and ν is finitely generated. Hence it is also finitely generated as an M1-act,
completing the proof of the claim and the proposition. �

There is an analogue of Proposition 4.3 for M0, the monoid obtained by adjoining a new
zero element to M , but we will postpone it until the next section (Corollary 5.6).

Corollary 4.2 is about principal ideals possessing an identity. With some further work, we
obtain a corresponding result for monoid J -classes. We first present a general result on
extendability of right congruences on a submonoid.

Definition 4.4. Let T be a subsemigroup of a monoid S, and suppose that T has identity
e. We say that T is:

(i) left unitary if a, ab ∈ T implies that b ∈ T ;

(ii) weakly left unitary if a, ab ∈ T implies that eb ∈ T .

The notions of being right unitary and weakly right unitary are dual.

If T is left unitary, then it is weakly left unitary. For an immediate counterexample to the
converse, consider the bicyclic monoid B; the subsemigroup {(1, 1)} is weakly left unitary
but not left unitary.

Definition 4.5. A subsemigroup T of a monoid S has the strong right congruence extension
property SRCEP if, for any right congruence ρ on T , we have

ρ = ρS ∩ (T × T )

and T is a union of ρS-classes, where ρS is the right congruence on S generated by ρ.

We note that T has SRCEP if and only if for any right congruence ρ on T we have
ρ = τ ∩ (T × T ), and T is a union of τ -classes, for some right congruence τ on S.

Lemma 4.6. Let S be a monoid and let T be a monoid subsemigroup with identity e. If
T is weakly left unitary then T has SRCEP.
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Proof. Let ρ be a right congruence on T . Clearly, ρ ⊆ ρS ∩ (T × T ). Conversely, if a ∈ T
and a ρS b where b ∈ S and b 6= a, then there exists a ρ-sequence

a = c1t1, d1t1 = c2t2, . . . , dntn = b

where (ci, di) ∈ ρ and ti ∈ S for 1 ≤ i ≤ n. From a = c1t1 = (c1e)t1 = c1(et1) and the
fact T is weakly left unitary, we have et1 ∈ T , so that d1t1 = (d1e)t1 = d1(et1) ∈ T . In the
same way we obtain et2, . . . , etn ∈ T , and it follows that b ∈ T and a ρ b as required. �

Lemma 4.7. Let J be a monoid J -class of S with identity e. Then J is weakly left and
right unitary.

Proof. Let a, ab ∈ J . Then ab = aeb ≤J eb ≤J e J ab implies that eb J ab, that is,
eb ∈ J , showing that J is weakly left unitary. Dually, J is weakly right unitary. �

Theorem 4.8. Let S be a right coherent monoid and let J be a monoid J -class of S.
Then J is right coherent.

Proof. From Lemmas 4.6 and 4.7, we have that J is weakly unitary and has SRCEP. Let
e be the identity of J and let ρ be a finitely generated right congruence on J .

We will check that the conditions of Theorem 2.6(2) hold. First we show that r(aρ) is
finitely generated for any a ∈ J , so that Condition (2)(ii) holds. Since S is right coherent
and ρS is finitely generated, r(aρS) is generated by a finite set H ⊆ S × S. We claim that
r(aρ) is generated by the finite set

H ′ =
{

(ec, ed) : (c, d) ∈ H and ec, ed ∈ J
}
.

To see this, note first that for any (c, d) ∈ H we have

a(ec) = (ae)c = ac ρS ad = (ae)d = a(ed),

and it follows from the fact that J has SRCEP that H ′ ⊆ r(aρ). For the converse, suppose
that (u, v) ∈ r(aρ) where u 6= v, so that u, v ∈ J and au ρ av. Hence au ρS av so that
(u, v) ∈ r(aρS) and there is an H-sequence

(7) u = c1t1, d1t1 = c2t2, . . . , dntn = v

where (ci, di) ∈ H and ti ∈ S, for 1 ≤ i ≤ n. Multiplying the sequence (7) on the left by a
we have

au = ac1t1, ad1t1 = ac2t2, . . . , adntn = av

and it follows that au ρS aciti ρ
S aditi ρ

S av, for 1 ≤ i ≤ n. Since J has SRCEP, we have
aciti, aditi ∈ J and then eci, edi, tie ∈ J for 1 ≤ i ≤ n, giving (eci, edi) ∈ H ′. Returning to
sequence (7), multiplying through on both left and right by e, we obtain an H ′-sequence
connecting u to v. Hence r(aρ) is generated by H ′.

We now turn our attention to the Condition (2)(ii) in Theorem 2.6. At this stage it is
helpful to notice that if s, t ∈ S and s ρS t, then, since ρS is generated by pairs of elements
from J , we have es ρS et and, if s 6= t, then es = s and et = t.
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Let a, b ∈ J be such that (aρ)J ∩ (bρ)J 6= ∅. Consequently, au ρ av for some u, v ∈ J so
that au ρS bv and (aρS)S ∩ (bρS)S 6= ∅. Since S is right coherent we have that

(aρS)S ∩ (bρS)S = Y S

for some finite Y ⊆ S/ρS. Let X be a transversal of the ρS-classes in Y , let X ′ = eX ∩ J
and put Y ′ = {x′ρ : x′ ∈ X ′}. We claim that

(aρ)J ∩ (bρ)J = Y ′J.

Let x′ρ ∈ Y ′ where x′ = ex ∈ J and x ∈ X. Then xρS ∈ Y so there are p, q ∈ S with
ap ρS bq ρS x. It follows by an earlier remark that ap ρS bq ρS ex = x′(= x) ∈ J and by
SRCEP, ap, bq ∈ J and a(ep) = ap ρ bq = b(eq) ρ x′. Further, ep, eq ∈ J since J is weakly
left unitary. This shows that Y ′ ⊆ (aρ)J ∩ (bρ)J .

Conversely, suppose that cρ ∈ (aρ)J ∩ (bρ)J so that c ρ ah ρ bk for some h, k ∈ J . Then
cρS ∈ (aρS)S ∩ (bρS)S so that cρS = (xρS)w for some xρS ∈ Y , where we can take x ∈ X,
and w ∈ S. It follows that ah ρS bk ρS xw, giving that xw ∈ J and ah ρ bk ρ xw, since J
satisfies the SRCEP. Now xw = exw ≤J ex ≤J e, so that ex ∈ J and hence ex ∈ X ′ and
(ex)ρ ∈ Y ′. Finally, xw = exw so that as J is weakly left unitary and ex ∈ J , we have
ew ∈ J and xw = e(xw) = (ex)w = (ex)(ew), and we conclude cρ =

(
(ex)ρ

)
(ew) ∈ Y ′J .

Thus (aρ)J ∩ (bρ)J = Y ′J , as required. �

Let M be a monoid. It is easy to see that M is a monoid subsemigroup of any Brandt
monoid B(M, I)1 or Bruck–Reilly extension BR(M, θ) built over M . In the remainder
of this section we set up machinery to show that if either B(M, I)1 or BR(M, θ) is right
coherent, then so is M . Though our approach is quite technical, it allows us to treat these
two cases, and others, together.

We will make use of the relations R̃E, L̃E and H̃E on a monoid S, introduced in [14], where

E ⊆ E(S) is a set of idempotents. For any a, b ∈ S we have that a R̃E b if and only if for
all e ∈ E,

ea = a⇔ eb = b.

The relation L̃E is defined dually, and we put H̃E = R̃E ∩ L̃E. Clearly, R̃E, L̃E and H̃E

are equivalence relations on S. It is easy to see that R ⊆ R̃E,L ⊆ L̃E and H ⊆ H̃E, and if

S is regular and E = E(S), then R = R̃E,L = L̃E and so H = H̃E. In this vein, if u R̃E v

and uS ⊆ wS ⊆ vS for some w ∈ S, then it is easy to see that u R̃E w R̃E v.

Suppose now that M is a monoid subsemigroup of a monoid S, with identity e, and that
the following conditions hold:

(a) e ∈ E for some E ⊆ E(S);

(b) H̃E is a right congruence;

(c) M is the H̃E-class of e;
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(d) for any u, v ∈ S, if e R̃E u H̃E v, then u = u(pq), v = v(pq) for some p, q ∈ S with
up, vp ∈M .

Note that (d) would certainly hold if S were regular and E = E(S), from [11, Lemmas
2.2.1 and 2.2.2]. In this case M would be a group, which we know to be right (and left)
coherent.

Proposition 4.9. Let M be a monoid subsemigroup of a right coherent monoid S, such
that M has identity e and (a)– (d) above hold. Then M is right coherent.

Proof. First note that if a, ab ∈M , then as e H̃E a and H̃E is a right congruence on S, we

have eb H̃E ab ∈M , so that M is weakly left unitary. By Lemma 4.6 M has SRCEP.

Suppose now that ρ is a finitely generated right congruence on M ; say ρ = 〈H〉M , where
H ⊆ M ×M is finite. Then ρS := 〈H〉S is finitely generated as a right congruence on S.

Notice that as H̃E is also a right congruence on S, and H ⊆ H̃E, we have that ρS ⊆ H̃E.

Let a ∈ M ; we show that r(aρ) is finitely generated. By assumption that S is right
coherent, we have r(aρS) = 〈K〉S for some finite K ⊆ S × S.

For any (u, v) ∈ K we have by definition that au ρS av, so that as ρS ⊆ H̃E and H̃E is a

right congruence, it follows that eu H̃E ev. For any pair (u, v) ∈ K with e R̃E eu H̃E ev,
choose elements p(u,v), q(u,v) ∈ S guaranteed by (d) such that

eu = eu(p(u,v)q(u,v)), ev = ev(p(u,v)q(u,v)) and eup(u,v), evp(u,v) ∈M.

Notice that

aeup(u,v) = aup(u,v) ρ
S avp(u,v) = aevp(u,v),

so that as M has SRCEP we have

K ′ =
{

(eup(u,v), evp(u,v)) : (u, v) ∈ K, e R̃E eu H̃E ev
}

is a finite subset of r(aρ).

We claim that K ′ generates r(aρ). To see this, suppose that (h, k) ∈ r(aρ), where h 6= k,
so that ah ρS ak and there exists a K-sequence

h = u1t1, v1t1 = u2t2, . . . , vntn = k

where (ui, vi) ∈ K and ti ∈ S for 1 ≤ i ≤ n. Consequently,

h = eh = eu1t1, ev1t1 = eu2t2, . . . , evntn = ek = k.

We have hS ⊆ eu1S ⊆ eS, so by an earlier remark, e R̃E eu1, and we have already noted

that eu1 H̃E ev1. Consequently, there exist p(u1,v1), q(u1,v1) with

(eu1p(u1,v1), ev1p(u1,v1)) ∈ K ′, eu1p(u1,v1)q(u1,v1) = eu1 and ev1p(u1,v1)q(u1,v1) = ev1.

Thus

h = eu1t1 = eu1p(u1,v1)q(u1,v1)t1 = (eu1p(u1,v1))(eq(u1,v1)t1).
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Since M is weakly left unitary and eu1p(u1,v1) ∈M , we deduce that eq(u1,v1)t1 lies in M and

h = (eu1p(u1,v1))(eq(u1,v1)t1) 〈K ′〉M (ev1p(u1,v1))(eq(u1,v1)t1) = ev1t1 = eu2t2 ∈M.

Continuing in this manner we obtain h 〈K ′〉M evntn = k. Thus 〈K ′〉M = r(aρ), as required.

Next we show that (aρ)M ∩ (bρ)M is finitely generated for any a, b ∈M . Since S is right
coherent there is a finite set C ⊆ S such that

(aρS)S ∩ (bρS)S =
⋃
c∈C

(cρS)S.

For any c ∈ C we have c ρS au ρS bv for some u, v ∈ S, whence c H̃E au H̃E bv. Since ea = a

we have ec = c. If c R̃E e, then we choose pc, qc such that c = cpcqc and cpc ∈ M . Notice
that cpc ρ

S aupc ρ
S bvpc so that by Lemma 4.6 as M has SRCEP, cpc ρ a(eupc) ρ b(evpc), and

eupc, evpc ∈M as M is weakly left unitary. Thus

T ⊆ (aρ)M ∩ (bρ)M,

where

T = {(cpc)ρ : c ∈ C, c R̃E e}.
Conversely, if w ∈ M and w ρah ρ bk for some h, k ∈ M , then we have w ρS c` for some

c ∈ C and ` ∈ S. As M has SRCEP, c` ∈M and from c`S ⊆ cS ⊆ eS we have that c R̃E e.
Choosing pc, qc as above we have (cpc)ρ ∈ T and

w ρ c` = cpcqc` = (cpc)(eqc`).

Weak left unitariness of M gives that eqc` ∈ M . Thus wρ ∈
(
(cpc)ρ

)
M . It follows that T

generates (aρ)M ∩ (bρ)M , as required. �

Corollary 4.10. Let S = B(M ; I)1 be a Brandt monoid over a monoid M . If S is right
coherent, then so is M .

Proof. Let 1M be the identity of M and put E = {(i, 1M , i) : i ∈ I} ∪ {0}. It is easy to see

that {1} and {0} are R̃E and L̃E-classes, and for any (i, a, j), (k, b, `) we have that

(i, a, j) R̃E (k, b, `)⇔ i = k

and

(i, a, j) L̃E (k, b, `)⇔ j = `.

The relation H̃E is a congruence on S. Fixing i ∈ I and putting Mi = {i} ×M × {i}, we

see that (a), (b) and (c) hold with e being (i, 1M , i). Further, if (i, a, j) H̃E (i, b, j), then
with p = (j, 1M , i), q = (i, 1M , j) we see that (d) also holds. Thus if S is right coherent,
then by Proposition 4.9, so is Mi. But, since Mi is isomorphic to M , we conclude that M
is right coherent. �

The next proof, although the calculations are different, follows the exact pattern of the
previous, and so we omit it.
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Corollary 4.11. Let S = BR(M, θ) be a Bruck–Reilly extension of a monoid M . If S is
right coherent, then so is M .

Remark 4.12. An easy adjustment to Corollary 4.11 allows us to apply Proposition 4.9
to EBR(M, θ)1.

The monoids in Corollaries 4.10, 4.11 and Remark 4.12 all possess an inverse skeleton [10];
the techniques of [10] would provide an alternative unified approach to these results.

Question 4.13. Let S be a right coherent monoid. Theorem 4.8 tells us that if J is a
monoid J -class, then J inherits right coherency from S. Is the same true for (i) J1, any
semigroup J -class with an identity adjoined? (ii) any monoid principal factor I? or (iii)
I1 where I is a semigroup principal factor with an identity adjoined?

5. Brandt semigroups

We saw in Proposition 3.5 that Rees matrix monoids over groups are right coherent. We
do not know whether the analogue of this result for Rees matrix monoids with zero holds.
We are, however, able to prove that it does for Brandt monoids, not only over groups but
in fact over arbitrary right coherent monoids. This complements Corollary 4.10, and is the
main result of this section:

Theorem 5.1. Let M be a right coherent monoid and I a non-empty set. Then the Brandt
monoid B(M ; I)1 over M is also right coherent.

The rest of this section will be devoted to the proof of Theorem 5.1. Throughout M will
denote an arbitrary right coherent monoid, S = B(M ; I)1 a Brandt monoid over M , and ρ
a right congruence on S. The identity of M will be denoted by 1M , and that of S simply
by 1. The proof proceeds along the following lines:

• In Lemma 5.2 we establish a classification of congruences on S, along with certain
specific forms of their generating sets.

• In Lemma 5.3 we establish a connection between a congruence on S and a certain
congruence on a free M -act.

• We verify the usual properties that ensure right coherency – namely finite generation
of annihilators and intersections – in Lemmas 5.4 and 5.5 respectively.

We single out one element of the index set I, denote it by • , and note that the following
holds:

(8) (i, b, j) ρ (k, c, j)⇔ (i, b, •) ρ (k, c, •) for all i, j, k ∈ I, b, c ∈M.

Lemma 5.2. The right congruence ρ satisfies precisely one of the following:

(i) ρ = S × S = 〈(1, 0)〉S; or
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(ii) 1ρ = {1} and ρ has a set of generators

H =
{(

(i, b, •), (k, c, •)
)

: (i, b, k, c) ∈ A
}
∪
{(

(j, d, •), 0
)

: (j, d) ∈ B
}
,

for some suitable index sets A,B; or

(iii) {1} 6= 1ρ 6= S and ρ has a set of generators

H =
{(

(i, 1M , i), 1
)}
∪
{(

(i, b, •), (i, c, •)
)

: (i, b, i, c) ∈ A
}

∪
{(

(j, d, •), 0
)

: (j, d) ∈ B
}
,

for some i ∈ I and index sets A 6= ∅ and B.

Further, in (ii) and (iii), if ρ is finitely generated, we can take A and B to be finite.

Proof. Note that ρ = S × S if and only if (1, 0) ∈ ρ, and then ρ is generated by {(1, 0)}.
We suppose therefore that (1, 0) /∈ ρ.

Choose a set of generators K for ρ. If
(
(i, b, j), (k, c, `)

)
∈ K and j 6= `, then

(i, b, j) = (i, b, j)(j, 1M , j) ρ (k, c, `)(j, 1M , j) = 0,

so that
(
(i, b, j), 0

)
,
(
(k, c, `), 0

)
∈ ρ. On the other hand, if we are given that

(
(i, b, j), 0

)
,(

(k, c, `), 0
)
∈ K, then

(
(i, b, j), (k, c, `)

)
∈ ρ. Thus we may replace any pair in K with

differing third coordinates by two pairs in which the second coordinate is 0. Thus we may
take those pairs to be of the form

(
(j, d, •), 0

)
.

By (8) we may assume that all the remaining pairs in K, not involving 0 or 1, are of the
form

(
(i, b, •), (k, c, •)

)
. If there are no pairs involving 1, we may obtain a set of generators

as in (ii).

Finally we suppose that there is a pair in K of the form
(
1, (i, b, j)

)
or
(
(i, b, j), 1

)
. Since 1ρ

is a submonoid of S not containing 0, we see that i = j and if
(
1, (k, c, k)

)
or
(
(k, c, k), 1

)
∈

K, then i = k. We now observe that

1 ρ (i, b, i) = (i, b, i)(i, 1M , i) ρ 1(i, 1M , i) = (i, 1M , i).

We can therefore add
(
(i, 1M , i), 1

)
to K and replace any pair

(
1, (i, b, j)

)
or
(
(i, b, j), 1

)
by(

(i, 1M , •), (i, b, •)
)
. By the preceding discussion and (8), the congruence generated by the

set will be unchanged, i.e. still equal to ρ. Further, if we have a pair
(
(j, b, •), (k, c, •)

)
∈ K,

then since

(j, b, •) = 1(j, b, •) ρ (i, 1M , i)(j, b, •)
we deduce that either (j, b, •) ρ 0 ρ (k, c, •), so that we may replace

(
(j, b, •), (k, c, •)

)
in K

by
(
(j, b, •), 0

)
,
(
(k, c, •), 0

)
, or else j = i. We can perform the same manoeuvre for k.

Finally, if necessary to make the set A non-empty, we can add a pair from the diagonal,
and we obtain a set of generators as in (iii).

It follows from the above argument that if the original generating set K was finite, then
H would be finite as well, and the lemma is proved. �
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From now on we assume that we fix a set of generators H for ρ in the form guaranteed by
Lemma 5.2. We define the support of A, denoted by suppA, in cases (ii) and (iii) above,
to be the set of elements of I appearing as first or third coordinates in A. Let ρA ⊆ ρ be
the right congruence on S generated by

HA =
{(

(i, b, •), (k, c, •)
)

: (i, b, k, c) ∈ A
}
.

It is easy to see that {1} and {0} are ρA-classes, and if two triples in S are ρA-related,
they have the same third coordinate.

Lemma 5.3. Suppose that ρ 6= S×S. Let FA be the free right M-act on {xh : h ∈ suppA},
and let τA be the congruence on FA generated by

GA = {(xib, xkc) : (i, b, k, c) ∈ A}.

Then for any (p, d), (q, e) ∈ I ×M we have

(p, d, •) ρA (q, e, •)⇔ xpd τA xqe.

Proof. Suppose first that xpd τA xqe. If xpd = xqe, then (p, d, •) = (q, e, •). We suppose
therefore that there is a GA-sequence

xpd = u1t1, v1t1 = u2t2, . . . , vntn = xqe

where n ∈ N, (uj, vj) ∈ GA and tj ∈M for 1 ≤ j ≤ n; write uj = xijbj, vj = xkjcj.

Then

(p, d, •) = (i1, b1, •)(•, t1, •) ρA (k1, c1, •)(•, t1, •) = (i2, b2, •)(•, t2, •)
ρA (k2, c2, •)(•, t2, •) ρA . . . ρA (kn, cn, •)(•, tn, •) = (q, e, •).

For the reverse implication, suppose (p, d, •) ρA (q, e, •). If (p, d, •) = (q, e, •) then xpd τA xqe.
Otherwise, we have a ρA-sequence

(p, d, •) = b1m1, c1m1 = b2m2, . . . , cnmn = (q, e, •)

where n ∈ N, (bj, cj) ∈ HA and mj ∈ S for 1 ≤ j ≤ n; write bj = (ij, bj, •), cj = (kj, cj, •).
Since each bj, cj have common third coordinate, the element 0 does not appear in the above
sequence. By replacing any mj = 1 by (•, 1M , •), we can assume that mj = (•,mj, •) for
1 ≤ j ≤ n. Then

xpd = xi1b1m1 τA xk1c1m1 = xi2b2m2 τA . . . τA xkncnmn = xqe,

thus completing the proof of the lemma. �

We now turn to right annihilators.

Lemma 5.4. If ρ is finitely generated then for any a ∈ S the right annihilator r(aρ) is
finitely generated.
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Proof. Note that r(1ρ) = ρ and r(0ρ) = S × S, which are both finitely generated. So we
assume that a = (u, a, v) and that r(aρ) 6= S × S; in particular (a, 0) /∈ ρ. If there is a(
(i, 1M , i), 1

)
∈ H and u 6= i then a ρ 0, a contradiction. Thus, we assume that if we are in

case (iii), then u = i.

To construct a finite set of generators of r(aρ), first choose a finite set T of generators of
r(a) and let

R1 =
{(

(v, x, v), (v, y, v)
)

: (x, y) ∈ T
}
∪
{(

1, (v, 1M , v)
)}

;

clearly, R1 ⊆ r(aρ).

If u is in the support of A, then, by Theorem 2.6, there is a finite set of generators U of
r((xua)τA). For any (s, t) ∈ U we have xuas τA xuat, and it follows from Lemma 5.3 that
R2 ⊆ r(aρ), where

R2 =
{(

(v, s, v), (v, t, v)
)

: (s, t) ∈ U
}
.

Still supposing that u is in the support of A, let us consider a pair α = (j, d) ∈ B. If
(xua)τAM ∩ (xjd)τAM 6= ∅ (which can only happen if j is also in the support of A), then,
again by Theorem 2.6, we have that

(xua)τAM ∩ (xjd)τAM =
⋃

p∈N(α)

(xα,pwα,p)τAM

for some finite set N(α). For any p ∈ N(α), there are elements hα,p, kα,p ∈M such that

xuahα,p τA xα,pwα,p τA xjdkα,p.

By Lemma 5.3 we have that

(u, ahα,p, •) ρA
(
j, dkα,p, •

)
whence

(u, a, v)(v, hα,p, •) = (u, ahα,p, •) ρ (j, d, •)(•, kα,p, •) ρ 0

and so (
(v, hα,p, v), 0

)
∈ r(aρ).

Thus, letting
R3 =

{(
(v, hα,p, v), 0

)
: α ∈ B, p ∈ N(α)

}
,

we have that R3 ⊆ r(aρ).

We now show that R = R1∪R2∪R3 generates r(aρ). We let ν = 〈R〉, the right congruence
of S generated by R.

We have already observed that R1 ∪ R2 ∪ R3 ⊆ r(aρ), and so ν ⊆ r(aρ). For the reverse
inclusion suppose (r, s) ∈ r(aρ); we aim to show that (r, s) ∈ ν.

First consider the case where ar = as = 0, recalling a = (u, a, v). Then we must have
either r = 0, or else r = (k, r, `) with v 6= k. In the latter case we have

(k, r, `) = 1(k, r, `) ν (v, 1M , v)(k, r, `) = 0.

Hence r ν 0; by symmetry s ν 0, and therefore, by transitivity, (r, s) ∈ ν.



22 Y. DANDAN, V. GOULD, M. HARTMANN, N. RUŠKUC, AND R-E ZENAB

Next consider ar = as 6= 0. If both r and s are triples, say r = (k, r, `), s = (h, s,m),
then v = k = h, ` = m and using R1 we have that (r, s) ∈ ν. If only one of them is a triple,
say r = (k, r, `) and s = 1, then from (u, a, v)(k, r, `) = (u, a, v)1, we have k = ` = v, and
as (u, a, v)(v, 1M , v) = (u, a, v)(v, r, v), we have that 1 ν (v, 1M , v) ν (v, r, v) = r, i.e. again
(r, s) ∈ ν. Finally if r = s = 1 then it is obvious that (r, s) ∈ ν.

Finally, consider the case where ar 6= as. Since (ar,as) ∈ ρ there must be an H-sequence

(9) ar = (u, d, `) = c1t1,d1t1 = c2t2, . . . ,dntn = (u, e,m) = as,

where (cj,dj) ∈ H, tj ∈ S for 1 ≤ j ≤ n ∈ N.

Let us first assume that 0 does not occur in the sequence (9). Immediately, we deduce that
u ∈ suppA. If we are in case (iii), where a generator

(
(i, 1M , i), 1

)
lies in H, then we note

that suppA = {i} and u = i. Then by multiplying every element of the above sequence on
the left by (i, 1M , i), we may obtain a (possibly shorter) sequence connecting ar and as,
in which 0 does not appear and the generating pairs from H occurring are all of the form(
(i, b, •), (i, c, •)

)
∈ H, where (i, b, i, c) ∈ A. Thus, we can assume, in both cases (ii) and

(iii), that (cj,dj) ∈ HA. It is then easy to see that the third coordinate of every element
of the sequence (9) is equal to ` (in particular m = `), so that multiplying on the right by
(`, 1M , `), we can assume that all the tjs are triples.

As 0 is not in the sequence (9), and as (u, a, v)1 = (u, a, v)(v, 1M , v) and
(
1, (v, 1M , v)

)
∈ R,

we can assume without loss of generality that both r and s are triples, say r = (v, r, `),
s = (v, s, `). From (u, ar, `) ρA (u, as, `) we have (u, ar, •) ρA (u, as, •) by (8), and then
by Lemma 5.3 we have xuar τA xuas. Thus (r, s) ∈ r((xua)τA), which is generated by U .
Therefore it is easy to see (using the generators in R2) that (r, s) ∈ ν.

Finally, we consider the case where 0 appears somewhere in the sequence (9). We claim
that

(10) (r, 0) ∈ ν.
The assertion is obvious if r = 0. Also r 6= 1 because r(aρ) 6= S × S. We can therefore
assume that r = (w, r, `). If w 6= v, then

(w, r, `) = 1(w, r, `) ν (v, 1M , v)(w, r, `) = 0,

proving (10) in this case.

Suppose now that w = v, and consider the first occurrence of 0 in (9), say c1t1, . . . , citi 6= 0
and diti = 0. Noting that citi 6= 1, we can assume as above that

(u, a, v)(v, r, `) ρA citi.

Since diti = 0, we are forced to have

ci = (j, d, •), di = 0 for some α = (j, d) ∈ B.
We can therefore take ti = (•, x, `) and notice that

(u, ar, •) ρA (j, dx, •),
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whence xuar τA xjdx. Thus

(xua)τAM ∩ (xjd)τAM 6= ∅
so that

xuar τA xjdx τA xα,pwα,py

for some p ∈ N(α) and y ∈M . Notice that

xuar τA xα,pwα,py τA xuahα,py,

so that using R2 we have (
(v, r, `), (v, hα,py, `)

)
∈ ν.

Then using R3,
r = (v, r, `) ν (v, hα,py, v) = (v, hα,p, v)(v, y, `) ν 0,

completing the proof of (10).

Analogously to (10) we have (s, 0) ∈ ν, and hence (r, s) ∈ ν by transitivity. This completes
the proof that r(aρ) = ν, and hence of the lemma. �

The following lemma deals with intersections:

Lemma 5.5. If ρ is finitely generated then for any a, b ∈ S we have that (aρ)S ∩ (bρ)S
is finitely generated.

Proof. If a or b is ρ-related to 1 or 0, or if a = b, then (aρ)S∩(bρ)S is monogenic. Suppose
therefore that a 6= b and that both a and b are triples, say a = (u, a, v), b = (w, b, z).

If (u, a, v)S ∩ (w, b, z)S 6= {0}, then u = w and aM ∩ bM 6= ∅. Since M is right coherent,
aM ∩ bM =

⋃
c∈C cM for some finite set C, and then

U =
⋃
c∈C

(u, c, u)ρ ⊆ (aρ)S ∩ (bρ)S.

Further, provided that u,w ∈ suppA, with the M -act FA/τA we consider the intersection
((xua)τA)M ∩ ((xwb)τA)M 6= ∅. Since M is right coherent, this intersection is finitely
generated by Theorem 2.6, i.e. there exists a finite set D ⊆M such that

(11) ((xua)τA)M ∩ ((xwb)τA)M =
⋃
d∈D

((xuad)τA)M.

If we let
V = {(u, ad, •)ρ : d ∈ D}

then it follows from (11) and Lemma 5.3 that

V ⊆ (aρ)S ∩ (bρ)S.

Let W be the subact of S/ρ generated by U ∪ V ; we claim that W = (aρ)S ∩ (bρ)S. By
the preceding discussion, we have W ⊆ (aρ)S ∩ (bρ)S. For the reverse inclusion, first note
that 0ρ ∈ (aρ)S ∩ (bρ)S always, and if (aρ)S ∩ (bρ)S = {0ρ} there is nothing to prove.
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So suppose now that there exist h, g ∈ S such that (ah)ρ = (bg)ρ 6= 0ρ; we want to show
that (ah)ρ ∈ W .

Now, from (ah, bg) ∈ ρ we have that either ah = bg 6= 0 or else there exists an H-sequence
from one to the other. In the former case u = w, aM ∩ bM 6= ∅, and (ah)ρ ∈ US.

Now suppose that there exists an H-sequence

(12) (u, a, v)h = c1t1,d1t1 = c2t2, . . . ,dntn = (w, b, z)g,

where (ci,di) ∈ H, ti ∈ S for 1 ≤ i ≤ n ∈ N. Since (ah)ρ 6= 0ρ, no element in the sequence
equals 0. We can assume as in Lemma 5.4 that every pair (ci,di) ∈ HA and every ti is a
triple. Note that u,w ∈ suppA. We know that h, g 6= 0. If either of them were 1, then
(aρ)S ∩ (bρ)S would be principal, and our job would be done. We can therefore assume
that h = (v, h, y), g = (z, g, y). Then the sequence (12) implies

(u, a, v)(v, h, y) ρA (w, b, z)(z, g, y)

giving that

(u, ah, •) ρA (w, bg, •)
using (8), and consequently xuah τA xwbg by Lemma 5.3. Therefore

(xuah)τA = (xwbg)τA ∈ (xua)τAM ∩ (xwb)τAM.

By the definition of the set D it follows that there exists d ∈ D and m ∈ M such that
(xuah)τA = (xuadm)τA. By Lemma 5.3 and (8) we now have (u, ah, y) ρ (u, adm, y), and
hence

(ah)ρ = (u, ah, y)ρ =
(
(u, ad, •)ρ

)
(•,m, y) ∈ V S.

This completes the proof of (ah)ρ ∈ W , and of the entire lemma. �

Proof of Theorem 5.1. The theorem follows immediately from Lemmas 5.4 and 5.5, using
Theorem 2.6. �

As a consequence we can prove that right coherency is preserved by adjoining or removing
a zero element from a monoid, paralleling Proposition 4.3 for identity elements.

Corollary 5.6. A monoid M is right coherent if and only if M0 is right coherent.

Proof. (⇒) Note that (M0)1 is isomorphic to the 1× 1 Brandt monoid B(M ; {1}). Hence
if M is right coherent then so is (M0)1 by Theorem 5.1. But then it follows that M0 is
right coherent by Proposition 4.3.

(⇐) Suppose that M0 is right coherent, and let ρ be a finitely generated right congruence
on M . Then ρ0 = ρ ∪ {(0, 0)} is a finitely generated right congruence on M0. Let a ∈M .
It is easy to see that r(aρ0) = r(aρ) ∪ {(0, 0)}. Let H ⊆ M ×M be a finite set such that
H ∪ {(0, 0)} generates r(aρ0). Since M0 has no zero divisors, a standard argument gives
that H generates r(aρ).
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Now let a, b ∈ M and consider (aρ0)M0 ∩ (bρ0)M0. For any u, v ∈ M0 we have au ρ0 bv if
and only if au = bv = 0 or au, bv ∈ M and au ρ bv. By assumption, (aρ0)M0 ∩ (bρ0)M0

is finitely generated, say by {xρ0 : x ∈ X} ∪ {0ρ0}, where X is a finite subset of M .
It is then easy to show, bearing in mind that 0ρ0 = {0}, that {xρ : x ∈ X} generates
(aρ)M ∩ (bρ)M . �

Unfortunately, we do not know whether the analogues of the above result hold for arbitrary
Rees matrix semigroups with or without zero, or for Bruck–Reilly extensions.

Question 5.7. If M is right coherent monoid, are the following necessarily right coherent:
(a) an arbitrary Rees matrix monoidM(M ; I,Λ;P )1; (b) an arbitrary Rees matrix monoid
with zero M0(M ; I,Λ;P )1; (c) an arbitrary Bruck–Reilly extension BR(M, θ)?

6. Direct products

In this section we initiate the investigation into when the direct product of two monoids
is right coherent. We begin with the following easy observation:

Proposition 6.1. If the direct product S×T of two monoids is right coherent then so are
both S and T .

Proof. The mapping S×T → S×{1T} ∼= S, (s, t) 7→ (s, 1T ) is a retraction, and hence, by
Proposition 4.1, S is right coherent. The proof for T is analogous. �

Next we observe that the converse does not hold: it is possible for the direct product of
two right coherent monoids not to be right coherent.

Example 6.2. Let F be the free monoid generated by {a, x, b}. By [9], F is right coherent,
and we claim that F × F is not right coherent.

To this end, let ρ be the right congruence on F × F generated by

H =
{(

(ax, 1), (a, x)
)
,
(
(ab, 1), (aa, 1)

)}
.

We show that the annihilator ν = r
(
(a, b)ρ

)
is not finitely generated. To see this note that

for every n ≥ 1 we have

(13) (axn, b) ρ (axn−1, xb) ρ . . . ρ (a, xnb).

What is more, the elements appearing in (13) form a complete ρ-class, because no further
rules from H can be applied to any of them. It follows that (xn, 1)ν = {(xn, 1)} for all
n ≥ 1, and it is easy to see this is also true for n = 0.

In a similar fashion, we have

(axnb, b) ρ (axn−1b, xb) ρ . . . ρ (ab, xnb) ρ (aa, xnb) ρ (axa, xn−1b) ρ . . . ρ (axna, b),

and it follows that (xnb, 1) ν (xna, 1).
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Now, let K be an arbitrary finite set of pairs from F × F , and let n be a natural number
greater than the length of any words appearing in any component of any element of K.
It follows that no element of K has xna as a component. On the other hand, if (xna, 1)
is written as (u, v)(w, z), with (u, v) a component of a pair in K, then (u, v) = (xi, 1) for
some i ≥ 0. It follows from the discussion above that (u, v) is not ν-related to any element
of F × F other than itself and so there does not exist a K-sequence starting from (xna, 1)
and ending in (xnb, 1). Therefore K cannot generate ν, and we deduce that ν is not finitely
generated. Hence F × F is not right coherent.

In Example 6.2, certainly F × F is a submonoid of G × G, where G is the free group on
{a, b, x}. By [6], groups are coherent.

Corollary 6.3. The class of right coherent monoids is not closed under submonoids.

By way of contrast to Example 6.2, direct products with finite monoids do preserve right
coherency:

Theorem 6.4. If S is a right coherent monoid and T is a finite monoid then S × T is
right coherent.

We will prove this by reference to the original definition of coherency. The main work in
doing so is contained in the following result, which may be of independent interest. In
what follows, we denote the identities of S and T by 1S and 1T , respectively.

Proposition 6.5. Let S be a monoid, let T be a finite monoid and let A be an S × T -act.
Then A is a right S-act with the action as = a(s, 1T ) for all a ∈ A and s ∈ S. Further:

(i) A is finitely generated as an S-act if and only if it is finitely generated as an S×T -act;

(ii) A is finitely presented as an S-act if and only if it is finitely presented as an S×T -act.

Proof. The first statement is straightforward to verify.

(i) (⇒) If A is finitely generated as an S-act by a set X, then X also generates A as an
S × T -act.

(⇐) If A is finitely generated as an S × T -act by X, then for every a ∈ A there exist
(s, t) ∈ S × T and x ∈ X such that a = x(s, t) = x(1S, t)(s, 1T ), which shows that A is
finitely generated as an S-act by the set {x(1S, t) : x ∈ X, t ∈ T}.

(ii) (⇒) Suppose that A is finitely presented as an S-act. Let U be a finite generating set
for A as an S-act such that u(1S, t) ∈ U for all u ∈ U and t ∈ T . Let X = {xu : u ∈ U}.
Since finite presentability does not depend on the choice of the generating set, there is an
S-morphism θ : FS(X)→A, extending the map xu 7→ u, such that ker θ is generated by a
finite set of pairs H ⊆ FS(X)× FS(X).
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Let ψ : FS×T (X) → A be the S × T -morphism extending the map xu 7→ u and let
H ′ ⊆ FS×T (X)× FS×T (X) be defined by

H ′ =
{(
xu(s, 1T ), xv(t, 1T )

)
: (xus, xvt) ∈ H

}
∪
{(
xu(1S, t), xu(1S ,t)

)
: xu ∈ X, t ∈ T

}
.

By construction, H ′ ⊆ kerψ; we claim that H ′ generates kerψ. To this end, suppose
that (xu(s, t))ψ = (xv(h, k))ψ, so that u(s, t) = v(h, k) in A. Then u(1S, t)(s, 1T ) =
v(1S, k)(h, 1T ) so that, regarding A as an S-act, we have

(
u(1S, t)

)
s =

(
v(1S, k)

)
h. It

follows that (xu(1S ,t)s)θ = (xv(1S ,k)h)θ so that, as H generates ker θ, we have an H-sequence

xu(1S ,t)s = (xp1c1)t1, (xq1d1)t1 = (xp2c1)t1, . . . , (xqndn)tn = xv(1S ,k)h

where (xpici, xqidi) ∈ H and ti ∈ S, 1 ≤ i ≤ n. We therefore have an H ′-sequence

xu(s, t) = xu(1S, t)(s, 1T ), xu(1S ,t)(s, 1T ) = xp1(c1, 1T )(t1, 1T ), xq1(d1, 1T )(t1, 1T ) =

xp2(c2, 1T )(t2, 1T ), . . . , xqn(dn, 1T )(tn, 1T ) = xv(1S ,k)(h, 1T ), xv(1S, k)(h, 1T ) = xv(h, k)

connecting xu(s, t) and xv(h, k). Thus kerψ is generated by H ′, giving that A is finitely
presented as an S × T -act.

(⇐) Suppose that A is finitely presented as an S × T -act. Let U be a finite generating set
for A as an S × T -act, let X = {xu : u ∈ U} and let θ : FS×T (X) → A be the S × T -
morphism extending the map xu 7→ u. By assumption, ker θ is finitely generated, say by
H ⊆ FS×T (X)× FS×T (X), where H is finite. Let

X ′ = {xu(1S ,t) : u ∈ U, t ∈ T}
and put

H ′ =
{(
xu(1S ,c′t)c, xv(1S ,d′t)d

)
: (xu(c, c

′), xv(d, d
′)) ∈ H, t ∈ T

}
.

Let ψ : FS(X ′) → A be the S-morphism extending the map xu(1S ,t) 7→ u(1S, t). It is easy
to check that ψ is onto and H ′ ⊆ kerψ.

To show that kerψ is generated by H ′, suppose that
(
xu(1S ,t)s

)
ψ =

(
xv(1S ,k)h

)
ψ, so that

u(s, t) = v(h, k) in A and hence
(
xu(s, t)

)
θ =

(
xv(h, k)

)
θ. Since ker θ is generated by H,

we have an H-sequence

xu(s, t) = xp1(c1, c
′
1)(s1, t1), xq1(d1, d

′
1)(s1, t1) = xp2(c2, c

′
2)(s2, t2),

. . . , xqn(dn, d
′
n)(sn, tn) = xv(h, k),

where
(
xpi(ci, c

′
i), xqi(di, d

′
i)
)
∈ H and (si, ti) ∈ S × T , for 1 ≤ i ≤ n. We therefore have an

H ′-sequence

xu(1S ,t)s = (xp1(1S ,c′1t1)c1)s1, xq1(1S ,d′1t1)d1)s1 = (xp2(1S ,c′2t2)c2)s2,

. . . , (xqn(1S ,d′ntn)dn)sn = xv(1S ,k)h,

where (xpi(1S ,c′iti)ci, xqi(1S ,d′iti)di) ∈ H ′ and si ∈ S for 1 ≤ i ≤ n, connecting xu(1S ,t)s and
xv(1S ,k)h. It follows that kerψ is finitely generated and hence A is finitely presented as an
S-act. �
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Proof of Theorem 6.4. Let A be a finitely presented S × T -act and B a finitely generated
S × T -subact of A. Then, by Theorem 6.5, A is also a finitely presented S-act, and B
is finitely generated as an S-subact of A. Since S is right coherent we have that B is
finitely presented as an S-act, and then by Theorem 6.5 we conclude that B is also finitely
presented as an S × T -act, concluding that S × T is indeed right coherent. �

Question 6.6. Let S be a right coherent monoid. For which classes of monoids C is it the
case that S × T is right coherent for all T ∈ C?

Theorem 6.5 tells us that the class of finite monoids is one example of a class C as above.
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