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Abstract. This is the second in a series of articles surveying the body of work on
the model theory of S-acts over a monoid S. The first concentrated on the theory of
regular S-acts. Here we review the material on model-theoretic properties of free, pro-
jective and (strongly, weakly) flat S-acts. We consider questions of axiomatisability,
completeness, model completeness and stability for these classes. Most but not all of
the results have already appeared; we remark that the description of those monoids
S such that the class of free left S-acts is axiomatisable, is new.

1. Introduction

The interplay between model theory and other branches of mathematics is a fruitful
and fascinating area. The model theory of modules over a ring R has long been a
respectable branch of both model theory and ring theory: an excellent introduction to
the subject may be found in the book of Prest [19]. The model theory of acts over
monoids is rather less developed but again exhibits a nice interplay between algebra
and model theory, with its own distinct flavour. In an attempt to make the existing
results available to wider audiences, a group of authors is engaged in writing a series
of survey articles, of which this is the second.

A left S–act over monoid S is a set A upon which S acts unitarily on the left. Thus,
left S–acts can be considered as a natural generalisation of left modules over rings.
Certainly many questions that can be asked and answered in the model theory of
modules can be asked for S-acts, but often have rather different answers. For example,
there is a finite ring R such that the class of free left R-modules is not axiomatisable,
whereas if S is a finite monoid then the class of free left S-acts is always axiomatisable.
At a basic level, the major difference is that there is no underlying group structure to
an S-act, so that congruences cannot in general be determined by special subsets.

A class of L-structures C for a first order language L is axiomatisable or elementary
if there is a set of sentences Π in L such that an L-structure A lies in C if and only
if every sentence in Π is true in A. Eklof and Sabbah [ES] characterise those rings
R such that the class of all flat (projective, free) left R-modules is axiomatisable (in
the natural first order language associated with R-modules). What is at scrutiny here
is the power of a first order language to characterise categorical notions. Naturally
enough the conditions that arise are finitary conditions on the ring R. In the theory of
S–acts there are three contenders to the notion of flatness, called here weakly flat, flat
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and strongly flat, for which corresponding analogues for modules over a ring coincide.
We devote Sections 5 to 9 to characterising those monoids S such that the classes
of weakly flat, flat, strongly flat, projective and free S-acts are axiomatisable. The
material for Sections 5 to 8 is taken from the papers [10] and [2] of the first author and
Bulman-Fleming, and the paper [21] of the fourth author. Section 9 contains a new
result of the first author characterising those monoids such that the class of free left
S-acts is axiomatisable, and some specialisations taken from [21].

A theory T in L is complete if for each sentence ϕ of L we have either ϕ ∈ T or
¬ϕ ∈ T . This is equivalent to saying that for any models A and B of T , that is,
L-structures A and B in which all sentences of T are true, we have that A and B are
‘the same’ in some sense; precisely, they are elementarily equivalent. Related notions
are those of model completeness and categoricity. We can define associated notions
of completeness, model completeness and categoricity for classes of L-structures. Sec-
tion 11, the results of which are taken from [21], considers the question of when the
classes of strongly flat, projective and free left S-acts are complete, model complete or
categorical, given that they are axiomatisable.

Sections 13 and 14 investigate the crucial properties of stability (surveyed in Sec-
tion 12) for our classes of S-acts. We remarked above that although a parallel can be
drawn between some problems in the model theory of modules and that for S–acts,
the theories soon diverge. This is immediately apparent when stability comes into
question. Each complete theory of an R-module over a ring R is stable, whereas there
are S-acts with unstable theories [17, 9, 22]. We consider questions of stability for
classes of strongly flat, projective and free left S-acts. Let us say that a class C of
structures is stable (superstable, ω–stable) if for any A ∈ C the set of sentences true
in A (which is a complete theory) is stable (superstable, ω–stable). It is proved that
if the class of strongly flat left S-acts is axiomatisable and S satisfies an additional
finitary condition known as Condition (A), then the class is superstable. Moreover, if
the class of projective (free) left S-acts is axiomatisable, then it is superstable. Finally
we consider the question of ω-stability for an axiomatisable class of strongly flat left
S-acts, given that S is countable and satisfies Condition (A). Consequently, if the class
of projective (free) left S–acts is axiomatisable for a countable monoid S, then it is
ω–stable.

We have endeavoured to make this paper as self-contained as possible, giving all
necessary definitions and results, with proofs or careful references to background results
where they are not immediately available. The article should be accessible to readers
with only a rudimentary knowledge of semigroup theory, acts over monoids and model
theory - little more than the notions of ideal, subsemigroup, S-act, first-order language
and interpretation. We devote Section 2 to an introduction to the necessary general
background for monoids and acts and Section 3 to a specific discussion of how the classes
of flat, projective and free S-acts arise, their properties etc. Section 4 gives further
details concerning axiomatisable classes, including a discussion of ultraproducts of
specific kinds. Section 10 gives the necessary background for complete, model complete
and categorical theories, and as mentioned above, Section 12 contains a discussion of
the notion of stability. For a more comprehensive treatment we recommend the reader
to [11] (for semigroup theory), [13] (for the theory of S-acts) and [4] (for model theory).

The finitary conditions that arise from considerations of axiomatisability etc., and
the monoids that satisfy them, are of interest in themselves. They are currently the
subject of the PhD of L. Shaheen, a student of the first author. The only serious
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omission of material in this article is that we have preferred not to recall the examples
presented in the papers from which much of this article is constituted, and refer the
reader to the references for further information.

2. Monoids and acts

Throughout this paper S will denote a monoid with identity 1 and set of idempotents
E. Maps will be written on the left of their arguments. We make frequent use of the five
equivalences on S known as Green’s relations R,L,H,D and J . For the convenience
we recall here that the relation R is defined on S by the rule that for any a, b ∈ S,

aR b if and only if aS = bS.

Clearly, aR b if and only if a and b are mutual left divisors, and R is a left compatible
equivalence relation. The relation L is defined dually. The meet H of R and L (in the
lattice of equivalences on S) is given by H = R ∩ L. Immediately from Proposition
2.1.3 of [11], the join D of R and L is given by

D = R ◦ L = L ◦ R.

The fifth relation, J , is defined by the rule that for any a, b ∈ S, aJ b if and only if
SaS = SbS.

The following result is due to Green.

Theorem 2.1. Theorem 2.2.5, [11] If H is an H-class of S, then either H 2 ∩H = ∅
or H2 = H and H is a subgroup of S.

It is standard convention to write Ka for the K-class of an element a ∈ S, where K
is one of Green’s relations. Theorem 2.1 gives immediately that He is a subgroup, for
any e ∈ E. The group of units of S is H1; we say that S is local if S \H1 is an ideal.
The following lemma is straightforward.

Lemma 2.2. The monoid S is local if and only if

R1 = L1 = H1.

Clearly D ⊆ J ; it is not true for a general monoid that D = J . However, the
equality holds for finite monoids and, more generally, for epigroups. We say a monoid
S is an epigroup (or group bound) if every element of S has a positive power that lies
in a subgroup. The following result is well known but we include for completeness its
proof.

Proposition 2.3. Let S be a group bound monoid. Then S is local and D = J .

Proof. Let a, b ∈ S with aJ b. Then there exist x, y, u, v ∈ S with a = xby, b = uav.
We have that

a = xby = x(uav)y = (xu)a(vy) = (xu)na(vy)n

for any n ∈ ω. By hypothesis we may pick n ≥ 1 with (xu)n lying in a subgroup. By
Theorem 2.1 we have that (xu)n L (xu)2n, whence as S(xu)2n ⊆ S(xu)n+1 ⊆ S(xu)n

we must have that (xu)n+1 L (xu)n. Since L is a left congruence we have that

a = (xu)na(vy)n L (xu)n+1a(vy)n = xua.

By the same argument as above, aLua; dually, aR av. Hence

aLuaR uav = b
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so that aD b and D = J as required.
A similar argument yields that S has the ‘rectangular’ property, that is, if aD bD ab,

then aR abL b.
If 1D a, then as certainly 1 a = a, we have that 1R a; dually, 1La. Hence 1H a and

J1 = D1 = L1 = R1 = H1.

�

A monoid S is regular if for any a ∈ S there exists an x ∈ S with a = axa. Notice
that in this case, ax, xa ∈ E and

axR aLxa.

A regular monoid S is inverse if, in addition, ef = fe for all e, f ∈ E. In an inverse
monoid the idempotents form a commutative subsemigroup which we refer to as the
semilattice of idempotents of S.

A monoid S is right collapsible if for any s, t ∈ S there exists u ∈ S such that
su = tu.

Lemma 2.4. Let S be a right collapsible monoid and let a1, . . . , an ∈ S. Then there
exists r ∈ S with

a1r = a2r = . . . = anr.

Proof. Certainly the result is true for n = 1 or n = 2. If a1r = a2r = . . . = air
for some i with 2 ≤ i < n, then pick s ∈ S with airs = ai+1rs and note that
a1rs = . . . = airs = ai+1rs. The result follows by finite induction.

�

A submonoid T of S is right unitary if for any t ∈ T, s ∈ S, if st ∈ T , then s ∈ T . We
say that a monoid has the condition of finite right solutions, abbreviated by (CFRS),
if

∀s ∈ S ∃ns ∈ N ∀t ∈ S|{x ∈ S| sx = t}| ≤ ns.

The starred analogues L∗ and R∗ of L and R also figure significantly in this work.
We recall that elements a, b of S are R∗-related if for all x, y ∈ S,

xa = ya if and only if xb = yb.

Clearly, R∗ is a left congruence on S containing R; it is not hard to see that R = R∗

if S is regular. The relation L∗ is defined dually.

This article is concerned with model theoretic aspects of the representation theory
of monoids via morphisms to monoids of self-mappings of sets. We recall that a set A
is a left S-act if there is a map S × A → A, (s, a) 7→ sa, such that for all a ∈ A and
s, t ∈ S,

1a = a and s(ta) = (st)a.

Terminology for S-acts has not been consistent in the literature: they are known
variously as S-sets, S-systems, S-operands and S-polygons. The definitive reference
[13] uses the term S-act, as do we here.

To say that a set A is a left S-act is equivalent to there being a morphism from S to
the full transformation monoid TA on A. For the record, we denote the identity map on
a set X by IX , so that such a morphism must take 1 ∈ S to IA ∈ TA. An S-morphism
from a left S-act A to a left S-act B is a map θ : A → B such that θ(sa) = sθ(a), for
all a ∈ A, s ∈ S. Clearly, the class of left S-acts together with S-morphisms forms a
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category, S-Act. It is clear that in S-Act the coproduct of S-acts Ai, i ∈ I is simply
disjoint union, denoted

∐

i∈I Ai. Right S-acts, and the category Act-S, are defined
dually.

An S-subact of a left S-act A is a subset B of A closed under the action of S. Clearly
S may be regarded as a left S-act, and any left ideal becomes an S-subact. A left S-act
A is finitely generated if there exists a1, . . . , an ∈ A such that A =

⋃i=n

i=1 Sai and cyclic
if A = Sa for some a ∈ A. If x ∈ X, where X is a set disjoint from S, then the set of
formal expressions Sx = {sx | s ∈ S} becomes a cyclic left S-act in an obvious way.
Notice that Sx ∼= S. The proof of the following lemma is immediate.

Lemma 2.5. Let A,B be a left S-acts, let a ∈ A and b ∈ B. Then there is an
S-isomorphism θ : Sa→ Sb such that θ(a) = b if and only if for all x, y ∈ S,

xa = ya if and only if xb = yb.

Lemma 2.5 gives in particular that if e ∈ E, then Sa ∼= Se under an isomorphism
θ such that θ(a) = e, if and only if ea = a and for all x, y ∈ S, xa = ya implies that
xe = ye; such an a is said to be right e-cancellable.

From [8], or Lemma 2.5 above, we deduce:

Lemma 2.6. [8] Let a, b ∈ S. The left ideals Sa and Sb are isomorphic as left S-acts,
under an isomorphism θ such that θ(a) = b, if and only if aR∗ b.

A monoid S is called right cancellative if every element from S is right 1-cancellable.
The notions of a left e-cancellable element and a left cancellative monoid are defined
dually.

A congruence on a left S-act A is an equivalence relation ρ on A such that (a, a′) ∈ ρ
implies (sa, sa′) ∈ ρ for a, a′ ∈ A, s ∈ S. To prevent ambiguity, a congruence on S
regarded as a left S-act will be referred to as a left congruence. If ρ is a congruence on
A we shall also write a ρ a′ for (a, a′) ∈ ρ and a/ρ for the ρ-class of a ∈ A. If X ⊆ A×A
then by ρ(X) we denote the smallest congruence on A containing X.

Proposition 2.7. [13] Let A be an S–act, X ⊆ A × A and ρ = ρ(X). Then
for any a, b ∈ A, one has a ρ b if and only if either a = b or there exist
p1, . . . , pn, q1, . . . , qn ∈ A, s1, . . . , sn ∈ S such that (pi, qi) ∈ X or (qi, pi) ∈ X for
any i, 1 ≤ i ≤ n, and

a = s1p1, s1q1 = s2p2, . . . , snqn = b.

Elements x, y of a left S–act A are connected (denoted by x ∼ y) if there exist n ∈ ω,
a0, . . . , an ∈ A, s1, . . . , sn ∈ S such that x = a0, y = an, and ai = siai−1 or ai−1 = siai

for any i, 1 ≤ i ≤ n. An S-subact B of a left S–act A is a connected if we have x ∼ y
for any x, y ∈ B. It is easy to check that ∼ is a congruence relation on a left S–act A,
with classes that are S-subacts, and maximal connected components of A. Thus, A is
a coproduct of connected S-subacts.

3. Free, Projective and Flat Acts

For the convenience of the reader we discuss in this section the classes of free, pro-
jectives and flat left S-acts; as explained below, there are several candidates for the
notion of a flatness. What we give is a skeleton survey; further details may be found
in [13].
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We remind the reader that a left S-act F is free (on a subset X, in S-Act) if and only
if for any left S-act A and map θ : X → A, there is a unique S-morphism θ : F → A
such that θι = θ, where ι : X → F is the inclusion mapping.

Theorem 3.1. [13] A left S-act F is free on X if and only if F ∼=
∐

x∈X Sx.

Notice from the above that a free left S-act is isomorphic to a coproduct of copies
of the left S-act S. From the remark following Lemma 2.5 we have our next corollary.

Corollary 3.2. A cyclic left S-act A is free if and only if A = Sa for some right
1-cancellable a ∈ A.

A left S-act P is projective if given any diagram of left S-acts and S-morphisms

M N

P

φ

θ

where φ : M → N is onto, there exists an S-morphism ψ : P → M such that the
diagram

M N

P

φ

θ
ψ

is commutative.
It is clear that a free left S-act F is projective; this is also an immediate consequence

of Theorem 3.1 and Theorem 3.3 below.

Theorem 3.3. [15, 5] A left S-act P is projective if and only if P ∼=
∐

i∈I Sei, where
ei ∈ E for all i ∈ I 6= ∅.

Corollary 3.4. A cyclic S-set A is projective if and only if A = Sa for some right
e-cancellable a ∈ S, for some e ∈ E.

To define classes of flat left S-acts we need the notion of tensor product of S-
acts. If A is a right S-act and B a left S-act then the tensor product of A and
B, written A ⊗ B, is the set A × B factored by the equivalence generated by
{((as, b), (a, sb)) : a ∈ A, b ∈ B, s ∈ S}. For a ∈ A and b ∈ B we write a ⊗ b for
the equivalence class of (a, b).

For a left S-act B, the map − ⊗ B is a functor from the category Act–S to the
category Set of sets. It is from this functor that the various notion of flatness are
derived.

A left S-act B is weakly flat if the functor −⊗B preserves embeddings of right ideals
of S into S, flat if it preserves arbitrary embeddings of right S-acts, and strongly flat if
it preserves pullbacks (equivalently, equalisers and pullbacks [1]). We give the reader a
warning that terminology has changed over the years; in particular, left S-acts B such
that −⊗B preserves equalisers and pullbacks are called weakly flat in [7] and [20], flat
in [10], and pullback flat in [13].

Stenström was instrumental in forwarding the theory of flat acts, by producing inter-
polation conditions, later labelled (P) and (E), that are together equivalent to strong
flatness.
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Theorem 3.5. [20] A left S-act B is strongly flat if and only if B satisfies conditions
(P) and (E):

(P): if x, y ∈ B and s, t ∈ S with sx = ty, then there is an element z ∈ B and
elements s′, t′ ∈ S such that x = s′z, y = t′z and ss′ = tt′;

(E): if x ∈ B and s, t ∈ S with sx = tx, then there is an element z ∈ B and s′ ∈ S
with x = s′z and ss′ = ts′.

The classes of free, projective, strongly flat, flat and weakly flat left S-acts will be
denoted by Fr,P,SF ,F and WF respectively. We remark here that ‘elementary’
descriptions (that is, not involving arrows) of F and WF , along the lines of Theo-
rems 3.1, 3.3 and 3.5 for Fr,P and SF , are not available. From those results it is
immediate that projective left S-acts are strongly flat. Clearly flat left S-acts are
weakly flat and since embeddings are equalisers in Act–S, strongly flat left S-acts are
flat. Thus

Fr ⊆ P ⊆ SF ⊆ F ⊆ WF .

A congruence θ on a left S-act A is called strongly flat if A/θ ∈ SF . For the purposes
of later sections we state a straightforward consequence of Theorem 3.5.

Corollary 3.6. [3] A congruence θ on the left S-act S is strongly flat if and only if
for any u, v ∈ S, u θ v if and only if there exists s ∈ S such that s θ 1 and us = vs.

4. Axiomatisability

Any class of algebras A has an associated first order language L. One can then ask
whether a property P , defined for members of A, is expressible in the language L. In
other words, is there a set of sentences Π in L such that a member A of A has property
P if and only if all the sentences of Π are true in A, that is, if and only if A is a model
of Π, which we denote by A � Π. If Π exists we say that B is axiomatisable, where B is
the subclass of A whose members have property P . Questions of axiomatisability are
the first step in investigating the model theory of a class of algebras.

We concentrate in this article on aspects of the first-order theory of left S-acts,
the next five sections considering questions of axiomatisability of the classes of free,
projective and (strongly, weakly) flat acts. Our language is the first order language
with equality LS which has no constant or relation symbols and which has a unary
function symbol λs for each s ∈ S: we write sx for λs(x). The class of left S-acts is
axiomatised by the set of sentences Π where

Π = {(∀x)(1x = x)} ∪ {µs,t : s, t ∈ S}

where µs,t is the sentence
(∀x)((st)x = s(tx)).

Certain classes of left S-acts are axiomatisable for any monoid S. For example the
torsion free left S-acts are axiomatised by Π ∪ ΣT Fr where

ΣT Fr = {(∀x)(∀y)(sx = sy → x = y) : s ∈ T}

where T is the set of left cancellable elements of S. Indeed in the context of S-acts
the sentences of Π are understood, and we say more succinctly that ΣT Fr axiomatises
T Fr. Other natural classes of left S-acts are axiomatisable for some monoids and not
for others.

One of our main tools throughout will be that of an ultraproduct, which we now
briefly recall.
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For any set A we denote the set of all subsets of A by P (A). A family C ⊆ P (A)
is centred if for any X1, . . . , Xn ∈ C the intersection X1 ∩ · · · ∩ Xn is not empty. We
remark that if C is centred, then ∅ /∈ C. A non-empty family F ⊆ P (A) is called a
filter on A if the follow conditions are true:

(a) ∅ /∈ F ;
(b) if U, V ∈ F then U ∩ V ∈ F ;
(c) if U ∈ F and U ⊆ X ⊆ A, then X ∈ F .
A filter F on a set A is said to be uniform if |X| = |A| for any X ∈ F and an

ultrafilter if X ∈ F or A \X ∈ F for any X ⊆ A. The following facts concerning these
concepts follow easily from the definitions.

(1) A filter F on a set A is a centred set and A ∈ F .
(2) If F is an ultrafilter on A and U0 ∪ · · · ∪ Un ∈ F then Ui ∈ F for some i 6 n.
(3) If A is an infinite set then the set

ΦA = {X | X ⊆ A, |A \X| < |A|}

is a filter (it is called the Fréchet filter).
(4) An ultrafilter F on an infinite set A is uniform if and only if F contains the filter

ΦA.
We now argue, that (with the use of Zorn’s Lemma), every centred family can be

extended to an ultrafilter. Hence, there are ultrafilters on every non-empty set.

Proposition 4.1. Let A be a non-empty set. Then:
(1) a centred family C ⊆ P (A) extends to a maximal centred family D;
(2) a centred family is an ultrafilter if and only if it is a maximal centred family;
(3) any centred family C ⊆ P (A) is contained in some ultrafilter F on A;
(4) a filter is an ultrafilter if and only if it is a maximal filter;
(5) if A is infinite then there is a uniform ultrafilter on A.

Proof. (1) Let S be the set of all centered families of subsets of A containing the family
C. It is clear that the union of an ascending chain of centered families is a centered
family. Thus the poset 〈S,⊆〉 satisfies the maximal condition required to invoke Zorn’s
Lemma. We deduce that there exists a centered family D which is maximal in 〈S,⊆〉.

(2) Let C be a maximal centred family. We have observed that ∅ /∈ C, and clearly
C is closed under intersection. If X ∈ C and X ⊆ Y ⊆ A, then clearly C ∪ {Y } is
centred. By maximality of C we deduce that Y ∈ C and so C is a filter. If X /∈ C,
then C ∪ {X} is not centred, so that X ∩ Y = ∅ for some Y ∈ C. Hence Y ⊆ A \X
so that A \X ∈ C since C is a filter. We deduce that C is an ultrafilter.

Conversely, any ultrafilter F is centred, and if F ⊂ G for a centred family G, then
taking X ∈ G\F , we have that X,A\X ∈ G, contradicting the fact that G is centred.
Hence F is maximal among centred families.

(3) This follows immediately from (1) and (2).
(4) Clearly, an ultrafilter is a maximal filter. On the other hand, if F is a maximal

filter, then by (1) F can be extended to a maximal centred family G. But G is an
ultrafilter by (2) so that F = G by the maximality of F .

(5) This follows from (3) and remark (4) above. �

We now give the construction of an ultraproduct of left S-acts; we could, of course,
define ultraproducts for any class of interpretations or structures of a given first order
language L, that is, any class of L-structures, but we prefer to be specific and leave
the reader to extrapolate. A point of notation: for any arbitrary language L we make
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a distinction between an L-structure A and the underlying set A of A, whereas for
S-acts we do not.

If B =
∏

i∈I Bi is a product of left S-acts Bi, i ∈ I, and Φ is an ultrafilter on I, then
we define a relation ≡Φ on B by the rule that

(ai) ≡Φ (bi) if and only if {i ∈ I : ai = bi} ∈ Φ.

It is a fact that ≡Φ is an equivalence and moreover an S-act congruence, so that putting

U = (
∏

i∈I

Bi)/Φ = (
∏

i∈I

Bi)/ ≡Φ

and denoting the ≡Φ-class of f ∈
∏

i∈I

Bi by f/Φ, U is an S-act under the operation

s (ai)/Φ = (sai)/Φ,

which we call the ultraproduct of left S-acts Bi, i ∈ I, under the ultrafilter Φ.
Ultraproducts are of central importance to us, due to the celebrated theorem of  Los.

Theorem 4.2. [4] Let L be a first order language and A a class of L-structures. If A
is axiomatisable, then A is closed under the formation of ultraproducts.

Let κ be an infinite cardinal; thus κ is a limit ordinal and we may regard κ as
the union of all smaller ordinals. A filter F is called κ-regular if there exists a family
R = {Sα | α ∈ κ} of distinct elements of F such that any intersection of any infinite
subset of the family R is empty.

Proposition 4.3. For any infinite cardinal κ there exists an κ-regular ultrafilter on
set I, where |I| = κ.

Proof. According to Proposition 4.1 it is enough to construct a set I, |I| = κ, and a
centred family F = {Sα | α ∈ κ} of distinct subsets of I such that the intersection of
any infinite subset of F is empty.

Consider the set I = {v | v ⊆ κ, v is finite}. Clearly the cardinality of I is equal to
κ. Let Sα = {v | v ∈ I, α ∈ v} and R = {Sα | α ∈ κ}. If Sα1 , . . . , Sαn

∈ R then

{α1, . . . , αn} ∈ Sα1 ∩ . . . ∩ Sαn
.

Therefore the family R is centred and the intersection of any infinite collection of its
elements is empty. �

We require one further technical result concerning ultraproducts that will be needed
for later sections.

Theorem 4.4. Let F be an κ-regular filter on a set I, |I| = κ, and let Ai (i ∈ I) be
S-acts of infinite cardinality λ. Then the cardinality of the filtered product (

∏

i∈I Ai)/F
is equal to λκ.

Proof. Let us denote the set of all finite sequences of elements of the cardinal λ by λ<ω.
It is clear that the cardinality of the set λ<ω coincides with λ. Since the cardinality of
the filtered products does not depend on the fact that the Ai’s are S-acts, but merely
on their cardinality, we can suppose that Ai = λ<ω for all i ∈ I. Since |(λ<ω)I| = λκ

then |(λ<ω)I/F | 6 λκ. Thus it is enough to construct an embedding φ of the set
λκ = {f | f : κ → λ} in the set (λ<ω)I/F .

Let the family R = {Sα | α ∈ κ} of elements from the filter F satisfy the required
condition from the definition of κ-regular filter, i.e. any intersection of an infinite
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subset of the family R is empty; clearly, for any i ∈ I, we must have that {α : i ∈ Sα}
is finite. We may add the set I \

⋃

R to the set S0, so we can consider that I =
⋃

R.
Let f : κ → λ be an arbitrary map. Define the map f ∗ : I → λ<ω in the following way:
f ∗(i) = 〈f(α1), . . . , f(αn)〉, where i ∈ I, {α1, . . . , αn} = {α | i ∈ Sα} and αi < αi+1

(1 ≤ i ≤ n − 1). We consider φ(f) = f ∗/F . Let f1, f2 ∈ λκ with f1 6= f2, so that
f1(α) 6= f2(α) for some α ∈ κ. Then f ∗

1 (i) 6= f ∗
2 (i) for any i ∈ Sα; since Sα ∈ F we

have that f ∗
1 /F 6= f ∗

2 /F and so φ is one-one as required.
�

5. Axiomatisability of WF

We begin our considerations of axiomatisability with the class WF ; the results of
this section are all taken from [2].

At this point it is useful to give further details on tensor products.

Lemma 5.1. [13] Let A be a right S-act and B a left S-act. Then for a, a′ ∈ A
and b, b′ ∈ B, a ⊗ b = a′ ⊗ b′ if and only if there exist s1, t1, s2, t2, . . . , sm, tm ∈ S,
a2, . . . , am ∈ A and b1, . . . , bm ∈ B such that

b = s1b1
as1 = a2t1 t1b1 = s2b2
a2s2 = a3t2 t2b2 = s3b3

...
...

amsm = a′tm tmbm = b′.

The sequence presented in Lemma 5.1 will be called a tossing (or scheme) T of
length m over A and B connecting (a, b) to (a′, b′). The skeleton of T , S = S(T ), is
the sequence

S = (s1, t1, . . . , sm, tm) ∈ S2m.

The set of all skeletons is denoted by S. By considering trivial acts it is easy to see
that S consists of all sequences of elements of S of even length.

Let a, a′ ∈ S and let S = (s1, t1, ..., sm, tm) be a skeleton of length m. We say that
the triple (a,S, a′) is realised if there are elements a2, a3, . . . , am ∈ S such that

as1 = a2t1
a2s2 = a3t2

...
amsm = a′tm.

We let T denote the set of realised triples.
A realised triple (a,S, a′) is witnessed by b, b1, . . . , bm, b

′ where b, b1, . . . ,
bm, b

′ are elements of a left S-act B if

b = s1b1
t1b1 = s2b2

...
tmbm = b′.

We know that if a, a′ ∈ A and b, b′ ∈ B, where A is a right S-act and B a left S-act,
then a ⊗ b = a′ ⊗ b′ in A ⊗ B if and only if there exists a tossing T from (a, b) to
(a′, b′) over A and B, with skeleton S, say. If the equality a⊗ b = a′ ⊗ b′ holds also in
(aS∪a′S)⊗B, and is determined by some tossing T ′ from (a, b) to (a′, b′) over aS∪a′S
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and B with skeleton S ′ = S(T ′) then we say that T ′ is a replacement tossing for T ,
S ′ is a replacement skeleton for S and (in case A = S) triples (a,S ′, a′) will be called
replacement triples for (a,S, a′).

Note that, for any left S-act B, right S-act A and (a, b), (a′, b′) ∈ A × B, if
S = (s1, t1, ..., sm, tm) is the skeleton of a tossing from (a, b) to (a′, b′) over A and
B, then γS(b, b′) holds in B, where γS is the formula

γS(y, y′) � (∃y1)(∃y2) · · · (∃ym)(y = s1y1 ∧ t1y1 = s2y2 ∧ · · · ∧ tmym = y′).

For any S ∈ S we define ψS to be the sentence

ψS � (∀y)(∀y′)¬γS(y, y′).

Theorem 5.2. [2] The following conditions are equivalent for a monoid S:
(1) the class WF is axiomatisable;
(2) the class WF is closed under ultraproducts;
(3) for every skeleton S over S and a, a′ ∈ S there exist finitely many skeletons

S1, . . . ,Sα(a,S,a′) over S, such that for any weakly flat left S-act B, if (a, b), (a′, b′) ∈ S×
B are connected by a tossing T over S and B with S(T ) = S, then (a, b) and (a′, b′)
are connected by a tossing T ′ over aS ∪ a′S and B such that S(T ′) = Sk, for some
k ∈ {1 . . . , α(a,S, a′)}.

Proof. That (1) implies (2) follows from Theorem 4.2 ( Los’s theorem).
Suppose now that (2) holds but that (3) is false. Let J denote the set of all finite

subsets of S and suppose that, for some skeleton S0 = (s1, t1, . . . , sm, tm) ∈ S and
a, a′ ∈ S, for every f ∈ J , there is a weakly flat left S-act Bf and bf , b

′
f ∈ Bf with the

pairs (a, bf ), (a′, b′f) ∈ S×Bf connected by a tossing Tf with skeleton S0, but such that
no tossing over aS ∪a′S and Bf connecting (a, bf ) and (a′, b′f ) has a skeleton belonging
to the set f .

For each S ∈ S let JS = {f ∈ J : S ∈ f} . Each intersection of finitely many of the
sets JS is non-empty (because S is infinite), so there exists an ultrafilter Φ over J
such that each JS (S ∈ S) belongs to Φ. Notice that a ⊗ b = a′ ⊗ b′ in S ⊗ B where
B =

∏

f∈J Bf , b(f) = bf and b′(f) = b′f , and that this equality is determined by a

tossing over S and B having skeleton S0. It follows that the equality a⊗ (b /Φ) = a′ ⊗
(b′ /Φ) holds also in S ⊗ U , where U = (

∏

f∈J Bf)/Φ, and is also determined by a
tossing over S and U with skeleton S0.

By our assumption, U is weakly flat, so that (a, b /Φ) and (a′, b′ /Φ) are connected
via a replacement tossing T ′ over aS ∪ a′S and U , say

b /Φ = u1d1 /Φ
au1 = c2v1 v1d1 /Φ = u2d2 /Φ
c2u2 = c3v2 v2d2 /Φ = u3d3 /Φ

...
...

cnun = a′vn vndn /Φ = b′ /Φ,

where di(f) = di,f for any f ∈ J and i ∈ {1, . . . , n}. We put S ′ = S(T ′).
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As Φ is closed under finite intersections, there exists D ∈ Φ such that

bf = u1d1,f

au1 = c2v1 v1d1,f = u2d2,f

c2u2 = c3v2 v2d2,f = u3d3,f

...
...

cnun = a′vn vndn,f = b′f

whenever f ∈ D. Now, suppose f ∈ D ∩ JS′. Then, from the tossing just considered,
we see that S ′ is a replacement skeleton for skeleton S0, connecting (a, bf) and (a′, b′f )

over aS ∪a′S and Bf . But S ′ ∈ f , contradicting the choice of (a, bf ) and (a′, b′f ). Thus
(3) holds.

Finally, suppose that (3) holds. We introduce a sentence corresponding to each
element of T in such a way that the resulting set of sentences axiomatises the class
WF .

We let T1 be the set of realised triples that are not witnessed in any weakly flat left
S-act B, and put T2 = T \ T1. For T = (a,S, a′) ∈ T1 we let ψT be the sentence
ψS defined before the statement of this theorem. If T = (a,S, a′) ∈ T2, then S is the
skeleton of some scheme joining (a, b) to (a′, b′) over S and some weakly flat left S-act
B. By our assumption (3), there is a finite list of replacement skeletons S1, ...,Sα(T ).
Then, for each k ∈ {1, ..., α(T )} , if Sk = (u1, v1, ..., uh, vh), there exist a weakly flat
left S-act Ck elements c, c′, c1, ..., ch ∈ Ck, and elements q2, ..., qh ∈ aS ∪ a′S such that

(i)

c = u1c1
au1 = q2v1 v1c1 = u2c2
q2u2 = q3v2 v2c2 = u3c3

...
...

qhuh = a′vh vhch = c′.

For each k, we fix such a list q2, ..., qh of elements, for future reference, and let ϕT be
the sentence

ϕT � (∀y)(∀y′)(γS(y, y′) → γS1(y, y
′) ∨ · · · ∨ γSα(T )

(y, y′)).

Let
ΣWF = {ψT : T ∈ T1} ∪ {ϕT : T ∈ T2} .

We claim that ΣWF axiomatises WF .
Suppose first that D is any weakly flat left S-act. Let T ∈ T1. Then T = (a,S, a′)

is a realised triple. Since T is not witnessed in any weakly flat left S-act, T is certainly
not witnessed in D so that D � ψT .

On the other hand, for T = (a,S, a′) ∈ T2, where S = (s1, t1, . . . , sm, tm), if d, d′ ∈ D
are such that γS(d, d′) is true, then there are elements d1, . . . dm ∈ D such that

d = s1d1

t1d1 = s2d2
...

tmdm = d,′

which together with the fact that T is a realised triple, gives that (a, d) is connected
to (a′, d′) over S and D via a tossing with skeleton S. Because D is weakly flat, (a, d)
and (a′, d′) are connected over aS ∪ a′S and D, and by assumption (3), we can take
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the tossing to have skeleton one of S1, . . . ,Sα(T ), say Sk. Thus D � γSk
(d, d′) and it

follows that D � ϕT . Hence D is a model of ΣWF .
Conversely, we show that every model of ΣWF is weakly flat. Let C � ΣWF and

suppose that a, a′ ∈ S, c, c′ ∈ C and we have a tossing

c = s1c1
as1 = a2t1 t1c1 = s2c2
a2s2 = a3t2 t2c2 = s3c3

...
...

amsm = a′tm tmcm = c′

with skeleton S = (s1, t1, . . . , sm, tm) over S and C. Then the triple T = (a,S, a′) is re-
alised, so that T ∈ T. Since γS(c, c′) holds, C cannot be a model of ψT . Since C � ΣWF

it follows that T ∈ T2. But then ϕT holds in C so that for some k ∈ {1 . . . , α(T )}
we have that γSk

(c, c′) is true. Together with the equalities on the left hand side of (i)
we have a tossing over aS ∪ a′S and C connecting (a, c) to (a′, c′). Thus C is weakly
flat. �

6. Axiomatisability of F

We now turn our attention to the class F of flat left S-acts. The results of this section
are again taken from [2]. First we consider the finitely presented flatness lemma of [2],
which is crucial to our arguments.

Let S = (s1, t1, . . . , sm, tm) ∈ S be a skeleton. We let Fm+1 be the free right S-act

xS q x2S q ... q xmS q x′S

and let ρS be the congruence on Fm+1 generated by

{(xs1, x2t1), (x2s2, x3t2), ..., (xm−1sm−1, xmtm−1), (xmsm, x
′tm)} .

We denote the ρS-class of w ∈ Fm+1 by [w]. If B is a left S-act and b, b1, . . . , bm, b
′ ∈ B

are such that
b = s1b1, t1b1 = s2b2, . . . , tmbm = b′

then the tossing

b = s1b1
[x] s1 = [x2] t1 t1b1 = s2b2

[x2] s2 = [x3] t2 t2b2 = s3b3
...

...
[xm−1] sm−1 = [xm] tm−1 tm−1bm−1 = smbm

[xm] sm = [x′] tm tmbm = b′.

over Fm+1/ρS and B is called a standard tossing with skeleton S connecting ([x], b) to
([x′], b′).

We refer the reader to [2] for the proof of the following lemma.

Lemma 6.1. [2] The following are equivalent for a left S-act B:
(1) B is flat;
(2) −⊗B preserves all embeddings of A in C, where A is a finitely generated subact

of a finitely presented right S-act C;
(3) − ⊗ B preserves the embedding of [x]S ∪ [x′]S into Fm+1/ρS , for all skeletons

S;
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(4) if ([x], b) and ([x′], b′) are connected by a standard tossing over Fm+1/ρS and B
with skeleton S, then they are connected by a tossing over [x]S ∪ [x′]S and B.

The construction of Fm+1/ρS enables us to observe that for any left S-act B and
any b, b′ ∈ B, a skeleton S = (s1, t1, ..., sm, tm) is the skeleton of a tossing from (a, b) to
(a′, b′) over A and B for some A and some a, a′ ∈ A if and only if γS(b, b′) holds in B,
where γS is the sentence defined before Theorem 5.2. We also note that if (a, b), (a′, b′)
are connected via a tossing with skeleton S, then ([x], b), ([x′], b) ∈ Fm+1/ρS are con-
nected via the standard tossing with skeleton S.

Theorem 6.2. [2] The following conditions are equivalent for a monoid S:
(1) the class F is axiomatisable;
(2) the class F is closed under formation of ultraproducts;
(3) for every skeleton S over S there exist finitely many replacement skeletons

S1, ...,Sα(S) over S such that, for any right S-act A and any flat act left S-act B,
if (a, b), (a′, b′) ∈ A × B are connected by a tossing T over A and B with S(T ) = S,
then (a, b) and (a′, b′) are connected by a tossing T ′ over aS ∪ a′S and B such that
S(T ′) = Sk, for some k ∈ {1, ..., α(S)} .

Proof. The implication (1) implies (2) is clear from Theorem 4.2.
The proof of (2) implies (3) follows the pattern set by that of Theorem 5.2, in

particular, J , the sets JS for S ∈ S and the ultrafilter Φ are defined as in that theorem.
Suppose that F is closed under formation of ultraproducts, but that asser-

tion (3) is false. Let J denote the family of all finite subsets of S. Suppose
S0 = (s1, t1, ..., sm, tm) ∈ S is such that, for every f ∈ J , there exist a right S-act
Af , a flat left S-act Bf , and pairs (af , bf), (a′f , b

′
f ) ∈ Af × Bf such that (af , bf) and

(a′f , b
′
f) are connected over Af and Bf by a tossing Tf with skeleton S0, but no replace-

ment tossing over afS ∪ a′fS and Bf connecting (af , bf) and (a′f , b
′
f ) has a skeleton

belonging to the set f. Note that a ⊗ b = a′ ⊗ b′ in A ⊗ B, where for each f ∈ J ,
a(f) = af , b(f) = bf , A =

∏

f∈J Af and B =
∏

f∈J Bf , and that this equality is

determined by a tossing over A and B (the “product” of the Tf ’s) having skeleton
S0. If follows that the equality a ⊗ (b /Φ) = a′ ⊗ (b′ /Φ) holds also in A ⊗ U, where
U = (

∏

f∈J Bf )/Φ, and is determined by a tossing over A and U with skeleton S0.

Because U is flat, S0 has a replacement skeleton S(T ′) = S ′ = (u1, v1, ..., un, vn), where
T ′ is a tossing

b /Φ = u1d1 /Φ
au1 = c2v1 v1d1 /Φ = u2d2 /Φ
c2u2 = c3v2 v2d2 /Φ = u3d3 /Φ

...
...

cnun = a′vn vndn /Φ = b′ /Φ

where for 2 ≤ j ≤ n and f ∈ J we have cj(f) = cj,f ∈ afS ∪ a′fS and for 1 ≤ j ≤ n

and f ∈ J we have dj(f) = dj,f ∈ Bf . As Φ is closed under finite intersections, there

exists D ∈ Φ such that

bf = u1d1,f

afu1 = c2,fv1 v1d1,f = u2d2,f

c2,fu2 = c3,fv2 v2d2,f = u3d3,f

...
...

cn,fun = a′fvn vndn,f = b′f
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whenever f ∈ D. Now, suppose f ∈ D ∩ JS′. Then, from the tossing just considered,
we see that S ′ is a replacement skeleton for skeleton S0, the latter being the skeleton
of tossing Tf connecting the pairs (af,bf ) and (a′f , b

′
f ) over Af and Bf . But because S ′

belongs to f, this is impossible. This completes the proof that (2) implies (3).
Finally, we show that (3) implies (1). Suppose every skeleton requires only finitely

many replacement skeletons, as made precise in the statement of (3) above. We aim
to use this condition to construct a set of axioms for F .

Let S1 denote the set of all elements of S that are not the skeleton of any tossing
connecting two elements of A×B, where A ranges over all right S-acts and B over all
flat left S-acts, and let S2 = S\S1.

For S ∈ S2, the comments preceding the theorem yield that S is the skeleton of
a standard tossing joining ([x] , b) to ([x′] , b′) over Fm+1/ρS and B where B is flat,
b, b′ ∈ B, and Fm+1 and ρS are as defined in Lemma 6.1.

Let S1, ...,Sα(S) be a set of replacement skeletons for S as provided by assertion (3)
and without loss of generality suppose that replacements for standard tossings may be
chosen to have skeletons from {S1, . . . ,Sα′(S)}, where α′(S) ≤ α(S). Hence for each
k ∈ {1, ..., α′(S)} if Sk = (u1, v1, ..., uh, vh), there exist a flat left S-act Ck, elements
c, c′, c1, ..., ch ∈ Ck, and elements p2, ..., ph ∈ [x]S ∪ [x′]S such that

(ii)

c = u1c1
[x] u1 = p2v1 v1c1 = u2c2
p2u2 = p3v2 v2c2 = u3c3

...
...

phuh = [x′] vh vhch = c′.

For each k, we fix such a list p2, ..., ph of elements, for future reference, and define ϕS

to be the sentence

ϕS � (∀y)(∀y′)(γS(y, y′) → γS1(y, y
′) ∨ · · · ∨ γS

α′(S)
(y, y′)).

Let

ΣF = {ψS : S ∈ S1} ∪ {ϕS : S ∈ S2} .

We claim that ΣF axiomatises F .
Suppose first that D is any flat left S-act.
For S ∈ S1, if D did not satisfy ψS , then we would have γS(d, d′) for some d, d′ ∈ D,

and so, by the comments preceding the statement of this theorem, S is the skeleton
of some tossing joining (a, d) to (a′, d′) over some right S-act A and flat left S-act D,
contrary to the fact that S ∈ S1. Therefore, D � ψS .

Now take any S ∈ S2, and suppose d, d′ ∈ D are such that D satisfies γS(d, d′). Then,
as noted earlier, ([x] , d) and ([x′] , d′) are joined over Fm+1/ρS and D by a standard
tossing with skeleton S, and therefore, by assumption, by a tossing over [x]S ∪ [x′]S
and D with skeleton Sk for some k ∈ {1, ..., α′(S)} . It is now clear that γSk

(d, d′) holds
in D, as required. We have now shown that D � ΣF .

Finally, we show that a left S-act C that satisfies ΣF must be flat. We need only
show that condition (4) of Lemma 6.1 holds for C. Let S ∈ S and suppose we have a
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standard tossing

(iii)

c = s1c1
[x] s1 = [x2] t1 t1c1 = s2c2

...
...

[xm] sm = [x′] tm tmcm = c′

over Fm+1/ρS and C. If S belonged to S1, then C would satisfy the sentence
(∀y)(∀y′)¬γS(y, y′), and so ¬γS(c, c′) would hold, contrary to the sequence of equalities
in the right-hand column of (ii). Therefore, S belongs to S2. Because C satisfies ϕS

and because γS(c, c′) holds, it follows that γSk
(c, c′) holds for some k ∈ {1, ..., α′(S)} .

If Sk = (u1, v1, ..., uh, vh), then

(iv)

c = u1e1
v1e1 = u2e2

...
vheh = c′

for certain e1, ..., eh ∈ C. Equalities (iv) and the left hand side of (ii) together constitute
a tossing over [x]S ∪ [x′]S and C connecting ([x] , c) and ([x′] , c′), showing that C is
indeed flat. The proof is now complete. �

7. Axiomatisability of SF

The earliest axiomatisability result, and certainly the most straightforward, in the
sequence of those described in this paper, is the characterisation of those monoids S
such that SF is an axiomatisable class. The results described in this section appear
(in amalgamated form) in [10]. The reader should note that in [10], strongly flat acts
are referred to as flat acts.

For any elements s, t of a monoid S, we define right annihilators R(s, t) and r(s, t)
as follows:

R(s, t) = {u, v) ∈ S × S : su = tv},

and
r(s, t) = {u ∈ S : su = tu}.

Where non-empty, it is clear that R(s, t) and r(s, t) are, respectively, an S-subact of
the right S-act S × S and a right ideal of S.

Proposition 7.1. The following conditions are equivalent for a monoid S:
(1) the class of left S-acts satisfying condition (E) is axiomatisable;
(2) the class of left S-acts satisfying condition (E) is closed under ultraproducts;
(3) every ultrapower of S as a left S-act satisfies condition (E);
(4) for any s, t ∈ S, r(s, t) = ∅ or is finitely generated as a right ideal of S.

Proof. That (1) implies (2) is immediate from Theorem 4.2; clearly (3) follows from
(2) since S is easily seen to satisfy (E).

Suppose now that every ultrapower of S satisfies condition (E). Let s, t ∈ S and
suppose that r(s, t) 6= ∅ and is not finitely generated as a right ideal.

Let {uβ : β < γ} be a generating set of r(s, t) of minimum cardinality γ; we identify
the cardinal γ with its initial ordinal; since γ is infinite it must therefore be a limit
ordinal. Let u ∈

∏

β<γ Sβ, where each Sβ is a copy of S, be such that u(β) = uβ. We

may suppose that for any β < γ, uβ /∈
⋃

α<β uαS.
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From Proposition 4.1 we can choose a uniform ultrafilter Φ on γ. Put
U = (

∏

β<γ Sβ)/Φ so that by our assumption (3), U satisfies condition (E).

Since suβ = tuβ for all β < γ, clearly su = tu and so s u /Φ = t u /Φ. Now U has
(E), so that there exist s′ ∈ S and v /Φ ∈ U such that ss′ = ts′ and u /Φ = s′ v /Φ.

From ss′ = ts′ we have that s′ ∈ r(s, t), so that s′ = uβw for some β < γ and w ∈ S.
Let T = {α < γ : uα = s′vα}; from the uniformity of Φ, we can pick σ ∈ T with σ > β.
Then

uσ = s′vσ = uβwvσ ∈ uβS,

a contradiction. We deduce that r(s, t) is finitely generated.
Finally we assume that (3) holds and find a set of axioms for the class of left S-acts

satisfying (E).
For any element ρ of S × S with r(ρ) 6= ∅ we choose and fix a set of generators

wρ1, . . . , wρm(ρ)

of r(ρ). For ρ = (s, t) we define a sentence ξρ of LS as follows: if r(ρ) = ∅ then

ξρ � (∀x)(sx 6= tx)

and on the other hand, if r(ρ) 6= ∅ we put

ξρ � (∀x)

(

sx = tx→ (∃z)

( m(ρ)
∨

i=1

x = wρ iz

))

.

We claim that

ΣE = {ξρ : ρ ∈ S × S}

axiomatises the class of left S-acts satisfying condition (E).
Suppose first that the left S-act A satisfies (E), and let ρ = (s, t) ∈ S×S. If r(ρ) = ∅

and sa = ta for some a ∈ S, then since A satisfies (E) we have an element s′ ∈ S such
that ss′ = ts′, a contradiction. Thus A � ξρ. On the other hand, if r(ρ) 6= ∅ and
sa = ta for some a ∈ S, then again we have that ss′ = ts′ for some s′ ∈ S, and a = s′b
for some b ∈ A. Now s′ ∈ r(ρ) so that s′ = wρ iv for some i ∈ {1, . . . , m(ρ)} and v ∈ S.
Consequently, a = wρ ic for c = vb ∈ A. Thus A � ξρ in this case also. Thus A is a
model of ΣE .

Finally, suppose that A � ΣE and sa = ta for some s, t ∈ S and a ∈ A. Put ρ = (s, t);
since A � ξρ we are forced to have r(ρ) 6= ∅ and a = wρ ib for some i ∈ {1, . . . , m(ρ)}.
By very choice of wρ i we have that swρ i = twρ i. Hence A satisfies condition (E) as
required. �

Similarly, and argued in full in [10], we have the corresponding result for condition
(P).

Proposition 7.2. The following conditions are equivalent for a monoid S:
(1) the class of left S-acts satisfying condition (P) is axiomatisable;
(2) the class of left S-acts satisfying condition (P) is closed under ultraproducts;
(3) every ultrapower of S as a left S-act satisfies condition (P);
(4) for any s, t ∈ S, R(s, t) = ∅ or is finitely generated as an S-subact of the right

S-act S × S.

We may put together Propositions 7.1 and 7.2 to obtain the following result for SF ,
taken from [10].
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Theorem 7.3. The following conditions are equivalent for a monoid S:
(1) SF is axiomatisable;
(2) SF is closed under ultraproducts;
(3) every ultrapower of S as a left S-act is strongly flat;
(4) for any s, t ∈ S, r(s, t) = ∅ or is a finitely generated right ideal of S, and

R(s, t) = ∅ or is finitely generated as an S-subact of the right S-act S × S.

8. Axiomatisability of P

Those monoids for which P is axiomatisable were determined by the fourth author in
[21], using preliminary results of the first author from [10]. In fact, P is axiomatisable
if and only if SF is axiomatisable and P = SF . Monoids for which P = SF are called
left perfect. Since left perfect monoids figure largely in this and subsequent sections,
we devote some time to them here, developing on the way some new properties of such
monoids.

A left S-act B is called a cover of a left S-act A if there exists an S-epimorphism
θ : B → A such that the restriction of θ to any proper S-subact of B is not an
epimorphism to A. If B is in addition projective, then B is a projective cover for A. A
monoid S is left perfect if every left S-act has a projective cover.

We now give a number of finitary conditions used in determining left perfect monoids,
and in subsequent arguments.

(A) Every left S-act satisfies the ascending chain condition for cyclic S-subacts.
(D) Every right unitary submonoid of S has a minimal left ideal generated by an

idempotent.
(MR)/(ML) The monoid S satisfies the descending chain condition for principal

right/left ideals.
(MR)/(ML) The monoid S satisfies the ascending chain condition for principal

right/left ideals.

Theorem 8.1. [7, 12, 13] The following conditions are equivalent for a monoid S:
(1) S is left perfect;
(2) S satisfies Conditions (A) and (D);
(3) S satisfies Conditions (A) and (MR);
(4) SF = P.

Proposition 8.2. Let S be a left perfect monoid. Then
(1) S is group bound;
(2) if Sb (bS) is a minimal left (right) ideal of S, then bS (Sb) is a minimal right

(left) ideal of S;
(3) if Sb1 ⊆ Sb0 and Sb1 ∼= Sb0, then Sb0 = Sb1;
(4) any minimal left (right) ideal of S is generated by an idempotent.

Proof. (1) Let S be a left perfect monoid. From Theorem 8.1 S satisfies (MR), so
that for any a ∈ S, amS = am+1S for some m ∈ N. On the other hand, consider the
descending chain

Sa ⊇ Sa2 ⊇ Sa3 ⊇ . . .

of principal left ideals. Let Φ be a uniform ultrafilter on N and consider the ultrapower
U = SN/Φ. For each n ∈ N let

un = (1, 1, . . . , a, a2, a3, . . .)/Φ
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where the first a occurs in the n’th place. Clearly un = aun+1 for any n ∈ N, so that

Su1 ⊆ Su2 ⊆ . . .

By Theorem 8.1, U has the ascending chain condition on cyclic S-subacts, so that
Suh = Suh+1 for some h. Consequently, suh = uh+1 for some s ∈ S; since Φ is uniform,

we deduce that for some i ≥ h + 1, sai−h+1 = ai−h. Putting k = i− h we deduce that
akL ak+1. Now take n to be the bigger of m and k; clearly an H an+1 Ha2n, whence by
Theorem 2.1, an lies in a subgroup of S.

(2) Suppose now that Sb is a minimal left ideal of S; since S has (MR) we can choose
c ∈ S with cS ⊆ bS and cS minimal. Notice that Scb = Sb and so cbL b; consequently
cbL∗ b. If d ∈ bS, then as c2S = cS = cdS we have cd = ccd′ for some d′ ∈ S. Now,
d = bx, cd′ = by for some x, y ∈ S, and so cbx = cby, giving that

d = bx = by = cd′,

that is, d ∈ cS. Hence bS = cS is minimal.
To prove (3), let us assume that Sb1 ⊆ Sb0 and Sb1 ∼= Sb0. Let φ : Sb0 → Sb1 be an

S-isomorphism. Then φ(b0) = sb1 = b2 for some s ∈ S. Then Sb2 ⊆ Sb1 ⊆ Sb0 and
b2 = tb0 for some t ∈ S. Since φ is an isomorphism we have that tb0 R

∗ b0 and as R∗

is a left congruence and S is group bound, b0 R
∗ tnb0 for some n ∈ N such that tn lies

in a subgroup. Let s be the inverse of t in this subgroup. Then stntn = tn, so that

b0 = stnb0 = stn−1tb0 = stn−1b2

whence Sb2 = Sb1 = Sb0 as required.
We now prove the second part of (2). Suppose b ∈ S and bS is a minimal right ideal.

Let Sc ⊆ Sb. In view of the minimality of bS we have that bcR b and so bcR∗ b. By
Lemma 2.6, Sbc ∼= Sb. But Sbc ⊆ Sc ⊆ Sb. Now (3) gives that Sbc = Sc = Sb as
required.

To see that (4) holds, note that if Sb is a minimal left ideal, then Sb = Sbn for
all n ∈ N; since S is group bound, bn H e for some n ∈ N and some e ∈ E. Hence
Sbn = Se; dually for principal right ideals. �

From Propositions 2.3 and 8.2 the following is immediate.

Corollary 8.3. Let S be a left perfect monoid. Then S is local and D = J .

Before stating the main result of this section, we require a preliminary lemma, due
to the fourth author, that has significant consequences. We recall from Section 2 say
that a monoid satisfies (CFRS) if

∀s ∈ S ∃ns ∈ N ∀t ∈ S|{x ∈ S| sx = t}| ≤ ns.

Lemma 8.4. [21] Let S be a monoid such that every ultrapower of S as a left S-act is
projective. Then S satisfies (CFRS).

Proof. Suppose to the contrary that t ∈ S exists for which the condition is not
true. That is, for each n ∈ N, there exists an element an ∈ S such that
|{x ∈ S : tx = an}| > n. Let Φ be a uniform ultrafilter on N and for n ∈ N choose
bn,1, . . . , bn,n ∈ S such that tbn,i = an, 1 ≤ i ≤ n. Put

cn = (1, . . . , 1, bn,n, bn+1,n, bn+2,n, . . .)

with bn,n occuring in the n’th place. Now, ci /Φ 6= cj /Φ for any i 6= j, but tci /Φ = a /Φ

where a = (a1, a2, . . .). Since U =
∏

n∈N
S/Φ is projective and a /Φ ∈ Sc /Φ ∼= Se for
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some e ∈ E, we deduce that there exists d ∈ S such that A = |{x ∈ S : tx = d}| is
infinite.

Now choose a cardinal α > |S|. Combining Propositions 4.3 and 4.4, we can choose
an ultrafilter Θ over α such that |Aα/Θ| = |A|α > |S| (any set may be regarded as an
S-act over a trivial monoid). Put V = Sα/Θ and let d ∈ Sα be such that d(i) = d for
all i ∈ α. If x ∈ Aα then clearly t x /Θ = d /Θ. But V is projective by assumption, so
that d /Θ ∈ Sg /Θ ∼= Sf for some f ∈ E. Consequently, there is an element u ∈ S such
that the equation tx = u has more than |S| solutions in S, which is clearly nonsense.
Hence S has (CFRS). �

Corollary 8.5. Let S be such that any ultrapower of S as a left S-set is projective.
Then for all s ∈ S there exists ns ∈ N such that for any P ∈ P and t ∈ P ,

|{x ∈ S| sx = t}| ≤ ns.

We now set out to prove the main result of this section, due to the first and fourth
authors.

Theorem 8.6. [10, 21, 2] The following conditions are equivalent for a monoid S:
(1) every ultrapower of the left S-set S is projective;
(2) SF is axiomatisable and S is left perfect.
(3) P is axiomatisable.

Proof. If SF is axiomatisable and S is left perfect, then by Theorem 8.1, P = SF is an
axiomatisable class. Clearly if P is axiomatisable, then Theorem 4.2 gives that every
ultrapower of S is projective.

Suppose that every ultrapower of S as a left S-set is projective; by Theorem 7.3,
certainly SF is an axiomatisable class. We proceed via a series of subsidiary lemmas.

Lemma 8.7. [10] Let S be such that every ultrapower of the left S-act S is projective.
Then S has (MR).

Proof. Let a1S ⊇ b2S ⊇ b3S ⊇ . . . be a decreasing sequence of principal right ideals
of S, so that for i ≥ 2 we have bi = bi−1ai for some ai ∈ S, putting b1 = a1. Thus
b2 = a1a2, b3 = b2a3 = a1a2a3, . . ..

Let Φ be a uniform ultrafilter over N and put U = SN/Φ; by assumption, U is
projective.

Define elements ui ∈ SN, i ∈ N, by

ui = (1, 1, . . . , 1, ai, aiai+1, aiai+1ai+2, . . .),

where the entry ai is the i’th coordinate. Then, for any i, j ∈ N with i < j we have

ui /Φ = aiai+1 . . . aj−1uj /Φ.

Since U is projective, Proposition 3.3 and Corollary 3.4 give that

Su1 /Φ ⊆ Su2 /Φ ⊆ . . . Sc /Φ

where c /Φ is left e-cancellable for some e ∈ E. Put c = (c1, c2, . . .), and let di ∈ S be
such that ui /Φ = dic /Φ for each i ∈ N. For any i < j we have that

dic /Φ = ai . . . aj−1djc /Φ

whence from the left e-cancellability of c /Φ,

die = ai . . . aj−1dje.
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Choose i ∈ N such that a1 . . . ai = d1ci, and eci = ci. Then for any j > i,

a1 . . . aiS = d1eciS = a1 . . . ajdj+1eciS ⊆ a1 . . . ajS ⊆ a1 . . . aiS,

whence

biS = bi+1S = . . .

as required. �

Lemma 8.8. [21] Let S be such that every ultrapower of the left S-act S is projective.
Then S has (ML).

Proof. Consider an ascending chain

Sa1 ⊆ Sa2 ⊆ · · ·

of principal left ideals of S. Let u2, u3, . . . ∈ S be such that ai = ui+1ai+1, from which
it follows that for any i, j with i < j,

ai = ui+1ui+2 · · ·ujaj.

Consider an ultrapower U = SN/Φ where Φ is a uniform ultrafilter on N. By assump-
tion, U is projective as a left S-act. For each i ≥ 2 define

vi /Φ = (1, 1, . . . , 1, ui, uiui+1, uiui+1ui+2, . . .)/Φ,

the entry ui occurring in the ith position. Observe that

vi /Φ = uivi+1 /Φ,

for each i, and as in Lemma 8.7 the projectivity of U ensures that there exist
f /Φ = (f1, f2, ...)/Φ and s1, s2, . . . ∈ S such that

vk /Φ = skf /Φ

for each k ∈ N. For each natural number k it follows that the set

Ek = {j ∈ N | j > k, ukuk+1 · · ·uj = skfj}

belongs to Φ. For each i we put

gi /Φ = fivi+1 /Φ = (fi, ..., fi, fiui+1, fiui+1ui+2, ...) /Φ.

Suppose that for each i ∈ N,
{

j ∈ N | gi /Φ = gj /Φ
}

/∈ Φ. In this case, for each

i ∈ N put Ti =
{

j ∈ N | gi /Φ 6= gj /Φ
}

, which by assumption belongs to Φ. Now

choose j1, j2, ... ∈ N as follows:

j1 ∈ E2

j2 ∈ E2 ∩ Tj1 , j2 > j1

j3 ∈ E2 ∩ Tj1 ∩ Tj2, j3 > j2 > j1
...

For any k,

v2 /Φ = u2u3 · · ·ujk
vjk+1 /Φ

= s2fjk
vjk+1 /Φ

= s2gjk
/Φ.
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By definition of the sets Ti, all of the elements gjk
/Φ are distinct. This contradicts

Lemma 8.5.
In view of the above, there exist i0 ∈ N such that D :=

{

j ∈ N | gj /Φ = gi0 /Φ
}

belongs to Φ. For any k ∈ D with k > i0, pick j ∈ D ∩ Ek. Then we have

Sj := {m ∈ N | m > j, fjuj+1 · · ·um = fi0ui0+1 · · ·um} ∈ Φ.

Now take any m ∈ Sj and calculate

ak−1 = uk · · ·ujuj+1 · · ·umam

= skfjuj+1 · · ·umam

= skfi0ui0+1 · · ·umam

= skfi0ai0 .

In summary we have shown in this case that, for any k ∈ D with k > i0, the left ideals
Sak−1 and Sai0 are equal. If now l > i0 is arbitrary, take any k ∈ D with k > l and
note that Sai0 ⊆ Sal ⊆ Sak−1 = Sai0 , and so the chain terminates, as required.

�

In order to complete the proof of the implication (1) ⇒ (2) in Theorem 8.6 we need
one further lemma. To this end, the following alternative characterisation of Condition
(A) will be useful.

Lemma 8.9. [12] A monoid S satisfies (A) if and only if for any elements a1, a2, . . .
of S, there exists n ∈ N such that for any i ∈ N, i ≥ n, there exists ji ∈ N, ji ≥ i + 1,
with

Saiai+1 . . . aji
= Sai+1 . . . aji

.

Lemma 8.10. [10] Let S be such that every ultrapower of the left S-act S is projective.
Then S satisfies Condition (A).

Proof. Let ai ∈ S, i ∈ N and define Φ, U, ui /Φ, di(i ∈ N) and c /Φ as in the proof
of Lemma 8.7. For any i we have that die = aidi+1e so that Sd1e ⊆ Sd2e ⊆ . . .. By
Lemma 8.8 we know that Sdne = Sdn+1e = . . . for some n ∈ N and since ec /Φ = c /Φ it
follows that Sun /Φ = Sun+1 /Φ = . . .. Now let i ≥ n, so that ui+1 /Φ = sui /Φ for some
s ∈ S. Since Φ is uniform there exists ji ≥ i + 1 such that ai+1 . . . aji

= saiai+1 . . . aji

and so
Sai+1 . . . aji

= Saiai+1 . . . aji
,

so that by Lemma 8.9, S satisfies Condition (A).
�

We now proceed with the proof of Theorem 8.6. If every ultrapower of S is projective,
then from Lemmas 8.7 and 8.10 we know that S satisfies (MR) and Condition (A). By
Theorem 8.1, S is left perfect. �

9. Axiomatisability of Fr

The question of axiomatisability of Fr was solved in some special cases by the fourth
author in [21], and most recently by the first author as below.

For convenience, we introduce some new terminology. Let e ∈ E and a ∈ S. We
say that a = xy is an e-good factorisation of a through x if y 6= wz for any w, z with
e = xw and wL e.



MODEL-THEORETIC PROPERTIES OF FREE, PROJECTIVE AND FLAT S-ACTS 23

Theorem 9.1. The following conditions are equivalent for a monoid S:
(1) every ultrapower of the left S-act S is free;
(2) P is axiomatisable and S satisfies (*): for all e ∈ E \ {1}, there exists a finite

set f ∈ S such that any a ∈ S has an e-good factorisation through w, for some w ∈ f .
(3) Fr is axiomatisable.

Proof. If Fr is axiomatisable, then certainly (1) holds. On the other hand, if (1)
holds, then by Theorem 8.6, P is axiomatisable and S is left perfect. Note that by
Corollary 8.3, S is local. We show that (*) holds.

Let e ∈ E with e 6= 1. For any a ∈ S, a = a · 1; if e = av with vL e, then as S is
local, 1 6= vc for any c.

We proceed by contradiction. Let J denote the set of finite subsets of S. Suppose
that for any f ∈ J there exists an element wf ∈ S such that wf does not have an
e-good factorisation through w, for any w ∈ f . Clearly S and J must be infinite.

For each w ∈ S let Jw = {f ∈ J : w ∈ f}; since {w1, . . . , wn} ∈ Jw1 ∩ . . .∩Jwn
, there

exists an ultrafilter Φ over J such that Jw ∈ Φ for all w ∈ S.
Consider U = SJ/Φ; by assumption (1), U is free. Let x ∈ SJ be such that

x(f) = wf . Since U is free, Theorem 3.1 and Corollary 3.2 give that x /Φ = wd/Φ for
some w, where d /Φ is right 1-cancellable. Suppose that d(f) = df , for any f ∈ J .

We claim that

D = {f ∈ J | wdf is an e-good factorisation through w} ∈ Φ.

Suppose to the contrary. Then

D′ = {f ∈ J | df = vz for some v, z with e = wv and vL e} ∈ Φ.

By Lemma 8.4, there are only finitely many v1, . . . , vn such that e = wvi and vi L e.
For 1 ≤ i ≤ n let

Di = {f ∈ J : df = viz for some z},

so that D′ = D1 ∪ . . . ∪Dn. Consequently, Di ∈ Φ for some i ∈ {1, . . . , n}. We know
that vi L e, so that vi is regular and vi R g for some g ∈ S; as S is local, g 6= 1. But
gvi = vi so that gdf = df for all f ∈ Di ∈ Φ. Hence gd /Φ = d /Φ, so that as d /Φ is
right 1-cancellable, g = 1, a contradiction. We conclude that D ∈ Φ.

Let T = {f ∈ J : wf = wdf}, so that T ∈ Φ; now pick f ∈ D ∩ T ∩ Jw. We
have that w ∈ f , and as f ∈ T , wf = wdf ; moreover, as f ∈ D, this is an e-good
factorisation of wf through w. This contradicts the choice of wf . We deduce that (*)
holds.

Finally, we suppose that P is axiomatisable, and S satisfies (*). Let ΣP = ΣSF be a
set of sentences axiomatising P. Let e ∈ E, e 6= 1. Choose a finite set f = {u1, . . . , un}
guaranteed by (*), such that every a ∈ S has an e-good factorisation through ui,
for some i ∈ {1, . . . , n}. Since P is axiomatisable, Lemma 8.4 tells us that for
each i ∈ {1, . . . , n} there exist finitely many vi1, . . . , vimi

∈ Le, mi ≥ 0, such that
e = uivij, 1 ≤ j ≤ mi. Let

ϕe,i � (∃b)(a = uib ∧ (
∧

1≤j≤mi

b 6= vija)).

We now define φe as

(∀a)
∨

1≤i≤n

ϕe,i.
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Put

ΣFr = ΣP ∪ {ϕe | e ∈ E \ {1}}.

We claim that ΣFr axiomatises Fr.
Let F be a free S-set; certainly F � ΣP . Say that F is free on X, let e ∈ E, e 6= 1

and let a ∈ F . Then a = sx for some x ∈ X. By choice of u1, . . . , un, we can write
s = uit for some t ∈ S with t 6= vw for any w ∈ S and v ∈ Le such that e = uiv. Put
b = tx; clearly then F � ϕe.

Conversely, let A be an S-set and suppose that A |= ΣFr. Since A is therefore
projective, we know that A is a coproduct of maximal indecomposable S-subsets of
the form Sa, where there exists an e ∈ E such that a is right e-cancellable; notice that
ea = a. Suppose that e 6= 1. Since A |= ϕe we have that a = uib for some b such that
b 6= va for any v ∈ Le with e = uiv. But b = wa say, giving that a = uiwa and so
e = uiwe. Clearly eLwe, and b = wa = wea, a contradiction. Thus e = 1 and we
deduce that A is free. Consequently, ΣFr axiomatises Fr as required.

�

For some restricted classes of monoids, we can simplify the condition given in The-
orem 9.1. We say that the group of units H1 of a monoid S has finite right index if
there exists u1, . . . , un ∈ S such that S = u1H1 ∪ . . . unH1. Note that if in addition S
is local, then for any e ∈ E, e 6= 1, any a ∈ S has an e-good factorisation through ui,
for some i ∈ {1, . . . , n}.

Proposition 9.2. Let S be a monoid such that

S \R1 = s1S ∪ . . . ∪ smS

for some s1, . . . , sm ∈ S. Then Fr is an axiomatisable class if and only if P is ax-
iomatisable and H1 has finite right index in S.

Proof. Suppose that P is axiomatisable and H1 has finite right index in S. By The-
orem 8.6 Corollary 8.3, S is local, so that by the comments above, condition (*) of
Theorem 9.1 holds, and so Fr is an axiomatisable class.

Conversely, if Fr is axiomatisable, it remains only to show that H1 has finite right
index. Suppose for contradiction that there exists a1, a2, . . . in S with aiU ∩ ajU = ∅
for all i 6= j. Let Φ be a uniform ultrafilter on N, let U = SN/Φ and let a ∈ SN be
given by a(i) = ai. Since U is free, a /Φ = wd/Φ for some right 1-cancellable d /Φ
generating the connected component in which a /Φ lies. Say d(i) = di.

By Theorem 9.1, and Corollary 8.3, we know that S is local so that R1 = H1. Hence
N = T1∪. . . Tm∪T where Ti = {i ∈ N : di ∈ siS} and T = {i ∈ N : di ∈ H1}. If Ti ∈ Φ,
then d /Φ = sif /Φ for some f /Φ; but f /Φ = vd /Φ so that as d /Φ is 1-cancellable,
we obtain 1 = siv, a contradiction. Hence T ∈ Φ. Let D = {i ∈ N : ai = wdi}, and
pick distinct i, j ∈ D ∩ T . Then ai = wdi, aj = wdj and so

aiH1 = wdiH1 = wH1 = wdjH1 = ajH1,

a contradiction. We deduce that H1 has finite right index in S.
�

Our final corollary is now straightforward.

Corollary 9.3. [21] Let S be an inverse monoid. Then Fr is an axiomatisable class
if and only if P is axiomatisable and H1 has finite right index in S.
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Proof. The converse holds as in Proposition 9.2.
Suppose now that Fr is axiomatisable. Since S has MR we can pick a minimal

principal right ideal; as S is regular, this is generated by e ∈ E. For any f ∈ E we
have that eS = efS, so that eR ef . But S is inverse, so that E is a semilattice, and
every R-class contains a unique idempotent. Hence e = ef for all f ∈ E; by Lemma 8.4
we deduce that E is finite. Since every principal right ideal is idempotent generated, S
has only finitely many principal right ideals. The result follows by Proposition 9.2. �

10. Completeness, model completeness and categoricity

At this point we need to present a little more model theory as motivation for the
remaining sections. We remind the reader that throughout, L denotes a first order
language.

An elementary theory or simply a theory of a first order language L is a set of
sentences T of L, which is closed under deduction. We recall from Section 4 that an
L-structure A in which all sentences of the theory T are true, is called a model of the
theory T and we write A |= T . A theory T is consistent if for any sentence ϕ ∈ L we
do not have both ϕ and ¬ϕ ∈ T . A consistent theory T is complete if ϕ ∈ T or ¬ϕ ∈ T
for any sentence ϕ of the language L. By the Extended Completeness Theorem (c.f.
Theorem 1.3.21 of [4]), a theory T is consistent if and only if it has a model. Clearly,
for any L-structure A, the theory Th(A) of A, defined by

Th(A) = {ϕ : ϕ is a sentence, A |= ϕ}

is a consistent complete theory and for a class of L-structures K,

Th(K) =
⋂

A∈K

Th(A)

is consistent.
Structures A,B for L are elementarily equivalent, denoted A ≡ B, if Th(A) =

Th(B). One of the basic tenets of model theory tells us that if T is a theory and ϕ is a
sentence such that ϕ /∈ T , then T ∪ {¬ϕ} is consistent, and hence has a model. Thus
we deduce

Lemma 10.1. A consistent theory T is complete if and only if A ≡ B for any models
A,B of T .

The previous few chapters have concentrated on axiomatisable classes of S-acts. We
remark here that if K is a class axiomatised by T , then Th(K) = T .

For an L-structure A with universe A and subset B of A we often consider the
augmented or enriched language LB, which is obtained from L by adding a set of
constants {b′ : b ∈ B}, where b′1 6= b′2 for distinct b1 and b2 from B. We will write AB

for the corresponding enriched LB-structure. So, AB is obtained from A by interpreting
the constant b′, where b ∈ B, by b. We denote by Th(A, b)b∈B the set of sentences of
LB true in AB. Another useful tool is that of the diagram of an L-structure A, denoted
by Diag A, which is the set of atomic and negated atomic formulae of LA that are true
in AA. From Proposition 2.1.8 of [4], an L-structure A embeds into an L-structure B

if and only if B has an enriching to the language LA, such that BA is a model of Diag
A.

We adopt the standard convention of writing x̄ ∈ X to indicate that x̄ = (x1, . . . , xn)
for some finite set {x1, . . . , xn} ⊆ X. A substructure A of an L-structure B is said to
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be elementary (denoted A 4 B), if for any formula ϕ(x̄) of the language L and any
ā ∈ A

A |= ϕ(ā) ⇔ B |= ϕ(ā).

Note that in this definition the condition“⇔” can be exchanged to “⇐” or “⇒”
(consider the negation of the formula and bear in mind that for any L-structure C,
Th(C, c)c∈C is complete). It is easy to see that if A is a substructure of B, then

A 4 B if and only if BA |= Th(A, a)a∈A.

We can now state a crucial result, known as the upward and downward Löwenheim-
Skolem-Tarski theorem.

Theorem 10.2. Corollary 2.1.6 and Theorem 3.1.6, [4] Let T be a theory in L with
an infinite model. Then for any cardinal κ ≥ |L|, T has a model A with |A| = κ.

If B is a model of T with |B| = κ ≥ α ≥ |L| and X ⊆ B with |X| ≤ α, then there
is an elementary substructure C of B (so that certainly C |= T ) such that X ⊆ C and
|C| = α.

A consistent theory T of the language L is called model complete if

A ⊆ B ⇒ A 4 B

for any models A,B of T .

Lemma 10.3. Proposition 3.1.9, [4] Let T be model complete and such that any two
models of T are isomorphically embedded in a third. Then T is complete.

Proof. Let A and B be models of T ; by hypothesis there exists a model C of T such
that A and B embed into C. Since T is model complete,

A 4 C and B 4 C

so that certainly A ≡ B and from Lemma 10.1, T is complete. �

By writing a formula ϕ of L as ϕ(x̄), we indicate that the free variables of ϕ lie
amongst those of x̄. We can also write ϕ(x̄; ȳ) to indicate that the free variables
lie amongst those of the distinct tuples x̄ and ȳ. A formula of the form (∃x̄)ψ(x̄; ȳ)
for a quantifier–free formula ψ(x̄; ȳ) is called existential. A structure A in a class
K of L-structures is called existentially closed in K if for every extension B ∈ K of
A and every existential formula (∃x̄)ϕ(x̄; ā) with ā ∈ A, if BA |= (∃x̄)ϕ(x̄; ā), then
AA |= (∃x̄)ϕ(x̄; ā).

Theorem 10.4. Proposition 3.1.7, [4] A theory T is model complete if and only if
whenever A,B |= T and A ⊆ B, then for any existential formula (∃ȳ)ψ(ȳ) of LA,

BA |= (∃ȳ)ψ(ȳ) ⇒ AA |= (∃ȳ)ψ(ȳ).

Let κ be a cardinal. We recall that a theory T in L is categorical in κ, or κ-
categorical, if T has a model of cardinality κ, and any two models of cardinality κ are
isomorphic. The next result is known as the  Los-Vaught test; its proof is straightfor-
ward, relying upon the Löwenheim-Skolem-Tarski theorems.

Proposition 10.5. Proposition 3.1.10, [4] Suppose that T is a consistent theory with
only infinite models, and that T is κ-categorical for some κ ≥ |L|. Then T is complete.
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When applying the notions of categoricity, completeness and model completeness
to a class of L-structures, we have to be a little careful. A class K of L-structures is
called categorical in cardinality κ or κ-categorical if all structures from K of cardinal
κ are isomorphic. The class K is called categorical if K is categorical in some cardinal
κ ≥ |L|.

Let K be class of the L-structures. We denote class of the infinite structures of K
by K∞. The class K is called complete (model complete), if the theory Th(K∞) of the
infinite structures of this class is complete (model complete).

Lemma 10.6. Let K be a class of L-structures axiomatised by a theory T . For n ∈ N

we let ϕn be the sentence

ϕn � (∃x1 . . . xn)
∧

1≤i6=j≤n

(xi 6= xj)

and let T∞ be the deductive closure of

T ∪ {ϕn : n ∈ N}.

Then T∞ axiomatises K∞, so that Th (K∞) = T∞.

Lemma 10.7. Let K be an axiomatisable class of L-structures and κ an infinite car-
dinal, κ > |L|.

(1) If K is closed under the union of increasing chains then there is an existentially
closed structure A ∈ K, |A| = κ.

(2) If there is an infinite structure in K which is not existentially closed, then there
is a structure A ∈ K, |A| = κ and such that A is not existentially closed.

Proof. (1) Note that for any L-structure A and existential formula with parameters
from A which is true in A, this formula is true in any L-structure B, A ⊆ B. By
Theorem 10.2, there is an L-structure A0 ∈ K with |A0| = κ.

Enumerate the existential formulae of LA0 by {(∃x̄)ϕi(x̄; ā) : i < κ} and define
L-structures Bi ∈ K, 0 ≤ i < κ inductively as follows. We put B0 = A0. If
Bi |= (∃x̄)ϕi(x̄; ā), then put Bi+1 = Bi. If Bi |= ¬(∃x̄)ϕi(x̄; ā) and there is no B ∈ K
with Bi ⊂ B and B |= (∃x̄)ϕi(x̄; ā), then again we put Bi+1 = Bi. On the other hand,
if we can find a B ⊃ Bi with B |= (∃x̄)ϕi(x̄; ā), put B′

i+1 = B. By Theorem 10.2,
there is an elementary substructure Bi+1 of B′

i+1 such that Bi ⊆ Bi+1 and |Bi+1| = κ.
Certainly Bi+1 |= (∃x̄)ϕi(x̄; ā). For a limit ordinal α we let Bα =

⋃

i<α Bi. Since K is
closed under unions of increasing chains, it is clear that Bκ is in K, |Bκ| = κ and Bκ

satisfies the condition:
(*) for any existential formula ϕ with parameters from structure A0 if ϕ is true in

some structure B ∈ K, B ⊇ Bκ, then ϕ is true in Bκ. Put A1 = Bκ. Continuing this
procedure we receive an increasing chain of L-structures from K with cardinality κ:

A0 ⊆ A1 ⊆ . . . ⊆ An ⊆ . . .

where each pair of structures An, An+1, n ∈ ω, satisfies the condition (*) with
A0 and A1 replaced by An and An+1 accordingly. It is clear that the structure
A =

⋃

{An | n ∈ ω} ∈ K is existentially closed and |A| = κ.
(2) Let A0 and B0 be infinite structures from K with A0 ⊆ B0, for which there

exists an existential formula (∃x̄)ϕ(x̄; ā), where ā ⊆ A, such that A0 |= ¬(∃x̄)ϕ(x̄; ā)
and B0 |= (∃x̄)ϕ(x̄; ā). We consider (∃x̄)ϕ(x̄; ā) to be a sentence in Lā, and note that
κ ≥ |Lā|. From Proposition 4.3 and Theorem 4.4 there is an ultrafilter D over κ such



28VICTORIA GOULD, ALEXANDER MIKHALEV, EVGENY PALYUTIN, AND ALENA STEPANOVA

that |A| ≥ κ, where A = Aκ

0 /D. Then A |= ¬(∃x̄)ϕ(x̄; ā) and B |= (∃x̄)ϕ(x̄; ā), where
B = Bκ

0 /D, moreover A ⊆ B.
By Theorem 3.1.6 of [4] there exists an elementary substructure E 4 A of cardinality

κ. Clearly E |= ¬(∃x̄)ϕ(x̄; ā), E ∈ K, and E is not existentially closed. �

The next result is known as Lindström’s Theorem.

Theorem 10.8. Theorem 3.1.12, [4]. Let a class K of infinite L-structures be ax-
iomatisable, categorical in some infinite cardinality κ > |L| and closed under unions
of increasing chains. Then K is model complete.

Proof. It is clear that the property of being existentially closed is preserved by iso-
morphism. Since all structures from K of the cardinality κ are isomorphic then from
Lemma 10.7, all infinite structures from K are existentially closed. Theorem 10.4 now
gives that the class K is model complete. �

11. Completeness of SF , P and Fr

We investigate here the monoids with axiomatisable classes of strongly flat, projective
and free S–acts, asking for conditions under which these classes are complete and model
complete. The results of this section are all taken from [21].

Theorem 11.1. Let S be a commutative monoid. Suppose that the class SF is ax-
iomatisable. Then the following conditions are equivalent:

(1) the class SF is complete;
(2) the class SF is model complete;
(3) the class SF is categorical;
(4) SF = Fr;
(5) S is an Abelian group.

Proof. The implication (2)⇒(1) follows from Lemma 10.3 and the closure of the class
SF under the coproducts. The statement (4)⇒(2) follows from Theorem 10.8, (3)⇒(1)
is an immediate consequence of Proposition 10.5. It is clear that any two free S-acts
of cardinality α > |L| are isomorphic so that (4)⇒(3) follows.

(4)⇔ (5) This is immediate from Theorem 2.6 of [14].
(1)⇒(5) Fix an arbitrary a ∈ A; it is enough to prove that aS = S. Let Φ be a

uniform ultrafilter on ω and for k ∈ Z define fk ∈ Sω by

fk(i) =

{

ak+i k + i > 0;
1 k + i ≤ 0,

We will show that the left S–act U =
⋃

k∈Z

Sfk/Φ, which is a subact of a left S–

act Sω/Φ, is strongly flat. Since fk/Φ = afk−1/Φ then Sfk/Φ ⊆ Sfk−1/Φ. As-
sume r g1/Φ = s g2/Φ, where r, s ∈ S, g1/Φ, g2/Φ ∈ U . There exists k ∈ Z

such that g1/Φ, g2/Φ ∈ S fk/Φ, i.e. g1/Φ = t1 fk/Φ, g2/Φ = t2 fk/Φ for some
t1, t2 ∈ S. Hence there exists i ∈ ω such that i + k > 0, r g1(i) = s g2(i),
g1(i) = t1fk(i) = t1a

k+i, g2(i) = t2fk(i) = t2a
k+i. Thus rt1a

k+i = st2a
k+i,

g1/Φ = t1 a
k+if−i/Φ, g2/Φ = t2a

k+i f−i/Φ. Thus U satisfies condition (P); a minor
adjustment yields condition (E) also. Theorem 3.5 now implies that U is strongly flat.

As S is a commutative monoid then
∐

i∈ω

Ui |= (∀x)(∃y)(x = ay),
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where Ui are the copies of the left S–act U , i ∈ ω. Since the class SF is complete and
S ∈ SF then

∐

i∈ω

Si |= (∀x)(∃y)(x = ay),

where Si are the copies of the left S–act S, i ∈ ω. Therefore aS = S. �

Theorem 11.2. Let S be a monoid such that P is an axiomatisable class. Then the
following conditions are equivalent:

(1) the class P is complete;
(2) the class P is model complete;
(3) the class P is categorical;
(4) P = Fr;
(5) S is a group.

Proof. We remark that if S is a group, then again from [14] we have that SF = P = Fr.
As in the proof of Theorem 11.1 it is then enough to prove the implication (1)⇒(5).
The axiomatizability of the class P and Theorem 8.1 imply that S is a left perfect
monoid and S therefore satisfies Condition (MR). Consequently, S has a minimal right
ideal which from Proposition 8.2 (iv) is of the form eS for some e ∈ E. Proposition 8.2
(ii) gives that left ideal Se is also minimal. Clearly, Se ∈ P.

Since S is local, 1 is the only idempotent in the R-class and in the L-class of 1.
Suppose e 6= 1 so that Se ⊂ S and eS ⊂ S.

For any a ∈ S we put
Xa = {x ∈ S | ex = a}

so that by Lemma 8.4 each set Xa is a finite subset of S. Let Xe ∩ Se = {a1, . . . , an},
ai 6= aj (i 6= j), and choose any t ∈ Se. Notice that Xe ∩ Se ⊆ Le.

We will show that |Xet ∩ Se| = n. Clearly ait ∈ Xet ∩ Se, 1 ≤ i ≤ n. Since
Se = Sai is a minimal left ideal Proposition 8.2 gives that aiS is minimal right ideal
for i ∈ {1, . . . , n}.

Suppose ait = ajt where 1 ≤ i, j ≤ n. Since the ideals aiS and ajS are minimal
right we have that aiS = ajS and so aj = aik for some k ∈ S. Since eai = eaj = e, we
deduce that ek = eaik = eaj = e, that is, ek = e. Since Se = Sai then ai = aie and so

aj = aik = aiek = aie = ai.

Hence |{a1t, . . . , ant}| = n.
Assume there exists c ∈ Xet ∩Se such that c 6= ait for any i, 1 ≤ i ≤ n. Since c = ce

and the left ideal Se is minimal, we have that Se = Sce = Sc, that is, Sc is a minimal
left ideal. Consequently Sc = Sec and c = lec for some l ∈ S. The minimality of
the ideal eS implies the equality eS = ecS. Hence, there is d ∈ cS such that ed = e,
that is, d ∈ Xe, and d = cr for some r ∈ S. Suppose d ∈ Se. Then d = ai for some
i, 1 ≤ i ≤ n. The equalities ecrt = edt = eait = et = ec imply ecrt = ec. Let us
multiply this equation by l from the left. Then crt = c, i.e. c = ait. This contradicts
the choice of c. Thus, d ∈ (Xe ∩ cS) \ Se. Since d = cr we have ecr = ed = e = ecre.
Let us multiply this equation by l from the left. Then cr = cre, that is d ∈ Se, a
contradiction.

Thus, Xet ∩ Se = {a1t, · · · , ant} and ait 6= ajt (i 6= j) for any t ∈ Se. So Se |= ψ
where

ψ : (∀x)(ex = x→ (∃(y1, . . . , yn)

(

∧

1≤i≤n

(eyi = x) ∧ (ey = x→
∨

1≤i≤n

y = yi)

)

)).
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Since the class P is complete then A =
∐

i∈ω

Sei ≡ B =
∐

i∈ω

Si, where Si, Sei, i ∈ ω, are

copies of the left S–acts S and Se respectively, i ∈ ω. As A |= ψ we must have that
B |= ψ. In particular, there are exactly n solutions to ey = e; but |Xe ∩ Se| = n and
1 ∈ Xe \ Se, a contradiction. So e = 1 and (as every principal right ideal contains a
minimal one), aS = S for all a ∈ S. Since S is a minimal right ideal, Proposition 8.2
gives that it is a minimal left ideal ideal and so Sa = S for all a ∈ S. Consequently, S
is a group. �

The final result of this section follows directly from the structure of free left S–acts.

Proposition 11.3. Let S be a monoid such that Fr is an axiomatisable class. Then
Fr is categorical, complete and model complete.

12. Stability

Let T be a consistent theory in the language L, let {xi | 1 ≤ i ≤ n} be a fixed set
of variables and let Ln = L{x1,...,xn}. A consistent set of sentences p of Ln is called an
n–type of the language L. If p ∪T is consistent, that is, it has a model, then p is called
an n–type over T . If p is complete, it is a complete n-type and if in addition T ⊆ p
we say that p is a complete n–type over T . The set of all complete n–types over T is
denoted by Sn(T ).

Let A be an L-structure, let X ⊆ A and let a ∈ A. The set

tp(a,X) = {ϕ(x) ∈ LX | A |= ϕ(a)}

is called the type of a over X. Clearly tp(a,X) is a complete 1–type over Th(A, x)x∈X ;
we say that it is realised by a. By Sn(X) we denote Sn(Th(A, x)x∈X). Often we will
write S(X) instead S1(X).

A complete theory T with no finite models is called stable in a cardinal κ or κ–stable
if |S(X)| ≤ κ for any model A of the theory T and any X ⊆ A of cardinal κ. If T is
κ–stable for some infinite κ, then T is called stable. If T is κ–stable for all κ ≥ 2|T |,
then T is called superstable. An unstable theory is one which is not stable!

Morley proved [16] that, if a countable theory T is ω-stable, then it stable in ev-
ery infinite cardinality. If an arbitrary theory T in a language L is ω-stable, then
|Sn(T )| 6 ω for all n ∈ ω. It follows that T is essentially countable, in the following
sense. There must be a sublanguage L′ ⊆ L, such that |L′| = ω and for each formula
ϕ of L there is a formula ϕ′ of L′ such that for any L-structure A of L with A |= T ,
we have that A |= ϕ if and only if A |= ϕ′. Consequent upon the result of Morley, if
T is ω-stable, then it is stable in every infinite cardinality.

The notion of the monster model of a complete theory is a useful tool in our in-
vestigations. In order to define such a model, we need the notions of saturation and
homogeneity. An L-structure A is κ-homogeneous for a cardinal κ if for any X ⊆ A
with |X| < κ, any map f : X → A with

tp(A, x)x∈X = tp(A, f(x))x∈X

can be extended to an automorphism of A. An L-structure A is κ-saturated for a
cardinal κ if for any X ⊆ A with |X| < κ, every p ∈ S(Th(A, x)x∈X) is realised in A.

Suppose now that T is a complete theory in L. We may find a cardinal κ greater
than all others under consideration and a κ-saturated and κ-homogeneous model M

of T . The convention is that all models of T will be elementary substructures of M of
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cardinality strictly less than κ, and all sets of parameters will be subsets of M , with
again, cardinality strictly less that κ. With this convention, if A is a model of T ,
X ⊆ A and a ∈ A, then

tp(a,X) = {ϕ(x) ∈ LX | M |= ϕ(a)}.

The model M is called the monster model of T . Justification of the use of the monster
model, and the following result, may be found in standard stability theory texts, such
as [18].

Lemma 12.1. Let T be a complete theory in L with monster model M and let X be a
subset of M . Suppose also that ā, ā′ ⊆M . Then

tp(ā, X) = tp(ā′, X)

if and only if there exists an automorphism of M, which acts identically on X and
maps ā into ā′.

Let S be a monoid and let K be a class of left S–acts. Then S is called a K–
stabiliser (K–superstabiliser, K–ω–stabiliser) if Th(A) is stable (superstable, ω–stable)
for any infinite left S–act A ∈ K. If K is the class of all left S-acts, then a K–
stabiliser (K–superstabiliser, K–ω–stabiliser) is referred to more simply as a stabiliser
(superstabiliser, ω–stabiliser).

13. Superstability of SF , P and Fr

Now we begin to consider the stability questions for S–acts. The results of this
section are all taken from [22].

Lemma 13.1. Let S be a monoid satisfying (CFRS). Then for any A ∈ SF , a ∈ A,
s ∈ S

|{x ∈ A | sx = a}| ≤ ns.

Proof. Assume there exists A ∈ SF , s ∈ S and a0, . . . , ans
∈ A such that sai = saj,

ai 6= aj (i 6= j). By induction on n ≤ ns we will show that there exist b ∈ A,
r0, . . . , rn ∈ S such that ai = rib, sri = srj for any i, j ∈ {0, . . . , n}. Let n = 1. Since
A ∈ SF there are r′0, r

′
1 ∈ S and b′ ∈ A such that sr′0 = sr′1, a0 = r′0b

′ and a1 = r′1b
′.

Suppose there exist r′′0 , . . . , r
′′
n−1 ∈ S and b′′ ∈ A such that sr′′i = sr′′j and ai = r′′i b

′′

for any i, j ∈ {0, . . . , n − 1}. As A ∈ SF and sr′′0b
′′ = san, there exist r, rn ∈ S and

b ∈ A such that sr′′0r = srn, b′′ = rb and an = rnb. Let ri = r′′i r (0 ≤ i ≤ n− 1). Then
ai = r′′i b

′′ = r′′i rb = rib, sri = sr′′i r = sr′′j r = srj for any i, j ∈ {0, . . . , n−1}. Thus there
exist r0, . . . , rns

∈ S such that ri 6= rj (i 6= j) and sri = srj for any i, j ∈ {0, . . . , ns},
contradicting the fact that S satisfies (CFRS). �

Lemma 13.2. Let S be a monoid satisfying (CFRS), B ∈ SF , B 4 C. Then
⋃

c∈C\B

Sc ∩ B = ∅.

Proof. Let the given conditions hold and suppose that b ∈
⋃

c∈C\B

Sc ∩ B. Then there

exists c1 ∈ C\B and s ∈ S such that b = sc1. The formula

(∃x1 . . . xk)(
∧

1≤i<j≤k

xi 6= xj ∧
∧

1≤i≤k

y = sxi)

will be denoted by ϕk(y).
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Clearly C |= ϕ1(b). We show by induction on k that C |= ϕk(b) for all k ≥ 1.
Suppose that k ≥ 1 and C |= ϕk(b), that is b = sci, 1 ≤ i ≤ k, where c1, . . . , ck are
distinct elements of C. Since B is an elementary substructure of C then B |= ϕk(b),
that is b = sbi, 1 ≤ i ≤ k, where b1, . . . , bk are distinct elements of B. Since also sc1 = b
and c1 /∈ B we have that C |= ϕk+1(b). Therefore C |= ϕk(b) for any k ≥ 1. Since
B is an elementary substructure of C then B |= ϕk(b) for any k ≥ 1, contradicting
Lemma 13.1. �

Lemma 13.3. Let S be a monoid S satisfying (CFRS), B ∈ SF , B 4 M where M is
the monster model of Th(B), and let c1, c2 ∈ C\B. Then

tp(c1, B) = tp(c2, B) ⇔ tp(c1, ∅) = tp(c2, ∅).

Consequently, for any subset B ′ ⊆ B, we have

tp(c1, B
′) = tp(c2, B

′) ⇔ tp(c1, ∅) = tp(c2, ∅).

Proof. Let the conditions of the Lemma hold. Necessity is obvious. To prove sufficiency,
suppose that tp(c1, ∅) = tp(c2, ∅). From Lemma 12.1 there exists an automorphism
φ : M → M such that φ(c1) = c2. According to Lemma 13.2, M is the disjoint union
of B, C1 and C2 and D, where for i = 1, 2, Ci is the connected component containing
ci, and D = M \ (B ∪ C1 ∪ C2).

Since S-morphisms preserve the relation ∼ we must have that φ : C1 → C2 is an
S-isomorphism. If C1 = C2 then we define ψ : C → C by

ψ|C1 = φ|C1 and ψ|B∪D = IB∪D

and if C1 ∩ C2 = ∅ we define ψ by

ψ|C1 = φ|C1, ψ|C2 = φ−1|C2 and ψ|B∪D = IB∪D.

Clearly in either case ψ is an S-automorphism of the left S–act M . Since ψ(c1) = c2
and ψ|B = IB we have that tp(c1, B) = tp(c2, B). �

Theorem 13.4. Let S be a monoid such that SF is axiomatisable and S satisfies
(CFRS). Then S is SF -superstabiliser.

Proof. Suppose the monoid S satisfies (CFRS), T = Th(A) is the complete theory of
some infinite strongly flat left S–act A, M is the monster model of T and B ⊆ M
with |B| = κ ≥ 2|T |. By Theorem 10.2, there is an S-act B ′ 4 M with B ⊆ B′

and |B′| = κ. Since SF is axiomatisable, M and B ′ are strongly flat. According
to Lemma 13.3, |{tp(x,B) | x ∈ M \ B ′}| = |{tp(x, ∅) | x ∈ M \ B ′}| ≤ 2|T | ≤ κ.
Furthermore, |{tp(x,B) | x ∈ B ′}| = κ. Thus, |S(B)| ≤ κ and the theory T is
superstable. �

Corollary 13.5. If S is a left cancellative monoid such that SF is axiomatisable, then
S is an SF–superstabiliser.

Proof. Let S be a left cancellative monoid, s ∈ S. Since s is a left 1-cancellable element
then |{x ∈ S | sx = t}| = 1 for any t ∈ S. So S satisfies (CFRS) and by Theorem 13.4,
S is an SF -superstabiliser. �

For an example of a monoid S satisfying the conditions of Corollary 13.5 we can take
the free monoid X∗ on a set X, which is certainly left cancellative. Since X∗ is also
right cancellative, r(s, t) = ∅ if s 6= t, and if s = t then r(s, t) = X∗, which is principal.
If neither s nor t is a prefix of the other, then R(s, t) = ∅; on the other hand if s = tw
then R(s, t) = (1, w)X∗ and dually if s is a prefix of t.
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Lemma 13.6. Let S be a monoid such that SF is axiomatisable and Condition (A)
holds. Then S satisfies (CFRS).

Proof. Suppose to the contrary that there is s1 ∈ S such that for any i ∈ ω there exists
bi ∈ S such that:

Ti = |{x ∈ S | s1x = bi}| ≥ i.

We let xi,1, . . . , xi,i be distinct elements of Ti. Let D be a uniform ultrafilter over ω,
let S0 = Sω/D, ā ∈ S0, ā = a/D, a(i) = bi for any i ∈ ω. For i ∈ ω we define xi ∈ Sω

by

xi(j) =

{

1 j < i
xj,i j ≥ i

and put xi = xi/D. It is clear that the xi’s are distinct and so |{x ∈ S0 | s1x = ā}| ≥ ω.
In view of the axiomatizability of the class SF we have S0 ∈ SF . Now choose a cardinal
α > |S|. According to Proposition 4.3 and Theorem 4.4 we can choose an ultrafilter Φ
over α such that |{x ∈ S0 | s1x = ā}α/Φ| > |S|. Denote Sα

0 /Φ by S1, so that as SF is
axiomatisable, S1 is strongly flat, put a0 = a′/Φ, where a′(β) = ā for any β < α, and
let A1 = {x ∈ S1 | s1x = a0}, so that |A1| > |S|. As |Sa0| ≤ |S| there exists a1 ∈ A1

such that Sa0 ⊂ Sa1.
Let k ∈ N. Assume that for 0 < i < k the sets Ai ⊆ S1, elements ai ∈ Ai and

si ∈ S are defined such that Sai−1 ⊂ Sai, Ai = {x ∈ S1 | six = ai−1} and |Ai| > |S|.
Let us define Ak ⊆ S1, ak ∈ Ak, sk ∈ S such that Ak ⊆ {x ∈ S1 | skx = ak−1},
Sak−1 ⊂ Sak and |Ak| > |S|. From Theorem 7.3, since it is certainly not empty,
R(sk−1, sk−1) = {(x, y) ∈ S2 | sk−1x = sk−1y} =

⋃

0≤i≤m

(ui, vi)S for some m ∈ ω,

ui, vi ∈ S (0 ≤ i ≤ m). Clearly sk−1ak−1 = sk−1b for all b ∈ Ak−1 so there exists
i, 0 ≤ i ≤ m, such that |{x ∈ S1 | uix = ak−1, vix ∈ Ak−1}| > |S|. Let sk = ui,
Ak = {x ∈ S1 | skx = ak−1}. As |Ak| > |S| and |Sak−1| ≤ |S| then there exists
ak ∈ Ak such that Sak−1 ⊂ Sak. Thus, there is the ascending chain of cyclic S-subacts
Sai (i ∈ ω) of the left S–act S1, contradicting our hypothesis that Condition (A)
holds. �

From Lemma 13.6 and Theorem 13.4 our next result immediately follows.

Corollary 13.7. For a monoid S, if the class SF is axiomatisable and S satisfies
Condition (A), then S is an SF–superstabiliser.

Corollary 13.8. If the class P is axiomatisable for a monoid S, then S is a P–
superstabiliser.

Proof. Let the class P be axiomatisable. From Theorem 8.6, SF is axiomatisable and
S is a left perfect monoid so that, according to Theorem 8.1, S satisfies Condition (A)
and SF = P. Now Corollary 13.7 yields that S is a P–superstabiliser. �

Corollary 13.9. If the class Fr is axiomatisable for a monoid S, then S is an Fr–
superstabiliser.

Proof. Let Fr be axiomatisable. From Theorem 9.1 the class P is axiomatisable.
Now Corollary 13.8 says that S is P–superstabiliser, so that certainly S is an Fr–
superstabiliser. �
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14. ω-stability of SF , P and Fr

All results from this section are again taken from [22].

Lemma 14.1. If θ is a left congruence of a monoid S then 1/θ is a submonoid of S.

Proof. If u, v ∈ 1/θ then 1 θ u so that as θ is left compatible,

vu θ v 1 = v θ 1.

�

Lemma 14.2. Let θ1, θ2 be strongly flat left congruences of a monoid S. Then

θ1 = θ2 if and only if 1/θ1 = 1/θ2.

Proof. The necessity is obvious. Suppose now that 1/θ1 = 1/θ2. Let u, v ∈ S. If u θ1 v
then from Theorem 3.4 there exists s ∈ S such that s θ1 1 and us = vs. Hence s θ2 1
and again from Theorem 3.4, u θ2 v. �

Lemma 14.3. Let S be a monoid such that the class of left S-acts satisfying Condition
(E) is axiomatisable. Let M be a left S-act satisfying Condition (E) and let Sa be a
connected component of M . Then the relation θa = {(s, t) ∈ S2 | sa = ta} is a
strongly flat left congruence of the monoid S and the mapping φ : Sa→ S/θa given by
φ(sa) = s/θa (s ∈ S) is an isomorphism of left S–acts.

Proof. It is obvious that the relation θa is a left congruence of S: we claim that θa is
flat. Suppose that sθat, so that sa = ta. From Proposition 7.1 we have that r(s, t) 6= ∅
and the following sentence is true in M

(∀x)(sx = tx → (∃y)
∨

0≤i≤k

x = uiy)

where {u0, . . . , uk} is a set of generators of the right ideal r(s, t). Then a = uib for
some i, 0 ≤ i ≤ k, and b ∈ M . Since Sa is a connected component of a left S-act M ,
then Sa = Sb, i.e. b = ka for some k ∈ S. Consequently a = uika, that is, 1θauik.
Furthermore the equation sui = tui implies the equation s(uik) = t(uik). According to
Corollary 3.6, θa is a flat left congruence of the monoid S. The mapping φ : Sa→ S/θa,
where φ(sa) = s/θa, is obviously an S-isomorphism. �

Lemma 14.4. If for a monoid S the class SF is axiomatisable and S satisfies Condi-
tion (A), then any M ∈ SF is a coproduct cyclic left S–acts.

Proof. Suppose that SF is axiomatisable and S satisfies Condition (A). Let M ∈ SF
and write M =

∐

i∈I

Mi, where Mi is a connected component of M (i ∈ I). It is clear that

Mi ∈ SF (i ∈ I). Assume that Mi is not a cyclic left S–act for some i ∈ I. Then for
any a ∈Mi there is b ∈Mi such that Sa ⊂ Sa∪ Sb. It is easy to see that for elements
u, v of a connected component of a strongly flat S-act there is an element w such that
Su ∪ Sv ⊆ Sw. Since Mi ∈ SF then there exists c ∈ Mi such that Sa ∪ Sb ⊆ Sc, so
that Sa ⊂ Sc. Thus there exists aj ∈Mi (j ∈ ω) such that Saj ⊂ Saj+1, contradicting
the fact that S satisfies Condition (A). �

For a subset X of a monoid S we put ρX = ρ(X × X), that is, ρX is the left
congruence on S generated by X ×X.

Lemma 14.5. Let T be a submonoid of a monoid S. Then T is a class of ρT if and
only if T is a right unitary submonoid.



MODEL-THEORETIC PROPERTIES OF FREE, PROJECTIVE AND FLAT S-ACTS 35

Proof. Suppose first that T is a class of ρT and st ∈ T , where s ∈ S, t ∈ T . Since
t ρT 1, then st ρT s and s ∈ T . So T is a right unitary submonoid.

Conversely, suppose that T is a right unitary submonoid of S and x ρT y where x ∈ T .
We claim that y ∈ T . By Proposition 2.7, x = y (so that certainly y ∈ T ), or there
exist n ∈ ω, t0, . . . , t2n+1 ∈ T , s0, . . . , sn ∈ S such that

(v) x = s0t0, s0t1 = s1t2, . . . , sit2i+1 = si+1t2i+2, . . . , snt2n+1 = y

for any i, 0 ≤ i ≤ n − 1. By the induction on i we prove that si ∈ T. Note that
s0t0, t0 ∈ T give that s0 ∈ T since T is right unitary. For i > 0, if si−1 ∈ T , then the
equality si−1t2i−1 = sit2i implies sit2i ∈ T . Since T is a right unitary submonoid of S
then si ∈ T . So sn ∈ T and thus y = snt2n+1 ∈ T . �

Lemma 14.6. Let T be a right unitary submonoid of S. Then T is right collapsible if
and only if the left congruence ρT is strongly flat.

Proof. Let T be a right unitary submonoid of S, and suppose first that T is right
collapsible and x ρT y where x, y ∈ S. If x = y then x 1 = y 1. Otherwise there exist
n ∈ ω, t0, . . . , t2n+1 ∈ T , s0, . . . , sn ∈ S such that (v) holds. From Lemma 2.4 there
exists r ∈ T such that tir = tjr, 0 ≤ i, j ≤ 2n + 1. Hence

xr = s0t0r = s0t1r = s1t2r = . . . = snt2n+1r = yr

and certainly r ρT 1. From Corollary 3.6, ρT is a strongly flat left congruence.
Conversely, assume that ρT is a strongly flat left congruence and x, y ∈ T . Then

x ρT y and from Corollary 3.6, and Lemma 14.5 there exists z ∈ T such that xz = yz.
Hence T is right collapsible. �

We will write CUS for the set of all right collapsible and right unitary submonoids
of a monoid S.

Theorem 14.7. Let S be a monoid with |S| ≤ ω. Suppose that the class SF is
axiomatisable and S satisfies Condition (A). Then S is an SF–ω–stabiliser if and
only if |CUS| ≤ ω.

Proof. Suppose the given hypotheses hold. Assume first that S is an SF–ω–stabiliser.
Let C denote the set of strongly flat left congruences on S, so that C 6= ∅ as the
equality relation ι lies in C. Put

A =
∐

{S/ρ | ρ ∈ C}

and let

B =
∐

i∈ω

Ai,

where the Ai’s are disjoint copies of the left S–act A and 1i/ρ ∈ Ai is a copy of 1/ρ ∈ A.
It is clear that A and B lie in SF . Put T = Th(B).

By assumption, the theory T is ω–stable and |S(∅)| ≤ ω. Let U ∈ CUS so that from
Lemma 14.6, ρU is a strongly flat left congruence of S, that is, S/ρ ∈ SF , and from
Lemma 14.5, U = 1/ρU . Suppose α : CUS → S(∅) is the mapping such that α(U) =
tp(10/ρU , ∅). We claim that α is an injection. Let U, V ∈ CUS with U 6= V and without
loss of generality choose t ∈ U \V . Then t·10/ρU = 10/ρU and t·10/ρV 6= 10/ρV . Hence
tx = x lies in tp(10/ρU , ∅) but not in tp(10/ρV , ∅). Hence α is an injective mapping
and consequently |CUS| ≤ ω.
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Conversely, assume that |CUS| ≤ ω. Let s, t ∈ S. For d ∈ D ∈ SF , where Sd is
connected, we denote the relation {(s, t) ∈ S2 | sd = td} by θd; clearly, θd is a left
congruence on S. In view of the axiomatisability of SF , Theorem 7.3 gives that the
set r(s, t) is empty or is finitely generated as a right ideal of S. Lemma 14.3 now gives
that the relation θd is a strongly flat left congruence of S.

Let F ∈ SF with |F | ≥ ω and let T = Th(F ); we must show that T is ω-stable. To
this end, let M be the monster model of T , so that as SF is axiomatisable, certainly
M is a strongly flat left S-act. Let A ⊆ M with |A| ≤ ω; by Theorem 10.2, there is a
model B of T with A ⊆ B and |B| = ω. By construction of M , B 4 M .

Let c1, c2 ∈ M . According to Lemma 14.4, M is a coproduct of cyclic left S-acts.
Hence there exists d1, d

′ ∈ M such that c1 ∈ Sd1, c2 ∈ Sd′ with Sd1, Sd
′ connected

components of M . It is clear that either Sd1 = Sd′, or Sd1 ∩ Sd
′ = ∅. We claim that

for c1, c2 ∈ C \B, tp(c1, A) = tp(c2, A) if and only if

(vi) ∃d2 ∈ M, t ∈ S such that Sd2 = Sd′, 1/θd1 = 1/θd2 , c1 = td1, c2 = td2.

Let tp(c1, A) = tp(c2, A). Then there exists an S-automorphism φ : C → C such
that φ(c1) = c2, and φ|A = IA. Putting d2 = φ(d1) we have that Sd2 is a connected
component containing c2, so that Sd2 = Sd′. Now c1 = td1 for some t ∈ S, so that
c2 = td2. Furthermore

ud1 = vd1 ⇔ ud2 = vd2

for any u, v ∈ S, i.e. θd1 = θd2 , in particular 1/θd1 = 1/θd2 . Hence (vi) holds.
Suppose conversely that (vi) holds. From Lemma 14.1, the sets 1/θd1 , 1/θd2 are

submonoids of S. Since they are strongly flat left congruences and 1/θd1 = 1/θd2 ,
Lemma 14.2 gives that θd1 = θd2 and so S/θd1 = S/θd2 . From Lemma 14.3 there is
an isomorphism φ : Sd1 → Sd2 of left S–acts such that φ(d1) = d2. Since c1 = td1

and c2 = td2, then φ(c1) = c2. From Lemma 13.6, S has Condition (CFRS) so that
by Lemma 13.2, Sdi ∩ B = ∅ for i ∈ {1, 2}. Define an automorphism ψ : M → M
as follows: ψ|Sd1 = φ|Sd1, ψ|Sd2 = φ−1|Sd2 (unless Sd1 = Sd2) and ψ|M\(Sd1∪Sd2) = I.
Since in either case ψ(c1) = c2, and ψ|A = IA, then tp(c1, A) = tp(c2, A).

Thus the type of any element m ∈ M \ B over A is determined by some element of
S and by some flat congruence θd, where Sd is a connected component and m ∈ Sd.

If Sm is a connected component of M , then as noted above, θm is a strongly flat left
congruence of S. Let U = 1/θm. We know that U is a submonoid of S; if t, st ∈ U then
tm = m = stm so that sm = m and m ∈ U . Hence U is right unitary. On the other
hand, if p, q ∈ U , then pm = m = qm. As M is strongly flat we have that pr = qr for
some r ∈ S and with m = rk for some k ∈ Sm. Since Sm is a connected component
we deduce that k = r′m for some r′ ∈ S. Then prr′ = qrr′ and m = rr′m, so that
rr′ ∈ U and U is right collapsible, that is, U ∈ CUS. From Lemma 14.2,

|{θc | Sc is a connected component of M}| ≤ |CUS| ≤ ω.

Since
|{tp(b, A) | b ∈ B}| ≤ |B| = ω

we deduce that |S(A)| ≤ ω as required. �

From Theorem 7.3 and Theorem 14.7 we have

Corollary 14.8. If S is a finite monoid then S is an SF–ω–stabiliser.

Corollary 14.9. If S is a countable group then S is an SF–ω–stabiliser.



MODEL-THEORETIC PROPERTIES OF FREE, PROJECTIVE AND FLAT S-ACTS 37

Proof. Let S be a countable group. As remarked in [10], both SF and P are axioma-
tisable, so that S is left perfect and Condition (A) holds. Let U be a right collapsible
submonoid of S; then for any u, v ∈ U we have that ur = vr for some r ∈ S. We
deduce that U = {1} and |CUS| = 1. From Theorem 14.7, the monoid S is an SF–ω–
stabiliser. �

Corollary 14.10. If |S| ≤ ω and the class P is axiomatisable, then S is an P–ω–
stabiliser.

Proof. Suppose that |S| ≤ ω and P is axiomatisable. From Theorem 8.6, SF is
axiomatisable and S is a left perfect monoid. Hence from Theorem 8.1, SF = P and
S satisfies Condition (A). Let us construct an embedding φ of the set CUS into the
set E of idempotents of S.

Let U ∈ CUS. From Lemma 14.5, U = 1/ρU and from Lemma 14.6, ρU is a strongly
flat left congruence. In view of the equality SF = P there exist an idempotent e ∈ E
and an S-isomorphism α : S/ρU → Se. Put a = 1/ρU , so that S/ρU = Sa and u ρU v if
and only if ua = va. Now α(a) = se and α(ta) = e for some s, t ∈ S. It is easy to see
that consequently, e = tse, eta = ta and seta = a = sta. Hence setset = seet = set,
i.e. g = set is an idempotent of S and ga = a. Moreover, for any u, v ∈ S,

u ρU v ⇔ ua = va
⇒ use = vse
⇒ ug = vg
⇒ useta = uga = vga = vseta
⇒ ua = va

.

Now define φ : CUS → E by φ(U) = g. If φ(U) = φ(V ), then ρU = ρV , so that
U = 1/ρU = 1/ρV = V . Thus φ is an injection and |CUS| ≤ |E| ≤ |S| ≤ ω. �

Corollary 14.11. If |S| ≤ ω and the class Fr is axiomatisable than S is an Fr–ω–
stabiliser.

Proof. If Fr is axiomatisable then by Theorem 9.1, P is axiomatisable. From Corol-
lary 14.10, S is a P–ω–stabiliser, and hence in particular an Fr–ω–stabiliser. �
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