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Let Relx = 2% *X be the set of binary relations on the set X.

For example, if X = {a,b, ¢}, let
s ={(a,0a),(a,b),(b,¢c),(c,0) },t = {((a,c), (b,b)}.

We say the domain of s is dom(s) = {a, b, c} and dom(t) = {a, b}.
Neither s nor t is a function:
s is multiply defined at a € X, and dom(t) is not all of X.

However, t € PTx, the set of partial functions on X.



Ordinary or “angelic” composition of binary relations is well-known.

For binary operations s, t € Rel x,

s;it={(x,y) e X x X |dze X :(x,2) €5s,(z,y) € t}.

This generalises composition of (partial) functions and shares some
of its nice features: composition of binary relations is associative.

So Rel x is a semigroup, having PT'x as subsemigroup.

And the full transformation semigroup 7'y is a subsemigroup of PT'x .



However, there is a less familiar way to compose binary relations:
“demonic composition”.

For s,t € Rel x, define

sxt={(z,y) €s;t|(x,2) € s= 2z € dom(t)}.

The terminology comes from computer science thought experiments
when thinking about “nondeterministic programs”:

angelic composition does whatever can be done, while demonic com-
position assumes a “demon” will mess things up if possible.



In our example with s, t as before:

S — {(a, CL), (CL, b), (b, C), (C, C)}a t = {((a'a C)7 (Ca b)}7

we have that
s;t = {(a,c),(b,b),(c,b)}
while

sxt={(b,b),(c,b)}.

But in general, s x t need not be a partial function.



Angelic composition is important when thinking about partial correct-
ness of “non-deterministic” programs, demonic for total correctness.

Demonic composition also reduces to composition of partial functions
when applied to them.

For binary relations with domain all of X, it agrees with usual rela-
tional composition too.

And it is still an associative operation (as is non-obvious).

So arguably, “demonic” composition is just as good a generalisation
of functional composition as is “angelic” composition.



How is (Rel x, *) differentto (Relx,; )?

To help see how, we define the operation of domain D on Rel x;

D(s) ={(z,x) | £ € dom(s)}.

So D(s) is the restriction of the identity function to dom(s).
So D is also well-defined on PT'x (but rather uninteresting for T'x).

In fact (PT'x, ;, D) is what’s called a left restriction semigroup.



Laws for left restriction semigroups are those for semigroups, plus

o D(z)x = z; D(x)D(y) = D(y)D(=)

e D(D(z)y) = D(D(z)D(y)) = D(x)D(y)

e xD(y) = D(xy)=.

Every left restriction semigroup embeds in one of the form PT'x (a
“Cayley theorem”).



However, (Relx, ;, D) is not a left restriction semigroup, since the
final law fails.

It does satisfy some weaker laws, but there is no Cayley theorem...
...unless infinitely many laws are used!
BUT... (Relx, *, D) is a left restriction semigroup!

So there is a Cayley theorem again (the same as for PT'y).



How does one go from (Relx, ;, D) to (Relx, *, D)?
In fact it can be shown that for all s,¢ € Rel x,

sxt = A(s; A(t)); s; t,

where A(s) = {(x,z) € X x X | « € dom(s)}, the so-called
antidomain of s.

Why does this work — is something more general going on?

Indeed there is!



Suppose S is a unary semigroup with unary operation D, and we
define

sot =stonlyif sD(t) = s.

For the case of Rely, this is saying that the image of s is contained
in dom(t) (regardless of which type of composition is used!).

If we do this for a left restriction semigroup S, Gould and Hollings
showed that we get a so-called inductive constellation (S, o, D)

(a special kind of partial algebra defined by a finite set of laws).



Conversely, every inductive constellation arises in this way from a left
restriction semigroup.

So given an inductive constellation (S, o, D), it's possible to “add in”
all the “missing” products and make a left restriction semigroup out of

If.

These constructions are mutually inverse, and indeed the two cate-
gories are isomorphic. (An “ESN Theorem” variant.)

But not only left restriction semigroups can give inductive constella-
tions in this way!

First, when do we get a constellation? And what is a constellation?!



Given a set P equipped with a partial binary operation o, we say
e € P is a right identity if for all a € P, if a o e exists then it equals a.

We say (P, o, D) is a constellation if, for all z,y, z € P:

e if x o (yoz) exists then so does (x o y) o z, and then the two are
equal;

o if x oy andy oz existthen z o (y o 2) exists;

e D(x) is the unique right identity in P such that D(x) o x = .



On a constellation, there is the natural quasiorder given by s < ¢ iff
s = D(s) ot (which is assumed to exist).

To be inductive, the constellation must have a notion of “co-restriction”
satisfying some further laws.

These are:



(O4) If e € D(P) and a € P, then there is a maximum x € P
with respect to the natural quasiorder < on P, such that z < a
and x o e exists, the co-restriction of a to e, denoted ale; and

(O5) for z,y € Pand e € D(P), if x o y exists then

D((z oy)le) = D(z[(D(yle)).

Then we may extend o to a total operation by setting
sOt:= (s|D(t))ot.
And (P, ®, D) is a left restriction semigroup!



Given a unary semigroup S equipped with unary D, whenis (S, 0, D)
at least a constellation?

(Recall s o t = st but only when sD(t) = s.)
Exactly when it is a “demigroup”. (Name to be confirmed!)

Laws for these are fairly simple.



° l)(x)Q

D(x);

e D(x)x

|
u&-

e D(zy) = D(zD(y)).

In this case, D(D(x)) = D(x) forall z € S.

And it follows that D(S) = {D(x) | ¢ € S} consists of idempotents.



Let’s call a demigroup (S, x, D) an inductive demigroup if (S, o, D)
Is an inductive constellation.

These may be characterised by just two further conditions.

The first is that for all e, f € D(S), the quasiorder given by e <,. f iff
e = ef is a partial order;

equivalently, foralle, f € D(S),e =e¢f, f = fe = e = f.



Aside from that, we require that
forall s € S, e € D(S), there exists (unique) s- e € D(S)

suchthats-e <, D(s),andforall ¢t € S,
tse =ts < t(s-e) =t,

that is, the set of left equalizers of se, s is generated as a left ideal by
(s-e) € D(S).

Then the co-restriction in the derived inductive constellation is

sle = (s-e)s.



It follows that if S is an inductive demigroup, D(S) is a meet-semilattice
under <,,

witheA f =e- fforalle, f € D(S).

And S can be turned into a left restriction semigroup (S, ®, D) by
setting

sOt=(s-D(t))stforall s,t € S.



Digression: one can give a purely equational characterisation of in-
ductive demigroups.

The demigroup S is inductive if and only fif,
forall s € Sand e € D(S), thereis s - e € S satisfying,

forall s,t € Sande, f € D(S):



e D(s-e) =s-e,

e se-e = D(se),

cef=1¢

o (t-e)t = (t-e)teand

o (sD(t))-(t-e) = (st) -e.

(Extend - to S by adding s -t :=s- D(t) forall s,t € S.)



Note that (Rel x, ;, D) is an inductive demigroup!

That is, (Rel x, o, D) is an inductive constellation.

So in theory we can rebuild it to be a left restriction semigroup instead.
The action of Rel x on D(Rel x ) isgivenby s-D(t) = A(s; A(t)); D(t)...
sosOt = A(s; A(t)); D(t);s;t = A(s; A(t)); s; t,

which is just the demonic composition s x t as defined before!



This “explains” why (Rel x, %, D) is a left restriction semigroup, and
in particular, why % is associative.

But are there any other interesting special cases?

What follows applies to any x-regular ring or indeed any x-regular
Baer x-semigroup,

but I'm here going to concentrate on matrices.



Consider the multiplicative semigroup of n xn matrices M, (R), where
R is the real or complex number field.

Although not every matrix has an inverse, it does always have a (nec-
essarily unique) Moore-Penrose inverse.

Given matrix M, this is an M’ such that
MMM=M MMM = M,
and both M M’, M'M are symmetric (M = M).

If M is non-singular then M’ = M~—1, and MM' = M'M = 1.

The Moore-Penrose inverse is important in statistics and beyond.



In general semigroup theory, we say = has an inverse y if

LY — L, Yry =Y.

(In a group, this is just the usual notion of inverse.)

So the Moore-Penrose inverse of a matrix is an inverse satisfying
some additional properties.

But in general a given matrix has many other semigroup inverses.

By contrast, an inverse semigroup is a semigroup in which each ele-
ment has a unique semigroup inverse.

They are “closer” to being groups than any other class of semigroups.



Inverse semigroups model algebras of 1:1 partial functions equipped
with inversion.

In an inverse semigroup, the idempotents form a subsemigroup which
is a semilattice (cf. the idempotents in My, (R)).

Every inverse semigroup is a left restriction semigroup
if we define D(s) = ss’, where s’ is the inverse of s.

And one can characterise those left restriction semigroups arising in
this way:

for all s there is s’ such that D(s) = ss’, D(s') = ¢’s.



As we’ve noted, M, (R) is not an inverse semigroup.

However, it is an inductive demigroup with D(S) = SS’, S € My, (R).
Define A(S) = I — D(.S); this behaves like antidomain in Rel x .
Thenfor S, T € Mp(R),SO®T = A(S x A(T))ST, like in Rel x.
Hence (M,(R),®, D) is a left restriction semigroup.

But it turns out that D(S) =S ® S’and D(S") = S'© S,

SO it iIs one arising from an inverse semigroup, in which inverse is
Moore-Penrose inverse.



So M, (R) is an inverse semigroup with respect to ® and Moore-
Penrose inverse!

S’ = S—1 when it exists, and “almost always” S ® T' = ST (e.g. if
T—1 exists).

But it's not easy to write down an explicit formula for S®T", even when
n = 2|

(It splits into cases, like the “formula” for Moore-Penrose inverse.)
There is much interest in the structure of these inverse semigroups...

but that’s another story.



