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Let RelX = 2X×X be the set of binary relations on the set X.

For example, if X = {a, b, c}, let

s = {(a, a), (a, b), (b, c), (c, c)}, t = {((a, c), (b, b)}.

We say the domain of s is dom(s) = {a, b, c} and dom(t) = {a, b}.

Neither s nor t is a function:

s is multiply defined at a ∈ X, and dom(t) is not all of X.

However, t ∈ PTX , the set of partial functions on X.



Ordinary or “angelic” composition of binary relations is well-known.

For binary operations s, t ∈ RelX ,

s; t = {(x, y) ∈ X ×X | ∃z ∈ X : (x, z) ∈ s, (z, y) ∈ t}.

This generalises composition of (partial) functions and shares some
of its nice features: composition of binary relations is associative.

So RelX is a semigroup, having PTX as subsemigroup.

And the full transformation semigroup TX is a subsemigroup of PTX .



However, there is a less familiar way to compose binary relations:
“demonic composition”.

For s, t ∈ RelX , define

s ∗ t = {(x, y) ∈ s; t | (x, z) ∈ s⇒ z ∈ dom(t)}.

The terminology comes from computer science thought experiments
when thinking about “nondeterministic programs”:

angelic composition does whatever can be done, while demonic com-
position assumes a “demon” will mess things up if possible.



In our example with s, t as before:

s = {(a, a), (a, b), (b, c), (c, c)}, t = {((a, c), (c, b)},

we have that

s; t = {(a, c), (b, b), (c, b)}

while

s ∗ t = {(b, b), (c, b)}.

But in general, s ∗ t need not be a partial function.



Angelic composition is important when thinking about partial correct-
ness of “non-deterministic” programs, demonic for total correctness.

Demonic composition also reduces to composition of partial functions
when applied to them.

For binary relations with domain all of X, it agrees with usual rela-
tional composition too.

And it is still an associative operation (as is non-obvious).

So arguably, “demonic” composition is just as good a generalisation
of functional composition as is “angelic” composition.



How is (RelX , ∗) different to (RelX , ; )?

To help see how, we define the operation of domain D on RelX ;

D(s) = {(x, x) | x ∈ dom(s)}.

So D(s) is the restriction of the identity function to dom(s).

So D is also well-defined on PTX (but rather uninteresting for TX).

In fact (PTX , ; , D) is what’s called a left restriction semigroup.



Laws for left restriction semigroups are those for semigroups, plus

• D(x)x = x; D(x)D(y) = D(y)D(x)

• D(D(x)y) = D(D(x)D(y)) = D(x)D(y)

• xD(y) = D(xy)x.

Every left restriction semigroup embeds in one of the form PTX (a
“Cayley theorem”).



However, (RelX , ; , D) is not a left restriction semigroup, since the
final law fails.

It does satisfy some weaker laws, but there is no Cayley theorem...

...unless infinitely many laws are used!

BUT... (RelX , ∗, D) is a left restriction semigroup!

So there is a Cayley theorem again (the same as for PTX).



How does one go from (RelX , ; , D) to (RelX , ∗, D)?

In fact it can be shown that for all s, t ∈ RelX ,

s ∗ t = A(s;A(t)); s; t,

where A(s) = {(x, x) ∈ X × X | x 6∈ dom(s)}, the so-called
antidomain of s.

Why does this work – is something more general going on?

Indeed there is!



Suppose S is a unary semigroup with unary operation D, and we
define

s ◦ t = st only if sD(t) = s.

For the case of RelX , this is saying that the image of s is contained
in dom(t) (regardless of which type of composition is used!).

If we do this for a left restriction semigroup S, Gould and Hollings
showed that we get a so-called inductive constellation (S, ◦, D)

(a special kind of partial algebra defined by a finite set of laws).



Conversely, every inductive constellation arises in this way from a left
restriction semigroup.

So given an inductive constellation (S, ◦, D), it’s possible to “add in”
all the “missing” products and make a left restriction semigroup out of
it.

These constructions are mutually inverse, and indeed the two cate-
gories are isomorphic. (An “ESN Theorem” variant.)

But not only left restriction semigroups can give inductive constella-
tions in this way!

First, when do we get a constellation? And what is a constellation?!



Given a set P equipped with a partial binary operation ◦, we say
e ∈ P is a right identity if for all a ∈ P , if a ◦ e exists then it equals a.

We say (P, ◦, D) is a constellation if, for all x, y, z ∈ P :

• if x ◦ (y ◦ z) exists then so does (x ◦ y) ◦ z, and then the two are
equal;

• if x ◦ y and y ◦ z exist then x ◦ (y ◦ z) exists;

• D(x) is the unique right identity in P such that D(x) ◦ x = x.



On a constellation, there is the natural quasiorder given by s ≤ t iff
s = D(s) ◦ t (which is assumed to exist).

To be inductive, the constellation must have a notion of “co-restriction”
satisfying some further laws.

These are:



(O4) If e ∈ D(P ) and a ∈ P , then there is a maximum x ∈ P

with respect to the natural quasiorder ≤ on P , such that x ≤ a

and x ◦ e exists, the co-restriction of a to e, denoted a|e; and

(O5) for x, y ∈ P and e ∈ D(P ), if x ◦ y exists then

D((x ◦ y)|e) = D(x|(D(y|e)).

Then we may extend ◦ to a total operation by setting

s� t := (s|D(t)) ◦ t.

And (P,�, D) is a left restriction semigroup!



Given a unary semigroup S equipped with unary D, when is (S, ◦, D)

at least a constellation?

(Recall s ◦ t = st but only when sD(t) = s.)

Exactly when it is a “demigroup”. (Name to be confirmed!)

Laws for these are fairly simple.



• D(x)2 = D(x);

• D(x)x = x;

• D(xy) = D(xD(y)).

In this case, D(D(x)) = D(x) for all x ∈ S.

And it follows that D(S) = {D(x) | x ∈ S} consists of idempotents.



Let’s call a demigroup (S,×, D) an inductive demigroup if (S, ◦, D)

is an inductive constellation.

These may be characterised by just two further conditions.

The first is that for all e, f ∈ D(S), the quasiorder given by e ≤r f iff
e = ef is a partial order;

equivalently, for all e, f ∈ D(S), e = ef, f = fe⇒ e = f .



Aside from that, we require that

for all s ∈ S, e ∈ D(S), there exists (unique) s · e ∈ D(S)

such that s · e ≤r D(s), and for all t ∈ S,

tse = ts⇔ t(s · e) = t,

that is, the set of left equalizers of se, s is generated as a left ideal by
(s · e) ∈ D(S).

Then the co-restriction in the derived inductive constellation is

s|e = (s · e)s.



It follows that if S is an inductive demigroup, D(S) is a meet-semilattice
under ≤r,

with e ∧ f = e · f for all e, f ∈ D(S).

And S can be turned into a left restriction semigroup (S,�, D) by
setting

s� t = (s ·D(t))st for all s, t ∈ S.



Digression: one can give a purely equational characterisation of in-
ductive demigroups.

The demigroup S is inductive if and only if,

for all s ∈ S and e ∈ D(S), there is s · e ∈ S satisfying,

for all s, t ∈ S and e, f ∈ D(S):



• D(s · e) = s · e,

• se · e = D(se),

• e · f = f · e,

• (t · e)t = (t · e)te and

• (sD(t)) · (t · e) = (st) · e.

(Extend · to S by adding s · t := s ·D(t) for all s, t ∈ S.)



Note that (RelX , ; , D) is an inductive demigroup!

That is, (RelX , ◦, D) is an inductive constellation.

So in theory we can rebuild it to be a left restriction semigroup instead.

The action of RelX on D(RelX) is given by s·D(t) = A(s;A(t));D(t)...

so s� t = A(s;A(t));D(t); s; t = A(s;A(t)); s; t,

which is just the demonic composition s ∗ t as defined before!



This “explains” why (RelX , ∗, D) is a left restriction semigroup, and
in particular, why ∗ is associative.

But are there any other interesting special cases?

What follows applies to any ∗-regular ring or indeed any ∗-regular
Baer ∗-semigroup,

but I’m here going to concentrate on matrices.



Consider the multiplicative semigroup of n×n matrices Mn(R), where
R is the real or complex number field.

Although not every matrix has an inverse, it does always have a (nec-
essarily unique) Moore-Penrose inverse.

Given matrix M , this is an M ′ such that

MM ′M = M,M ′MM ′ = M ′,

and both MM ′,M ′M are symmetric (MH = M ).

If M is non-singular then M ′ = M−1, and MM ′ = M ′M = I.

The Moore-Penrose inverse is important in statistics and beyond.



In general semigroup theory, we say x has an inverse y if

xyx = x, yxy = y.

(In a group, this is just the usual notion of inverse.)

So the Moore-Penrose inverse of a matrix is an inverse satisfying
some additional properties.

But in general a given matrix has many other semigroup inverses.

By contrast, an inverse semigroup is a semigroup in which each ele-
ment has a unique semigroup inverse.

They are “closer” to being groups than any other class of semigroups.



Inverse semigroups model algebras of 1:1 partial functions equipped
with inversion.

In an inverse semigroup, the idempotents form a subsemigroup which
is a semilattice (cf. the idempotents in Mn(R)).

Every inverse semigroup is a left restriction semigroup

if we define D(s) = ss′, where s′ is the inverse of s.

And one can characterise those left restriction semigroups arising in
this way:

for all s there is s′ such that D(s) = ss′, D(s′) = s′s.



As we’ve noted, Mn(R) is not an inverse semigroup.

However, it is an inductive demigroup with D(S) = SS′, S ∈Mn(R).

Define A(S) = I −D(S); this behaves like antidomain in RelX .

Then for S, T ∈Mn(R), S � T = A(S ×A(T ))ST , like in RelX .

Hence (Mn(R),�, D) is a left restriction semigroup.

But it turns out that D(S) = S � S′ and D(S′) = S′ � S,

so it is one arising from an inverse semigroup, in which inverse is
Moore-Penrose inverse.



So Mn(R) is an inverse semigroup with respect to � and Moore-
Penrose inverse!

S′ = S−1 when it exists, and “almost always” S � T = ST (e.g. if
T−1 exists).

But it’s not easy to write down an explicit formula for S�T , even when
n = 2!

(It splits into cases, like the “formula” for Moore-Penrose inverse.)

There is much interest in the structure of these inverse semigroups...

but that’s another story.


