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Abstract. Constellations were recently introduced by the authors as one-
sided analogues of categories: a constellation is equipped with a partial multi-
plication for which ‘domains’ are defined but, in general, ‘ranges’ are not. Left

restriction semigroups are the algebraic objects modelling semigroups of par-
tial mappings, equipped with local identities in the domains of the mappings.
Inductive constellations correspond to left restriction semigroups in a manner
analogous to the correspondence between inverse semigroups and inductive
groupoids.

In this paper, we define the notions of the action and partial action of
an inductive constellation on a set, before introducing the Szendrei expansion

of an inductive constellation. Our main result is a theorem which uses this
expansion to link the actions and partial actions of inductive constellations,
providing a global setting for results previously proved by a number of authors
for groups, monoids and other algebraic objects.

Introduction

The celebrated Ehresmann-Schein-Nambooripad (ESN) Theorem gives a con-
nection between the class of inverse semigroups and that of inductive groupoids,
stating that the category of inverse semigroups and morphisms is isomorphic to
the category of inductive groupoids and inductive functors [14, Theorem 4.1.8].
This result has been generalised for various classes of semigroups; see for ex-
ample, [1, 13, 17, 18]. The vast majority of these generalisations, as well as the
original result itself, are inherently ‘two-sided’, in a manner which we will de-
scribe shortly. The idea behind this approach to studying semigroups, is that in
many cases much of the algebraic structure of a semigroup can be recovered from
a partial order it possesses.
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This paper is concerned with a class of semigroups we refer to as left restriction
semigroups. The term ‘left restriction semigroup’ is something of a misnomer, for
such objects are, properly speaking, algebras of type (2, 1), that is, they possess
a binary operation (that of the semigroup) and in addition a unary operation,
denoted here by a 7→ a+. Left restriction semigroups arise in a plethora of
contexts. They first appear in the work of the Russian school in the 1960s and
1970s; useful references to this being those of Schein [19,20]. More recently they
have appeared in the work of Jackson and Stokes [11] and in that of Cockett,
Lack and Manes [2, 16]. The latter authors are concerned with developing a
framework to handle the notion of partiality of functions, their motivation arising
from questions of theoretical computer science. From the ‘York’ perspective, left
restriction semigroups are the variety generated by the quasi-variety of left ample
semigroups [5]. They were for some time referred to as ‘weakly left E-ample
semigroups’. We refer the reader to [10] for further details and references.

Perhaps the easiest way of getting hold of a left restriction semigroup is via its
representation by partial mappings. Let PT X denote the collection of all partial
mappings of a set X, together with the usual left-to-right composition. We define
a unary operation + in PT X by putting α+ = Idom α, the partial identity map-
ping on the domain of α ∈ PT X , and regard PT X as an algebra of type (2, 1).
Then an algebra of the same type is a left restriction semigroup precisely when
it is isomorphic to a subalgebra of some PT X . It follows that a left restriction
semigroup is partially ordered by an ordering corresponding to inclusion of func-
tions on PT X . Right restriction semigroups may be defined dually, via a unary
operation denoted a 7→ a∗. Any semigroup S which is simultaneously a left and
a right restriction semigroup, and is such that (a∗)+ = (a+)∗ for all a ∈ S is
termed a (two-sided) restriction semigroup. We remark that any monoid M may
be regarded as a restriction semigroup in which a+ = a∗ = 1, for all a ∈M .

Lawson [13] generalised the ESN Theorem to show that the category of two-
sided restriction semigroups and appropriate morphisms is isomorphic to a certain
category of inductive categories (an inductive category is a special type of small,
ordered category). The constructions of the ESN Theorem generalise very nat-
urally to this case, the + operation in the semigroup corresponding directly to
the domain operation d(·) in the category, and ∗ to range r(·). The presence of
both + and ∗ (d(·) and r(·)) is what was meant above when we described these
generalisations of the ESN Theorem as ‘two-sided’.

Left restriction semigroups are inherently one-sided objects. In a previous pa-
per [7], the authors developed a one-sided analogue of a category which would
permit an approach to left restriction semigroups in the spirit of the ESN The-
orem. In other words, we constructed an object, which we termed an inductive
constellation, that corresponds to a left restriction semigroup in an manner anal-
ogous to the connection between inductive groupoids and inverse semigroups. An
inductive constellation possesses a unary operation (which we denote by +, just
as in the corresponding left restriction semigroup) that is analogous to ‘domain’
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in a category; however, we have no notion of ‘range’. Structure preserving maps
between constellations are called ordered radiants.

Result 0.1. [7] The category of left restriction semigroups and morphisms is
isomorphic to the category of inductive constellations and ordered radiants.

Our current paper arose from attempting to understand the notions of action
and partial action of monoids and, more generally, of left restriction semigroups
and inductive constellations. Partial actions of groups and monoids of various
kinds are inherent to the McAlister ‘P-theorem’ and its extensions [12]. They
appear in the work of Exel [3] where he shows that a partial action of a group on
a set can be ‘lifted’ to the action of an inverse semigroup on the same set. The
inverse semigroup he constructs is essentially that of Szendrei [21], who shows the
same result in a different mathematical language. Their work was extended from
groups to inverse semigroups in [15]. On the other hand Gilbert [4] studied the
actions and partial actions of inductive groupoids as a way of informing that of
the actions and partial actions of inverse semigroups, constructing along the way
the notion of a Szendrei expansion of an inductive groupoid. Gilbert’s result is
analogous to those obtained for groups [12, Theorem 2.4], inverse semigroups [15,
Proposition 6.20], monoids [9, Theorem 4.1] and left restriction semigroups [6,
Theorem 4.2].

Our aim here is to introduce the notion of the Szendrei expansion Sz(P ) of
an inductive constellation P ; Sz(P ) is again an inductive constellation. We then
prove the analogue of Gilbert’s main result, formulated more precisely in Sec-
tion 4.

Result 0.2. Let P be an inductive constellation acting partially on a set X.
Then the partial action of P can be lifted to an action of Sz(P ) on X.

Partial actions of restriction semigroups and inductive constellations are often
more conveniently represented by functions termed strong premorphisms and or-
dered pre-radiants, just as actions may be represented by morphisms or radiants.
We use Result 0.2 to prove our second theorem:

Result 0.3. Inductive constellations and inductive pre-radiants form a category
isomorphic to the category of restriction semigroups and strong premorphisms.

The structure of the paper is as follows. In Section 1, we define, and sum-
marise the relevant details concerning, left restriction semigroups and inductive
constellations from [7]. In Section 2, we formally define two types of functions
between inductive constellations: ordered radiants, which will be analogous to
morphisms between left restriction semigroups and which will be our means of
defining actions of inductive constellations, and ordered pre-radiants, which will
be analogous to ‘strong premorphisms’ (see [6]) between left restriction semi-
groups and will allow us to define partial actions of inductive constellations.
Section 3 follows, in which we introduce the notion of the Szendrei expansion of
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an inductive constellation and prove that this is itself an inductive constellation.
Our penultimate Section 4, makes precise and proves Result 0.2. Finally in Sec-
tion 5 we provide the arguments to show that Result 0.3 holds. Indeed we can
say rather more, and indicate how natural are the connections between Szendrei
expansions of left restriction semigroups and those of inductive constellations.

1. Restriction semigroups and inductive constellations

In this section, we give the relevant definitions and results concerning left
restriction semigroups and inductive constellations. Although restriction semi-
groups will not feature very heavily in this paper, we nevertheless need certain
useful identities afforded to us by their definition, and so we begin by giving a
brief definition. As commented in the Introduction, left restriction semigroups
form a variety of type (2,1) and may therefore be defined by a set of identities.

Definition 1.1. Let S be a semigroup possessing a unary operation a 7→ a+. We
call S a left restriction semigroup if (in addition to the associative law) it satisfies
the following identities, for all s, t ∈ S:

s+s = s

s+t+ = t+s+; (1.1)

(s+t)+ = s+t+; (1.2)

st+ = (st)+s.

We may also deduce the following identities:

st+ = (st+)+s; (1.3)

(st)+ = (st+)+; (1.4)

(s+t+)+ = s+t+. (1.5)

We remark that in some articles, a ‘left restriction semigroup’ is referred to more
simply as a ‘restriction semigroup’. Let E = {s+ : s ∈ S}. By putting t = s in
(1.2), we see that s+s+ = s+, for any s+ ∈ E, so E ⊆ E(S). Moreover, by (1.1)
and (1.5), E forms a subsemilattice of S.

We note that a left restriction semigroup S possesses a natural partial order
given by

s ≤ t⇐⇒ s = s+t. (1.6)

This partial order corresponds exactly to inclusion of mappings in the represen-
tation of S as a subalgebra of some PT X and is thus crucial to the structure of
S; much of our approach is to exploit this fact. For further details on restriction
semigroups, the reader is referred to [10].

We now give a brief introduction to constellations. Let P be a set and · be a
partial binary operation on P . For x, y ∈ P , the notation ‘∃x · y’ will indicate
that the product x ·y is defined in P . The notation ‘∃(x ·y) ·z’ will be understood
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to mean that ∃x · y and ∃(x · y) · z. An idempotent in (P, ·) is an element e ∈ P

for which ∃e · e and e · e = e; the collection of all idempotents of P will be
denoted by E(P ). An idempotent e ∈ P is a left identity for x ∈ P if ∃e · x and
e · x = x. A unary operation a 7→ a+ on P is termed image idempotent if its
image is contained in E(P ). In this case we say that

E = {x+ : x ∈ P}

is the distinguished subset (of the unary operation +).

Definition 1.2. Let P be a set, let · be a partial binary operation and let + be
an image idempotent unary operation on P with distinguished subset E. We call
(P, · ,+ ) a left constellation if the following axioms hold:

(C1) if ∃x · (y · z), then ∃(x · y) · z, in which case, x · (y · z) = (x · y) · z;
(C2) ∃x · (y · z) if, and only if, ∃x · y and ∃y · z;
(C3) for each x ∈ P , x+ is the unique left identity of x in E;
(C4) if a ∈ P , g ∈ E and ∃a · g, then a · g = a.

As in [7], we omit the ‘left’ and refer to a left constellation simply as a con-
stellation; moreover we will refer to a constellation (P, · ,+ ) more simply as ‘P ’
whenever both operations are clear. If E = E(P ), then we call P a replete
constellation.

It is clear that if e ∈ E, then e+ = e. We can therefore characterise E as the
set E = {e ∈ E(P ) : e+ = e}.

The following lemma shows that the + operation in a constellation mimics some
of the behaviour of the domain operation d(·) in a category:

Lemma 1.3. [7, Lemma 2.2] In a constellation P , if ∃a · b, then (a · b)+ = a+.

Any category C with set of identities Co is certainly a constellation with distin-
guished subset Co. A constellation is thus a one-sided generalisation of a category
in which the + operation serves as an analogue of domain; however, we have no
notion of range.

Note also:

Lemma 1.4. [7, Lemma 2.3] In a constellation P , ∃a · b⇐⇒ ∃a · b+.

We now introduce an ordering on a constellation, inspired by that in an ordered
category (see, for example, [1]):

Definition 1.5. Let (P, · ,+ ) be a constellation and let ≤ be a partial order on
P . We call (P, · ,+ ,≤) an ordered constellation if the following conditions hold:

(O1) if a ≤ c, b ≤ d, ∃a · b and ∃c · d, then a · b ≤ c · d;
(O2) if a ≤ b, then a+ ≤ b+;
(O3) for e ∈ E and a ∈ P such that e ≤ a+, there exists a restriction e|a which

is the unique element x with the properties x ≤ a and x+ = e;
(O4) for all e ∈ E and all a ∈ P , there exists a corestriction a|e which is the

maximum element x with the properties x ≤ a and ∃x · e;
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(O5) for x, y ∈ P and e ∈ E, if ∃x · y, then ((x · y)|e)+ = (x|(y|e)+)
+
;

(O6) if e, f ∈ E, then, whenever the restriction e|f is defined, it coincides with
the corresponding corestriction.

We note that for any a ∈ P and e ∈ E, (a|e) · e = a|e, by (C4) and (O4).
Further, we can deduce a useful characterisation of the partial product in an
ordered constellation:

Lemma 1.6. [7, Lemma 3.2] For a, b ∈ P ,

∃a · b⇐⇒ a|b+ = a.

In an ordered constellation (P, · ,+ ,≤), we denote by e ∧ f the greatest lower
bound of e, f ∈ E with respect to ≤, where it exists.

Definition 1.7. Let (P, · ,+ ,≤) be an ordered constellation. We call (P, · ,+ ,≤)
an inductive constellation if the following condition holds:

(I) for any e, f ∈ E, e ∧ f exists in E and is equal to e|f .

In [7, §3], an example is given which demonstrates that not every constellation
is inductive.

We now record some results about ordered constellations which will be of use
in later sections. For ease of reference, we retain the labelling of [7].

Lemma 1.8. [7, Lemma 3.4] Let P be an ordered constellation and let a, b, c ∈ P

and e, f ∈ E. Then

(i) if a ≤ b, then a = a+|b;
(iii) if e ≤ f , then ∃e · f and e = e|f = e · f ;
(iv) if f ≤ e ≤ a+, then f |(e|a) = f |a and f |a ≤ e|a;
(vi) if a ≤ b, then a|e ≤ b|e.

We note that the restriction of (O3) can also be viewed as a product:

Lemma 1.9. [7, Lemma 3.5] For e ∈ E, if e ≤ a+, then ∃e · a and e|a = e · a.

Despite the equality in Lemma 1.9, we will find it useful to retain the notion of
restriction which is given in Definition 1.5, since this affords us the ability to make
‘uniqueness’ arguments. There will be other occasions, however, when it will be
more useful to consider the restriction as a product; we will switch between the
two viewpoints as appropriate.

We note some further properties of ordered constellations:

Lemma 1.10. [7, Lemma 3.6] Let P be an ordered constellation and let s ∈ P ,
e ∈ E. Then (s|e)+|s = (s|e)+ · s = s|e.

(This last lemma is the analogue for (left) constellations of (1.3) for left re-
striction semigroups.)

Lemma 1.11. [7, Lemma 3.7] In an ordered constellation P , if ∃x · y, then

(x · y)|e =
(

x|(y|e)+
)

· (y|e).
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As observed in the Introduction, the notion of an inductive constellation was
introduced in [7] to provide an object to which left restriction semigroups would
correspond in an analogue of the ESN Theorem. We summarise the main results
of [7]:

Theorem 1.12. [7, Propositions 4.1 & 4.3] Let S be a left restriction semigroup
with natural partial order ≤ and unary operation +. Then P(S) = (S, ·,+ ,≤) is
an inductive constellation, where the restricted product · in S is given by

a · b =

{

ab if ab+ = a;

undefined otherwise
(1.7)

and where for a ∈ S and e, f ∈ E with e ≤ a+,

e|a = ea and a|f = af.

Conversely, let (P, · ,+ ,≤) be an inductive constellation. Then T(P ) = (P,⊗,+ )
is a left restriction semigroup, where ⊗ is the pseudoproduct given by

a⊗ b = (a|b+) · b. (1.8)

Moreover, ≤ coincides with the natural partial order of the semigroup (P,⊗,+ ),
and ⊗ coincides with · whenever the latter is defined.

In particular, we note that the idempotents of an inductive constellation are
precisely those of the left restriction semigroup constructed therefrom, and vice
versa. For further details of these constructions, see [7].

From our comments in the Introduction, it can be seen that any partial trans-
formation monoid PT X is a left restriction semigroup. We can therefore apply
Theorem 1.12 to obtain an inductive constellation which we denote by CX and
call the function constellation of X. The underlying set of CX is simply that of
PT X ; the distinguished subset of CX is EX (the collection of all partial identity
mappings of X), since + is the same as in PT X . The operation in CX is simply
the restricted product of (1.7) adapted to the specific case of partial transforma-
tions, so that ∃α · β if and only if imα ⊆ dom β. Function constellations are the
canonical inductive constellations, in the sense that every inductive constellation
may be embedded in some CX : see [7, Proposition 3.9].

2. Radiants and pre-radiants

In this section, we introduce two types of functions between inductive constel-
lations: radiants and pre-radiants. The former are an analogue for constellations
of (2,1)-morphisms between left restriction semigroups and were employed in [7];
the latter are analogues of strong premorphisms between left restriction semi-
groups (see [6]). Just as morphisms and premorphisms may be used to define
actions and partial actions of semigroups, radiants and pre-radiants will be used
to define actions and partial actions of constellations.
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Definition 2.1. Let P and Q be constellations. A radiant is a function ρ : P →
Q which satisfies the following conditions:

(R1) if ∃s · t in P , then ∃(sρ) · (tρ) in Q, in which case, (sρ) · (tρ) = (s · t)ρ;
(R2) s+ρ = sρ+.

We note that a radiant ρ : P → Q is easily shown to map idempotents in P to
idempotents in Q; condition (R2) is needed to ensure that E is mapped into F ,
where E is the distinguished subset of P and F is that of Q.

Definition 2.2. Let ρ : P → Q be a radiant of ordered constellations P and Q,
and let P have distinguished subset E. We call ρ an ordered radiant if it satisfies
the following additional conditions:

(OR1) if s ≤ t in P , then sρ ≤ tρ in Q;
(OR2) (a|e)ρ = aρ|eρ, for all a ∈ P and all e ∈ E.

Notice that if P and Q are inductive, then for e, f ∈ E,

(e ∧ f)ρ = (e|f)ρ = eρ|fρ = eρ ∧ fρ

so that ρ preserves meets.
Let S and T be left restriction semigroups and let α : S → T be a function.

Define P(α) : P(S) → P(T ) to be the same function on the underlying sets
of P(S) and P(T ). Similarly, let P and Q be inductive constellations and let
β : P → Q be a function. Define T(β) : T(P ) → T(Q) to be the same function
on the underlying sets of T(P ) and T(Q).

We can now state Result 0.1 in more detail.

Theorem 2.3. [7, Theorem 4.13] The categories of restriction semigroups and
morphisms and of inductive constellations and ordered radiants are mutually iso-
morphic via functors P and T.

T = T(P(T ))

S = T(P(S))

P(T )

P(S)

α P(α)

Q = P(T(Q))

P = P(T(P ))

T(Q)

T(P )

β T(β)
P T

It follows from the above and the constructions given in [7] that for an inductive
constellation P , restrictions, corestrictions and ∧ all coincide with ⊗ in T(P ).

The following further property of ordered radiants will prove useful very shortly:

Lemma 2.4. [7, Lemma 4.7] Let ρ : P → Q be an ordered radiant of inductive
constellations P and Q. Then ρ preserves pseudoproducts.
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Just as an action of a semigroup may be defined as a particular morphism, we
now define an action of an ordered constellation as a particular radiant:

Definition 2.5. An ordered constellation P acts on a set X if there is an ordered
radiant ρ : P → CX .

Much of our motivation comes from consideration of partial actions of left
restriction semigroups [6]; such actions correspond to strong premorphisms (see
Section 5 for the definition). We now introduce a function between constellations
which is analogous to a strong premorphism, with the eventual aim of proving
a result for equivalence of categories along the lines of Theorem 2.3. Such a
function is also a one-sided analogue of the inductive groupoid premorphism of
Gilbert [4, p. 184].

Definition 2.6. Let P and Q be inductive constellations, and let P have distin-
guished subset E. An ordered pre-radiant is a function ψ : P → Q which satisfies
the following conditions:

(P) if ∃s·t in P , then (sψ)⊗(tψ) = sψ+⊗(s·t)ψ, where ⊗ is the pseudoproduct
of (1.8);

(OP1) sψ+ ≤ s+ψ;
(OP2) if s ≤ t in P , then sψ ≤ tψ in Q;
(OP3) aψ|eψ = (a|e)ψ, for all a ∈ P and all e ∈ E.

(IP) if e ≤ a+ in P , then (e|a)ψ+ = eψ ∧ aψ+.

We note the following:

Lemma 2.7. Let ψ : P → Q be an ordered pre-radiant of ordered constellations
P and Q with distinguished subsets E and F , respectively. If e ∈ E(P ), then
eψ ∈ E(Q). Moreover, if e ∈ E, then eψ ∈ F .

Proof. Let e ∈ E(P ). Then ∃e · e in P , so

eψ ⊗ eψ = eψ+ ⊗ (e · e)ψ = eψ+ ⊗ eψ = eψ ∈ E(T(Q)) = E(Q).

Now let e ∈ E, so that e+ = e. By (OP1), we have eψ+ ≤ e+ψ = eψ in Q. Since
Q has the same ordering as T(Q), we have eψ+ ≤ eψ in T(Q) also. From (1.6),
we therefore have eψ+ = eψ+ ⊗ eψ = eψ, hence eψ ∈ F . �

It follows as for ordered radiants that (OP3) implies that ψ preserves meets.
With this in mind, an ordered (pre-)radiant between inductive constellations is
sometimes referred to as an inductive (pre-)radiant.

We note a property of ordered pre-radiants which we will use in Section 4:

Lemma 2.8. Let ψ : P → Q be an ordered pre-radiant of inductive constellations
P and Q. Then

∃a · b =⇒ aψ+ ∧ (a · b)ψ+ = (aψ ⊗ bψ)+.
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Proof. Suppose that ∃a · b. Then

(aψ ⊗ bψ)+ =
(

aψ+ ⊗ (a · b)ψ
)+
, by (P)

=
(

aψ+ ⊗ (a · b)ψ+
)+
, by (1.4)

= aψ+ ⊗ (a · b)ψ+, by (1.5)

= aψ+ ∧ (a · b)ψ+,

by the final sentence of Theorem 1.12. �

Just as strong premorphisms can be used to define partial actions of left restric-
tion semigroups, we use ordered pre-radiants to define partial actions of ordered
constellations:

Definition 2.9. An ordered constellation P acts partially on a set X if there is
an ordered pre-radiant ψ : P → CX .

We could also write down a definition for the (partial) action of an ordered
constellation P on a set X in terms of a (partial) function X × P → X, as
in [6, Definition 2.4] for the partial action of a left restriction semigroup on a set,
for example. Such definitions would perhaps look somewhat like the definition of
the action of a category given in [14, §10.1]. However, the above characterisations
in terms of radiants and pre-radiants will suffice for our purposes.

We conclude this section with a lemma which will be used towards the end of
the paper:

Lemma 2.10. Let α : P → Q be an ordered pre-radiant and β : Q → R be an
ordered radiant, for inductive constellations P , Q and R. Then the composition
αβ : P → R is an ordered pre-radiant.

Proof. Conditions (OP1)–(OP3) are immediate. The remaining conditions, (P)
and (IP), require a little more work.

(P) Suppose that ∃s · t in P . We have

sαβ ⊗ tαβ =
(

sαβ|(tαβ+
)

· tαβ

=
(

sαβ|tα+β
)

· tαβ, by (R2)

=
(

sα|tα+
)

β · (tα)β, by (OR2)

=
[(

sα|tα+
)

· (tα)
]

β, by (R1), since ∃
(

sα|tα+
)

· (tα)

= (sα⊗ tα)β

=
(

sα+ ⊗ (s · t)α
)

β, by (P)

= sαβ+ ⊗ (s · t)αβ, by Lemma 2.4, followed by (R2).

(IP) Suppose that e ≤ a+. Then, using (IP) for α,

(e|a)αβ+ = (e|a)α+β = (eα ∧ aα+)β = eαβ ∧ aαβ+,

as required. �
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3. Expansion of ordered constellations

Our goal in the following section will be to prove an ‘expansion’ theorem for the
actions and partial actions of inductive constellations, i.e., a theorem analogous
to the earlier expansion results noted in the Introduction. To that end, we first
define an expansion for ordered constellations; this expansion will be analogous
to that defined by Gilbert [4] for ordered groupoids. From here on, for notational
simplicity, we will denote multiplication in an ordered constellation by juxtapo-
sition. Furthermore, throughout the remainder of this paper, the distinguished
subset of the constellation P will always be denoted by E.

Let P be an ordered constellation. For each e ∈ E, let

Σe = {x ∈ P : x+ = e}.

The set Σe is clearly the constellation analogue of the notion of a ‘star’ [4, p. 177]
in a category. Let Pe

f (Σe) be the collection of all finite subsets of Σe which contain
e, and put

U =
⋃

e∈E

Pe
f (Σe).

Definition 3.1. Let P be an ordered constellation. The Szendrei expansion of
P is the set

Sz(P ) = {(U, u) ∈ U × P : u ∈ U},

together with the operation

(U, u)(V, v) =

{

(U, uv) if ∃uv in P and uV ⊆ U ;

undefined otherwise.

Let w ∈ V . Then w+ = v+. By Lemma 1.4, we have

∃uv =⇒ ∃uv+ =⇒ ∃uw+ =⇒ ∃uw.

It therefore makes sense to write ‘uV ’ in the above definition.
We note that (F, f) ∈ Sz(P ) is idempotent if and only if ∃(F, f)2 and (F, f)2 =

(F, f). This is easily seen to be equivalent to f being idempotent in P and
fF ⊆ F . Observe that if f ∈ E, then we automatically have fF = F , since
F ⊆ Σf .

Proposition 3.2. If P is an ordered constellation, then Sz(P ) is an ordered
constellation with

(U, u)+ = (U, u+),

ordering

(U, u) ≤ (V, v) ⇐⇒ u ≤ v in P and u+V ⊆ U, (3.1)

restriction

(F, f)|(U, u) = (F, fu) (3.2)
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and corestriction

(U, u)|(F, f) =
(

(u|f)F ∪ (u|f)+U, u|f
)

. (3.3)

Notice that the distinguished subset of Sz(P ) is

E = {(F, f) ∈ U × P : f ∈ E}.

Moreover, if P is inductive, then so too is Sz(P ), with

(H, h) ∧ (F, f) = ((h ∧ f)(H ∪ F ), h ∧ f) . (3.4)

(We note that if Lemma 1.9 is taken into account, then the ordering given in
(3.1) is essentially the same as that given by Gilbert [4] for the Szendrei expansion
of an inductive groupoid.)

Proof. We first observe that in the definition of ≤, if u ≤ v, then u+ ≤ v+ so
that ∃u+v+ and hence u+V .

(C1) Suppose that ∃(U, u)[(V, v)(W,w)], i.e.,

∃vw, ∃u(vw), vW ⊆ V and uV ⊆ U.

Then ∃(uv)w, by (C1) in P . Let w′ ∈W . Using Lemmas 1.3 and 1.6, we have

∃u(vw) ⇔ u|(vw)+ = u⇔ u|v+ = u ⇔ u|(vw′)+ = u⇔ ∃u(vw′).

It therefore makes sense to write ‘u(vW )’ and we have u(vW ) ⊆ uV ⊆ U . Then,
by (C1), (uv)W ⊆ U , hence ∃[(U, u)(V, v)](W,w). In this case,

(U, u)[(V, v)(W,w)] = (U, u)(V, vw) = (U, u(vw))

= (U, (uv)w) = (U, uv)(W,w) = [(U, u)(V, v)](W,w).

(C2)(⇒) This follows from the proof of (C1).
(C2)(⇐) Suppose that ∃(U, u)(V, v) and ∃(V, v)(W,w), i.e.,

∃uv, ∃vw, uV ⊆ U and vW ⊆ V.

Then ∃u(vw), by (C2) in P , so ∃(U, u)[(V, v)(W,w)].
(C3) We claim that (U, u)+ is the unique left identity in E of (U, u). It is

easy to see that ∃(U, u+)(U, u), since ∃u+u and u+U = U . Also, (U, u+)(U, u) =
(U, u+u) = (U, u).

Suppose now that there is another element (F, f) ∈ E which is a left identity
for (U, u). We must have (F, fu) = (F, f)(U, u) = (U, u), so F = U . We must
also have fu = u, so f = u+, by uniqueness of left identities in E.

(C4) Suppose that ∃(U, u)(F, f), for (U, u) ∈ Sz(P ) and (F, f) ∈ E . Then ∃uf
in P . By (C4) in P , uf = u, so (U, u)(F, f) = (U, uf) = (U, u).

Before showing that the ordering (3.1) satisfies conditions (O1)–(O6), we first
prove that it is indeed a partial order. We begin by observing that, for any
(U, u) ∈ Sz(P ), (U, u) ≤ (U, u), since u ≤ u in P and u+U = U . Now suppose
that (U, u) ≤ (V, v) and also that (V, v) ≤ (U, u). We then have u ≤ v and v ≤ u

in P , hence u = v. We also have u+V ⊆ U and v+U ⊆ V . We know, however,
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that u+ = v+ in P , so U ⊇ u+V = v+V = V and V ⊇ v+U = u+U = U , hence
U = V . Therefore (U, u) = (V, v).

Now suppose that (U, u) ≤ (V, v) and that (V, v) ≤ (W,w). Then u ≤ v and
v ≤ w, so u ≤ w in P . Also, u+V ⊆ U and v+W ⊆ V . In order to complete
the proof that (U, u) ≤ (W,w), we need to show that u+W ⊆ U . We first note
that it makes sense to write u+W = u+|W , since u+ ≤ w+ = x+, for any x ∈W .
Now, since u+ ≤ v+, we have ∃u+v+ and u+ = u+v+, by Lemma 1.8(iii). We can
therefore write u+W = (u+v+)W . Since we know that ∃u+v+ and ∃v+W , we
conclude that ∃u+(v+W ), by (C2) in P . Furthermore, u+(v+W ) = (u+v+)W ,
by (C1). We therefore have u+W = u+(v+W ) ⊆ u+V ⊆ U , as required. The
ordering (3.1) is thus a partial order.

(O1) Suppose that ∃(U, u)(W,w), ∃(V, v)(X, x), (U, u) ≤ (V, v) and (W,w) ≤
(X, x), i.e.,

∃uw, uW ⊆ U, ∃vx, vX ⊆ V, u ≤ v, u+V ⊆ U, w ≤ x, w+X ⊆W.

Then uw ≤ vx, by (O1) in P , and (uw)+V = u+V ⊆ U , using Lemma 1.3, so
(U, u)(W,w) ≤ (V, v)(X, x).

(O2) If (U, u) ≤ (V, v), then u ≤ v, hence u+ ≤ v+. Then (U, u+) ≤ (V, v+).
(O3) Let (U, u) ∈ Sz(P ) and (F, f) ∈ E be such that (F, f) ≤ (U, u+):

fU ⊆ F and f ≤ u+.

Then the restriction f |u = fu is defined in P . We show that the restriction in
Sz(P ) is that given in (3.2). Note that (F, fu) ≤ (U, u), since fu = f |u ≤ u and
(fu)+U = fU ⊆ F . Also,

(F, fu)+ = (F, (fu)+) = (F, f).

Suppose now that there is another element (A, a) ∈ Sz(P ) such that (A, a) ≤
(U, u), so a+U ⊆ A and a ≤ u, and (A, a)+ = (F, f), so A = F and a+ = f . But
fu = f |u is the unique element of P with the properties f |u ≤ u and (f |u)+ = f ,
so a = f |u. Therefore, the restriction is unique in Sz(P ).

(O4) Let (U, u) ∈ Sz(P ) and (F, f) ∈ E . Note that f = a+, for all a ∈ F ,
and that ∃(u|f)f , by definition of u|f . Hence, ∃(u|f)a, by Lemma 1.4. We can
therefore make the product (u|f)F . Similarly, it makes sense to write (u|f)+U ,
since (u|f)+U = (u|f)+|U , which is defined, as u|f ≤ u implies that (u|f)+ ≤
u+ = w+, for all w ∈ U .

We now show that the corestriction (U, u)|(F, f) is that given in (3.3). Ob-
serve that ∃ ((u|f)F ∪ (u|f)+U, u|f) (F, f), since ∃(u|f)f and (u|f)F ⊆ (u|f)F ∪
(u|f)+U . We also have u|f ≤ u and (u|f)+U ⊆ (u|f)F ∪ (u|f)+U , so
((u|f)F ∪ (u|f)+U, u|f) ≤ (U, u).

Now suppose that (B, b) is another element of Sz(P ) with (B, b) ≤ (U, u), so
that b ≤ u and b+U ⊆ B, and ∃(B, b)(F, f), so that ∃bf and bF ⊆ B. Since
b ≤ u, we have b|f ≤ u|f , by Lemma 1.8(vi). Also, since ∃bf , we have b|f = b,
by Lemma 1.6. Therefore b ≤ u|f .
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Let x ∈ b+ ((u|f)F ) = b+| ((u|f)F ), so that x = b+| ((u|f)g), for some g ∈ F .
It is clear that x+ = b+ and that x ≤ (u|f)g. Note, however, that these are
properties shared by the element bg (which is defined, by Lemma 1.4, since
∃bf and f = g+). Therefore, by uniqueness of restrictions, x = bg, hence
b+ ((u|f)F ) ⊆ bF ⊆ B. Note also that

b+
(

(u|f)+U
)

=
(

b+(u|f)+
)

U = b+U ⊆ B,

using Lemma 1.8(iii). We have shown that

b+
(

(u|f)F ∪ (u|f)+U
)

⊆ B,

hence (B, b) ≤ ((u|f)F ∪ (u|f)+U, u|f).
(O5) Suppose that ∃(U, u)(V, v), i.e., ∃uv and uV ⊆ U . Then

[(U, u)(V, v)] |(F, f) = (U, uv)|(F, f) =
(

(uv|f)F ∪ (uv|f)+U, uv|f
)

,

so that

{[(U, u)(V, v)] |(F, f)}+ =
(

(uv|f)F ∪ (uv|f)+U, (uv|f)+
)

.

Also,
(V, v)|(F, f) =

(

(v|f)F ∪ (v|f)+V, v|f
)

,

so that if △ = (U, u)| [(V, v)|(F, f)]+, then

△ = (U, u)|
(

(v|f)F ∪ (v|f)+V, v|f
)+

= (U, u)|
(

(v|f)F ∪ (v|f)+V, (v|f)+
)

=
(

[

u|(v|f)+
] [

(v|f)F ∪ (v|f)+V
]

∪
[

u|(v|f)+
]+
U, u|(v|f)+

)

=
(

[(

u|(v|f)+
)

(v|f)
]

F ∪
[

u|(v|f)+
] [

(v|f)+V
]

∪
[

u|(v|f)+
]+
U, u|(v|f)+

)

,

using (C1) in P . Hence

△+ =
(

(uv|f)F ∪
[

u|(v|f)+
] [

(v|f)+V
]

∪ (uv|f)+U, (uv|f)+
)

,

using Lemma 1.11 and (O5) in P . For brevity, we will put

W = (uv|f)F ∪
[

u|(v|f)+
] [

(v|f)+V
]

∪ (uv|f)+U.

To obtain the desired equality, we need to show that

W = (uv|f)F ∪ (uv|f)+U.

We do this by showing that
[

u|(v|f)+
] [

(v|f)+V
]

⊆ (uv|f)+U. (3.5)

Consider x ∈ (u|(v|f)+) [(v|f)+V ], so that x = (u|(v|f)+) [(v|f)+w], for some
w ∈ V . Observe that since ∃uw in P , we have

x ≤ uw and x+ = (u|(v|f)+)+ = (uv|f)+ (by (O5)).

We have
(uv|f)+ ≤ (uv)+ = u+ = (uw)+
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so that (uv|f)+|uw is defined, hence by uniqueness of restrictions,

x = (uv|f)+|(uw) = (uv|f)+(uw) ∈ (uv|f)+U,

since uV ⊆ U , and the inclusion (3.5) holds.
(O6) Let (G, g), (F, f) ∈ E and consider (G, g)|(F, f). Regarding this first as a

corestriction, we have

(G, g)|(F, f) = ((g|f)F ∪ (g|f)+G, g|f), (3.6)

from (3.3). We now suppose that the corresponding restriction is defined; we
have (G, g) ≤ (F, f), so that g ≤ f and gF ⊆ G. The restriction g|f is therefore
defined in P , and, by Lemma 1.8(iii), g|f = g. The corestriction of (3.6) can
therefore be rewritten

(G, g)|(F, f) = (gF ∪ gG, g) = (gF ∪G, g), since gG = G

= (G, g), since gF ⊆ G,

which is precisely the appropriate restriction, since gf = g|f = g. We have
therefore shown that Sz(P ) is an ordered constellation.

We now suppose that P is inductive and show that condition (I) holds in Sz(P ).
Given (H, h), (F, f) ∈ E , we put

(G, g) := ((h ∧ f)(H ∪ F ), h ∧ f) .

Since h ∈ H , we have (h ∧ f)|h = (h ∧ f)h ∈ G. But (h ∧ f)h = h ∧ f , by (C4).
Therefore h ∧ f ∈ G. It is also clear that x+ = h ∧ f , for any x ∈ G, hence
(G, g) ∈ Sz(P ).

We claim that (G, g) is the greatest lower bound of (H, h) and (F, f). It is
certainly true that (G, g) ≤ (H, h), since g = h ∧ f ≤ h and (h ∧ f)H ⊆ G.
Similarly, (G, g) ≤ (F, f). Thus (G, g) is a lower bound for (H, h) and (F, f).

Suppose now that (L, l) ∈ E is another lower bound for (H, h) and (F, f). Then
l ≤ h and l ≤ f , so l ≤ h ∧ f . Also, l|H = lH ⊆ L and l|F = lF ⊆ L, hence
l|(H ∪ F ) ⊆ L. By Lemma 1.8(iv), we have

lG = l|G = l| [(h ∧ f)(H ∪ F )] = l| [(h ∧ f)|(H ∪ F )] = l|(H ∪ F ).

Thus lG ⊆ L, and (L, l) ≤ (G, g). We have shown that any lower bound of (H, h)
and (F, f) is less than or equal to (G, g), hence (G, g) = (H, h) ∧ (F, f).

Recall now that for (H, h), (F, f) ∈ E , we have the corestriction

(H, h)|(F, f) =
(

(h|f)F ∪ (h|f)+H, h|f
)

=
(

(h ∧ f)F ∪ (h ∧ f)+H, h ∧ f
)

, by (I) in P

= ((h ∧ f)(H ∪ F ), h ∧ f) = (H, h) ∧ (F, f),

as required. �

Corollary 3.3. If P is a replete ordered constellation, then Sz(P ) is a replete
ordered constellation.
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Proof. It is easy to see that if E = E(P ), then E = E(Sz(P )). �

We now define a function ι : P → Sz(P ) by sι = ({s+, s}, s). The function ι is
an ordered pre-radiant, but in fact we can show rather more.

Lemma 3.4. For any s, t ∈ P ,

sι⊗ tι = sι+ ⊗ (s⊗ t)ι.

Proof. Let s, t ∈ P . Bearing in mind that s|t+ ≤ s, so that (s|t+)+ ≤ s+,
Lemma 1.10 and calculations of a now familiar kind yield:

(s|t+)t+ = s|t+, (s|t+)t = s⊗ t, (s|t+)+s+ = (s|t+)+ and (s|t+)+s = s|t+.

Consequently,

sι⊗ tι = (sι|tι+)tι
=

(

({s+, s}, s)|({t+, t}, t+)
)

({t+, t}, t)
=

(

(s|t+){t+, t} ∪ (s|t+)+{s+, s}, s|t+
)

({t+, t}, t)
= ({(s|t+)+, s|t+, s⊗ t, }, s⊗ t).

On the other hand,

sι+ ⊗ (s⊗ t)ι = ({s+, s}, s+) ⊗ ({(s|t+)+, s⊗ t}, s⊗ t)
=

(

({s+, s}, s+)|({(s|t+)+, s⊗ t}, (s|t+)+)
)

({(s|t+)+, s⊗ t}, s⊗ t)
= ((s|t+)+{s+, s, (s|t+)+, s⊗ t}, s⊗ t)
= ({(s|t+)+, s|t+, s⊗ t}, s⊗ t),

as required. �

Lemma 3.5. The function ι is an ordered pre-radiant.

Proof. Condition (P) is immediate from Lemma 3.4 .
(OP1) Let s ∈ P . We have sι+ = ({s+, s}, s+). On the other hand, s+ι =

({s+}, s+). Since s+{s+} ⊆ {s+, s}, we have ({s+, s}, s+) ≤ ({s+}, s+) in Sz(P ).
(OP2) Let s, t ∈ P with s ≤ t. Then sι = ({s+, s}, s) and tι = ({t+, t}, t). We

consider the set s+{t+, t}. Since s ≤ t, we have s+t+ = s+, by Lemma 1.8(iii),
and s+t = s+|t = s, by Lemma 1.8(i). Hence s+{t+, t} = {s+, s}, so ({s+, s}, s) ≤
({t+, t}, t).

(OP3) Let s ∈ P and e ∈ E. Then (s|e)ι = ({(s|e)+, s|e}, s|e). On the other
hand,

sι|eι = ({s+, s}, s) | ({e}, e) = ( (s|e){e} ∪ (s|e)+{s+, s}, s|e ).

We know that (s|e)e = s|e, by (C4) in P . Also, (s|e)+s+ = (s|e)+, by
Lemma 1.8(iii). Finally, (s|e)+s = s|e, from Lemma 1.10. We therefore have
sι|eι = (s|e)ι, as required.

(IP) Let a ∈ P , e ∈ E with e ≤ a+. On the one hand, we have

(e|a)ι+ = ({e, e|a}, e|a)+ = ({e, e|a}, e),
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whilst on the other, we have

eι ∧ aι+ = ({e}, e) ∧ ({a+, a}, a+) = (e{e, a+, a}, e)

= ({e, ea}, e) = ({e, e|a}, e),

as required. �

Proposition 3.6. The Szendrei expansion Sz(P ) of an inductive constellation P
is generated by Pι via multiplication, + and meet.

Proof. Let (U, u) ∈ Sz(P ). Notice that

(U, u) = (U, u+)({u+, u}, u) = (U, u+)(uι).

Now let e ∈ E and let X ∈ Pe
f (Σe) with |X| = n. We claim that

∧

x∈X

({e, x}, e) = (X, e), (3.7)

and prove this by induction. The claim is certainly true for n = 1 and n = 2, by
(3.4).

Suppose now that (3.7) holds for n = k. Let Y ∈ Pe
f(Σe) with |Y | = k. We

choose z ∈ Σe \ Y and put Z = Y ∪ {z} so that |Z| = k + 1. Consider

∧

x∈Z

({e, x}, e) =

(

∧

x∈Y

({e, x}, e)

)

∧ ({e, z}, e)

= (Y, e) ∧ ({e, z}, e), by assumption

= (e(Y ∪ {z}), e), from (3.4)

= (Z, e), since e is a left identity for Σe.

Therefore, (3.7) holds for all n ∈ N, by induction. Observe further that

(X, e) =
∧

x∈X

({e, x}, e) =
∧

x∈X

({e, x}, x)+ =
∧

x∈X

xι+. (3.8)

Returning to the task at hand, we use (3.8) to write (U, u+) as

(U, u+) =
∧

y∈U

yι+,

hence

(U, u) =

(

∧

y∈U

yι+

)

(uι),

as required. �
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4. Expansion of partial actions of inductive constellations

We finally present our ‘expansion’ theorem for the partial actions of inductive
constellations:

Theorem 4.1. Let P and Q be inductive constellations with distinguished subsets
E and F , respectively. If ψ : P → Q is an ordered pre-radiant, then there exists
a unique ordered radiant ψ : Sz(P ) → Q such that ψ = ιψ, i.e., such that the
following diagram commutes:

P
ψ

- Q

Sz(P )

ι

?

ψ

-

Conversely, if ψ : P → Q is an ordered radiant, then ψ = ιψ is an ordered
pre-radiant.

Proof. Let ψ : P → Q be an ordered pre-radiant. We define ψ : Sz(P ) → Q by

(U, u)ψ =
∧

y∈U

yψ+

∣

∣

∣

∣

∣

uψ =

(

∧

y∈U

yψ+

)

uψ.

Note that we do not necessarily need to include the y = u+ ‘factor’: uψ+ ≤
(u+ψ)+, by (OP1) and (O2), so uψ+ ∧ (u+ψ)+ = uψ+. Observe also that if
(F, f) ∈ E , then

(F, f)ψ =

(

∧

y∈F

yψ+

)

fψ =
∧

y∈F

yψ+, (4.1)

by Lemma 1.8(iii), since
∧

y∈F yψ
+ ≤ fψ+ = fψ, from Lemma 2.7.

First of all, it is easy to see that ψ = ιψ. Let s ∈ P . Then

sιψ = ({s+, s}, s)ψ = sψ+sψ = sψ.

We now show that ψ preserves ordering. Suppose that (U, u) ≤ (V, v) in Sz(P ).
Then u ≤ v and u+V ⊆ U , so u+ ≤ v+ = x+, for any x ∈ V , and the restriction
u+|x = u+x is defined, with u+x ≤ x. We then have (u+x)ψ ≤ xψ, hence
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(u+x)ψ+ ≤ xψ+. Thus

(V, v)ψ =
∧

x∈V

xψ+

∣

∣

∣

∣

∣

vψ

≥
∧

x∈V

(

(u+x)ψ
)+

∣

∣

∣

∣

∣

vψ, by Lemma 1.8(iv)

≥
∧

y∈U

yψ+

∣

∣

∣

∣

∣

vψ, since u+V ⊆ U

≥
∧

y∈U

yψ+

∣

∣

∣

∣

∣

uψ, by Lemma 1.9, since uψ ≤ vψ

= (U, u)ψ,

as required.
We next show that ψ preserves corestrictions. If, with reference to (3.3), we

put W = (u|f)F ∪ (u|f)+U and ♦ = [(U, u)|(F, f)]ψ, then we have

♦ =

(

∧

x∈W

xψ+

)

(u|f)ψ

=

(

(u|f)ψ+ ∧
∧

y∈F

[(u|f)y]ψ+ ∧
∧

z∈U

[(u|f)+z]ψ+

)

(u|f)ψ. (4.2)

Notice that we have pulled an extra ‘factor’ of (u|f)ψ+ out of the left-hand side.
Further copies of this factor appear in

∧

y∈F [(u|f)y]ψ+ for y = f , by (C4), and

in
∧

z∈U [(u|f)+z]ψ+ for z = u, by Lemma 1.10.
Consider the expression (u|f)ψ+ ∧ [(u|f)y]ψ+, for y ∈ F . By Lemma 2.8 with

a = u|f and b = y, we can rewrite this as ((u|f)ψ ⊗ yψ)+. We now take the
first two terms on the right-hand side of (4.2) and introduce |F | − 2 additional
‘factors’ of (u|f)ψ+. By repeatedly applying Lemma 2.8, we obtain:

(u|f)ψ+ ∧
∧

y∈F

[(u|f)y]ψ+ =
⊗

y∈F

((u|f)ψ ⊗ yψ)+, (4.3)

since ∧ and ⊗ coincide.
Recall that restriction (where it exists) and corestriction also coincide with the

pseudoproduct in an inductive constellation. We can use this fact, together with
(4.3), to write:

♦ =

(

⊗

y∈F

((u|f)ψ ⊗ yψ)+

)

⊗

(

⊗

z∈U

[(u|f)+z]ψ+

)

⊗ uψ ⊗ fψ,

where we have also used (OP3) to write (u|f)ψ = uψ|fψ = uψ ⊗ fψ.
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Notice now that the hypothesis of (IP) holds for the factors [(u|f)+z]ψ+ =
[(u|f)+|z]ψ+, since (u|f)+ ≤ u+ = z+. We can therefore replace each factor
[(u|f)+z]ψ+ by (u|f)+ψ ∧ zψ+ = (u|f)+ψ ⊗ zψ+ to obtain:

♦ =

(

⊗

y∈F

((u|f)ψ ⊗ yψ)+

)

⊗

(

⊗

z∈U

((u|f)+ψ ⊗ zψ+)

)

⊗ uψ ⊗ fψ

=

(

⊗

y∈F

((u|f)ψ ⊗ yψ)+

)

⊗ (u|f)+ψ ⊗

(

⊗

z∈U

zψ+

)

⊗ uψ ⊗ fψ,

where we have retained only a single factor of (u|f)+ψ (this factor lies in F , by
Lemma 2.7).

Notice that every factor in the above expression is an idempotent in F , with
the exception of the factor of uψ. We can therefore pull out an extra factor of
uψ+ from the

⊗

z∈U zψ
+ term and repeatedly commute idempotents to bring this

to the front of the expression. We now consider the factor uψ+⊗ ((u|f)ψ⊗yψ)+,
for y ∈ F . We know that yψ+ ≤ y+ψ = fψ. We therefore have:

uψ+ ⊗ ((u|f)ψ ⊗ yψ)+ =
(

uψ+ ⊗ ((u|f)ψ ⊗ yψ)+
)+
, by (1.5)

=
(

uψ+ ⊗ (u|f)ψ ⊗ yψ
)+
, by (1.4)

= (uψ+ ⊗ uψ ⊗ fψ ⊗ yψ)+, by (OP3)

= (uψ ⊗ fψ ⊗ yψ)+

= (uψ ⊗ fψ ⊗ yψ+)+, by (1.4)

= (uψ ⊗ yψ+)+, since yψ+ ≤ fψ

= (uψ ⊗ yψ)+, by (1.4).

So, by bringing out further factors of uψ+, we can repeat this process and replace
the factor

⊗

y∈F

((u|f)ψ ⊗ yψ)+

in the expression for ♦ by
⊗

y∈F

(uψ ⊗ yψ)+. (4.4)

Notice also that uψ ⊗ fψ = uψ|fψ = (u|f)ψ and that (u|f)ψ+ ≤ (u|f)+ψ, so
that (uψ ⊗ fψ)+ ≤ (u|f)+ψ. Since (uψ ⊗ fψ)+ appears as a factor in (4.4), we
can dispense with the factor of (u|f)+ψ and write:

♦ =

(

⊗

y∈F

(uψ ⊗ yψ)+

)

⊗

(

⊗

z∈U

zψ+

)

⊗ uψ ⊗ fψ.
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We now apply the (1.3) to the final two terms in this expression to obtain

♦ =

(

⊗

y∈F

(uψ ⊗ yψ)+

)

⊗

(

⊗

z∈U

zψ+

)

⊗ (uψ ⊗ fψ)+ ⊗ uψ

=

(

⊗

y∈F

(uψ ⊗ yψ)+

)

⊗

(

⊗

z∈U

zψ+

)

⊗ uψ, (4.5)

since the factor of (uψ ⊗ fψ)+ already occurs as part of the first term.
Let us now consider (U, u)ψ|(F, f)ψ:

(U, u)ψ|(F, f)ψ =

[(

∧

z∈U

zψ+

)

uψ

]
∣

∣

∣

∣

∣

∧

y∈F

yψ+, using (4.1)

=

(

⊗

z∈U

zψ+

)

⊗ uψ ⊗

(

⊗

y∈F

yψ+

)

. (4.6)

For g ∈ F , the product uψ ⊗ gψ+ can be rewritten (uψ ⊗ gψ)+ ⊗ uψ, by (1.3).
We therefore repeatedly apply (1.3) to uψ and the left-most remaining factor of
the final term of (4.6) to obtain (after also applying (1.1)):

(U, u)ψ|(F, f)ψ =

(

⊗

z∈U

zψ+

)

⊗

(

⊗

y∈F

(uψ ⊗ yψ)+

)

⊗ uψ,

which is precisely (4.5). Thus ψ preserves corestrictions.
We show that ψ preserves +:

(U, u)ψ
+

=

[(

∧

y∈U

yψ+

)

uψ

]+

=
∧

y∈U

yψ+ = (U, u+)ψ = (U, u)+ψ,

by (4.1).
It remains to show that ψ preserves multiplication. Let (U, u), (V, v) ∈ Sz(P )

with ∃(U, u)(V, v), i.e., ∃uv in P and uV ⊆ U . We have the following rule, from
Lemma 1.6:

∃(U, u)ψ(V, v)ψ ⇐⇒ (U, u)ψ
∣

∣ (V, v)ψ
+

= (U, u)ψ

⇐⇒ (U, u)ψ
∣

∣ (V, v+)ψ = (U, u)ψ.

The right-hand side is easily shown:

(U, u)ψ|(V, v+)ψ = [(U, u)|(V, v+)]ψ, since ψ preserves corestrictions

= (U, u)ψ, by Lemma 1.6 in Sz(P ), since ∃(U, u)(V, v).
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We now show that (U, u)ψ(V, v)ψ = [(U, u)(V, v)]ψ. On the one hand, we have

[(U, u)(V, v)]ψ = (U, uv)ψ =

(

∧

y∈U

yψ+

)

(uv)ψ =

(

∧

y∈U

yψ+

)

⊗ (uv)ψ,

whilst, on the other, we have

(U, u)ψ(V, v)ψ =

(

∧

y∈U

yψ+

)

(uψ)

(

∧

x∈V

xψ+

)

(vψ)

=

(

∧

y∈U

yψ+

)

⊗ uψ ⊗

(

⊗

x∈V

xψ+

)

⊗ vψ,

where we have deliberately retained the initial ‘∧’, since this factor requires no
manipulation. Consider the factor uψ ⊗ xψ+, for x ∈ V . We have

uψ ⊗ xψ+ = (uψ ⊗ xψ+)+ ⊗ uψ, by (1.3)

= (uψ ⊗ xψ)+ ⊗ uψ, by (1.4)

= (uψ+ ⊗ (ux)ψ)+ ⊗ uψ, by (P)

= (uψ+ ⊗ (ux)ψ+)+ ⊗ uψ, by (1.4)

= uψ+ ⊗ (ux)ψ+ ⊗ uψ, by (1.5)

= (ux)ψ+ ⊗ uψ+ ⊗ uψ, by (1.1)

= (ux)ψ+ ⊗ uψ.

By repeating this process for each x ∈ V , we have

(U, u)ψ(V, v)ψ =

(

∧

y∈U

yψ+

)

⊗

(

⊗

x∈V

(ux)ψ+

)

⊗ uψ ⊗ vψ

=

(

∧

y∈U

yψ+

)

⊗

(

∧

x∈V

(ux)ψ+

)

⊗ uψ+ ⊗ (uv)ψ

=

(

∧

y∈U

yψ+

)

⊗ (uv)ψ,

since uV ⊆ U , and the fact that uψ+ appears as a ‘factor’ in the first term.
Hence (U, u)ψ(V, v)ψ = [(U, u)(V, v)]ψ, as required. We have shown that ψ is an
ordered radiant.

We must now show that ψ is unique. Suppose that ϕ : Sz(P ) → Q is another
ordered radiant such that ψ = ιϕ. Then sιψ = sιϕ, for all s ∈ P , so ψ = ϕ on
Pι. We must therefore have ψ = ϕ on the whole of Sz(P ), by Proposition 3.6.

Conversely, suppose that ψ is an ordered radiant, and put ψ = ιψ. It follows
from Lemmas 3.5 and 2.10 that ψ is an ordered pre-radiant. �
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5. The category of inductive constellations and inductive

pre-radiants

In this final section, we use Theorem 4.1 to show that inductive constellations,
together with ordered pre-radiants, form a category. Further, this category is iso-
morphic to the category of left restriction semigroups and strong premorphisms.
It is now convenient to define the latter.

Let S and T be left restriction semigroups and let θ : S → T . Then θ is a
strong premorphism if

(i) sθtθ = (sθ)+(st)θ and
(ii) sθ+ ≤ s+θ

for all s, t ∈ S.
Notice that in a left restriction semigroup S, if s ≤ t, then as s = s+t we have

that s+ = (s+t)+ = s+t+ ≤ t+. It follows that in (ii) above, sθ+ ≤ (s+θ)+ and
sθ+ = sθ+ s+θ.

Lemma 5.1. Let S, T, U be left restriction semigroups, and let θ : S → T, ψ :
T → S be strong premorphisms. Then θψ is a strong premorphism.

Proof. Let s, t ∈ S. First, (sθψ)+ ≤ (sθ+)ψ. By [6, Lemma 2.10], ψ preserves
order. As sθ+ ≤ s+θ we therefore have that (sθψ)+ ≤ s+θψ.

For products, we calculate

sθψ tθψ = (sθψ)+(sθ tθ)ψ
= (sθψ)+(sθ+(st)θ)ψ
= (sθψ)+(sθ+ψ)+

(

sθ+(st)θ
)

ψ

= (sθψ)+
(

sθ+ψ
)(

(st)θψ
)

= (sθψ)+(st)θψ

so that θψ is a premorphism as claimed.
�

Corollary 5.2. The class of left restriction semigroups, together with strong
premorphisms, forms a category.

The next result is immediate from the definition of ordered pre-radiant and
Lemmas 3.4 and 3.5. We use the same notation as in Theorem 2.3, without
danger of ambiguity.

Corollary 5.3. Let P be an inductive constellation and let ι : P → Sz(P ). Then
T(ι) : T(P ) → T(Sz(P )) is a strong premorphism.

The proof of the next result is routine, and may be found in the thesis of the
second author [8, Proposition 9.7.5].

Proposition 5.4. Let S and T be left restriction semigroups, and let θ : S → T

be a strong premorphism. Then P(θ) : P(S) → P(T ) is an ordered pre-radiant.

Theorem 4.1 enables us to prove the converse to the above.
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Lemma 5.5. Let P and Q be inductive constellations and let θ : P → Q be an
ordered pre-radiant. Then T(θ) : T(P ) → T(Q) is a strong premorphism.

Proof. We need only consider products. Let s, t ∈ T(P ). Then with θ : Sz(P ) →
Q defined as in Theorem 4.1, we have that

sθ ⊗ tθ = sιθ ⊗ tιθ

= (sι⊗ tι)θ by Lemma 2.4
=

(

sι+ ⊗ (s⊗ t)ι
)

θ by Lemma 3.4
= (sιθ)+ ⊗ (s⊗ t)ιθ
= (sθ)+ ⊗ (s⊗ t)θ.

�

It follows from Lemma 5.1, Proposition 5.4 and Lemma 5.5 that the class of
inductive constellations, together with ordered pre-radiants, forms a category,
and, moreover, the following is clear.

Theorem 5.6. The categories of left restriction semigroups and strong premor-
phisms and of inductive constellations and ordered pre-radiants are mutually iso-
morphic via functors P and T.

Our notion of the Szendrei expansion of an inductive constellation was mo-
tivated by those of the Szendrei expansions of other algebraic structures such
as groups [21], inductive groupoids [4] and restriction semigroups [8]. We note
that laborious calculations, detailed in [8, Proposition 10.2.6], show that if P is
an inductive constellation, then T(Sz(P )) = Sz(T(P )) and if S is a left restric-
tion semigroup, then P(Sz(S)) = Sz(P(S)). Here Sz(T(P )) and Sz(S) are the
Szendrei expansions of the restriction semigroups T(P ) and S, respectively.

We summarise our findings connecting the actions and partial actions of left
restriction semigroups and the actions and partial actions of inductive constella-
tions in the diagram below. Here θ : S → PT X is a strong premorphism from a
left restriction semigroup S to some PT X , or equivalently, S acts partially on X,
P = P(S) and ψ = P(θ). The lower square commutes by Theorem 5.6, the tri-
angles by Theorem 4.1 and [6, Theorem 4.2] and the upper ‘square’ by [8, Propo-
sition 10.2.6], applying P or T.
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P S

CX PT X

Sz(S)Sz(P )
ιι′

θψ θψ
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