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Anton Kazimirovich Sushkevich (1889–1961)



Kharkov State University



The theory of operations as the general theory of groups
(1922)



Operations

An ‘operation’ on a set X is simply a transformation θ : X → X .

Sushkevich studied collections of ‘operations’ that are closed under
composition: (generalised) groups.

He most often studied ‘operations’ in the form of (generalised)
substitutions, usually written in ‘two-row’ notation, e.g.,

�
1 2 3
1 2 2

�
.

His goal was to develop an abstract theory of generalised
substitutions, by analogy with the abstract theory of ‘ordinary
substitutions’ (i.e., group theory).



Features of Sushkevich’s work

� Mostly studied associative generalised groups.

� Interplay of one- or two-sided cancellation with one- or
two-sided ‘invertibility’.

� Concrete representations are never very far away: substitutions
in earlier papers, then matrices as well in later ones.

� Proved the finite version of the generalised Cayley Theorem.



Sushkevich’s most famous contribution

A characterisation of a finite simple semigroup K as a union of
isomorphic groups Cκλ.

K = A1 ∪ A2 ∪ · · · ∪ Ar

= = = =

B1 = C11 ∪ C21 ∪ · · · ∪ Cr1

∪ ∪ ∪ ∪
B2 = C12 ∪ C22 ∪ · · · ∪ Cr2

∪ ∪ ∪ ∪
...

...
...

...
...

∪ ∪ ∪ ∪
Bs = C1s ∪ C2s ∪ · · · ∪ Crs



Theory of generalised groups (1937)



Sushkevich’s later work

� A little on substitutions on a countably infinite set.

� A little on semigroups of matrices.

� Linear algebra.

� History of mathematics.



Evgenii Sergeevich Lyapin (1914–2005)



St. Petersburg/Leningrad State University



St. Petersburg/Leningrad State University



The Siege of Leningrad



Lyapin and semigroups

� Apparently turned to semigroup-theoretic considerations in
1939.

� Influenced by Sushkevich and Maltsev at 1939 conference?

� Prepared doctoral dissertation on semigroups in 1945.

� Began to publish results from the thesis in 1947.

� Published the first major monograph on algebraic semigroups
in 1960.



Elements of an abstract theory of systems with one
operation (1945)



Leningrad State Pedagogical Institute
(now Herzen Russian State Pedagogical University)



Kernels of homomorphisms and normal subsystems

Let G be an associative system with identity 1G.

Kernel of the homomorphism ϕ : G → H is {X ∈ G : ϕX = 1ϕG}.

Call N ⊆ G a normal subsystem of G if

ANB ∈ N ⇔ AB ∈ N,

for any A,B ∈ G and any N ∈ N.

Theorem (Lyapin, 1947)

The kernel of a homomorphism is a normal subsystem, and every

normal subsystem is the kernel of some homomorphism.



Normal complexes

Let A be an associative system; K ⊆ A is a normal complex of A if

XKY ∈ K ⇔ XK
�
Y ∈ K

XK ∈ K ⇔ XK
� ∈ K

KY ∈ K ⇔ K
�
Y ∈ K

for any X ,Y ∈ A and any K ,K � ∈ K.

Any normal subsystem is a normal complex, as is any two-sided
ideal.



Normal complexes

Theorem (Lyapin, 1950a)

Let K be a subset of an associative system A.

1. ∃ homomorphism ϕ of A for which K is the preimage of an

element from ϕA iff K is a normal complex.

2. ∃ homomorphism ϕ of A for which K is the preimage of an

identity in ϕA iff K is a normal subsystem.

3. ∃ homomorphism ϕ of A for which K is the preimage of a zero

element in ϕA iff K is an ideal.



‘Simple’ associative systems

Lyapin termed an associative system simple if it contained no
proper non-trivial normal subsystems.

Theorem (Lyapin, 1950b)

An associative system contains no proper normal subsystems if and

only if it contains a zero element, and every element has a power

equal to zero.

An associative system with an identity, but which does not form a

group, contains no proper, non-trivial normal subsystems if and

only if it contains a zero element, and every non-identity element

has a power equal to zero.

Get more interesting results from the study of ‘semisimple’
associative systems: those with no proper normal subsystems
besides ideals or singletons.



Densely embedded ideals

Let A be an associative system. A (two-sided) ideal I of A is said
to be densely embedded in A if the following two conditions are
satisfied:

1. amongst all homomorphisms of A, only the isomorphisms
induce isomorphisms on I;

2. any associative system A�, in which A is properly contained,
and of which I is an ideal, has a homomorphism which is not
an isomorphism, but which induces an isomorphism on I.



Densely embedded ideals in semigroups of one-one partial
transformations

Let Ω be a set. The collection of all one-one partial
transformations on Ω is denoted by IΩ; IΩ forms a semigroup
under the composition

domαβ = (imα ∩ domβ)α−1

and x(αβ) = (xα)β, for any x ∈ domαβ.

IΩ has a subsemigroup BΩ, consisting of the empty
transformation and all transformations with singleton domains.

In fact, BΩ is a densely embedded ideal of IΩ.



Densely embedded ideals in semigroups of one-one partial
transformations

Abstracting certain properties of BΩ, we say that an associative
system A belongs to class Σ1 if

1. A has a zero element 0;

2. for every A ∈ A, there exists a pair of idempotents E , J ∈ A

such that EA = AJ = A;

3. for every pair of non-zero idempotents E , J ∈ A, there exists a
non-zero element A ∈ A such that EA = AJ = A;

4. the product of any two distinct idempotents in A is equal to 0.

BΩ clearly belongs to class Σ1; any associative system belonging
to Σ1 is isomorphic to some BΩ.



Densely embedded ideals in semigroups of one-one partial
transformations

Theorem (Lyapin, 1953)

An associative system A is isomorphic to a system of all one-one

partial transformations of some set if and only if it contains a

densely embedded ideal belonging to the class Σ1.

(If an associative system A is isomorphic to some IΩ, then its
densely embedded ideal is of course isomorphic to BΩ.)



Full transformations

An associative system A is said to belong to class Σ2 if, for all
X ,Y ∈ A, XY = X (A is a left zero semigroup).

Theorem (Lyapin, 1953, 1955)

An associative system A is isomorphic to a system of all

self-mappings of some set if and only if it contains a densely

embedded ideal belonging to the class Σ2.



Lazar Matveevich Gluskin (1922–1985)



Gluskin and semigroups of transformations

Ω — set; C — circle; V — vector space; F — field.

Semigroup Transformations
W (Ω) all partial transformations of Ω
V (Ω) all 1-1 partial transformations of Ω
S(Ω) all full transformations of Ω
B(Ω) all 1-1 full transformations of Ω
C (Ω) all conformal transformations of C

mP(F ,Ω) all endomorphisms of V over F
S
�(F ,Ω) all semi-linear transformations of V over F



Gluskin and densely embedded ideals

Theorem (Gluskin, 1961)

If A is a semigroup without equi-acting elements, then there exists

a semigroup S which contains A as a densely embedded ideal.

(a, a� are equi-acting (or like) if ax = a
�
x and xa = xa

�, for all
other elements x .)

(One choice for S is a subsemigroup of the translational hull
Ψ(A)× Φ(A).)

Theorem (Gluskin, 1961)

If A is a densely embedded ideal of a semigroup S, then any

automorphism of A may be extended uniquely to an automorphism

of S.



Gluskin and densely embedded ideals

� Used densely embedded ideals to establish conditions for
isomorphism of two abstract semigroups containing such
ideals.

� Used one-sided versions of densely embedded ideals (l-dense
ideals) to obtain necessary and sufficient conditions for
isomorphism to semigroup of left translations.

� Used generalised densely embedded ideals (d-ideals) to tackle
the case of arbitrary partial transformations.



Densely embedded ideals in semigroups of matrices

Let F be a non-commutative field. Denote by G
r
n(F ) the collection

of all n × n matrices over F with rank ≤ r . Gn(F ) is the collection
of all n × n matrices over F .

G
1
n (F ) is a densely embedded ideal of Gn(F ).

Theorem (Gluskin, 1958)

A semigroup S is isomorphic to some Gn(F ) if and only if S

contains a densely embedded ideal which is isomorphic to G
1
n (F ).

G
1
n (F ) is completely simple, so study of general matrix semigroups

is reduced to that of matrix semigroups of a better-known class.

Leads also to conditions for G r
n(F ) and G

s
m(H) to be isomorphic

(namely that n = m, r = s and F ∼= H).


