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Discrete Log

Choose a large prime p and a residue n coprime to p − 1.
Encode data using integers in Zp.
Encrypt data using the function x 7→ xn mod p.
Decrypt using the function x 7→ xm mod p where nm ≡ 1
mod (p − 1).
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Discrete Log

More algebraically, let S = Up−1 be the group of units of
the ring Zp−1 and X = Up the group of units of Zp.
For n ∈ S, x ∈ X define an action of S on X by n · x = xn.
By Fermat’s little theorem, if x is a unit modulo p, then
xp−1 ≡ 1 mod p and since n is coprime to p − 1 then
there is a positive integer m such that mn ≡ 1 mod p − 1
and hence xmn ≡ x mod p.
The usefulness of this system lies in the fact that we know
of no efficient, non-quantum algorithms, to solve this
particular discrete log problem - given x , xn and p,
calculate n.
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Discrete Log

Let S be a semigroup acting on a set X .
Call x ∈ X the plaintext, s ∈ S the key, and sx ∈ X the
ciphertext.
Given x 6= y we clearly require sx 6= sy - different
plaintexts give rise to different ciphertexts.
For each x ∈ X , s ∈ S we also require that there exists
s′ ∈ S with s′(sx) = x - each ‘encrypt’ key has a
corresponding ‘decrypt’ key.
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Discrete Log

Notice this means that if e = e2 then x = ex ...
... and for each s ∈ S there exists s′ ∈ S with
s′s ∈ Sx = {t ∈ S|tx = x} - the stabilizer of x in S.
If T is a subset of a semigroup S then we say that T is left
(resp. right) dense in S if for all s ∈ S there exists s′ ∈ S
such that s′s ∈ T (resp. ss′ ∈ T ). We say that T is dense
in S if it is both left and right dense in S.
So we require that the stabilizers be left dense in S.
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Discrete Log

When T = E the set of idempotents of S and we shall refer
to semigroups in which E is dense in S as E−dense or
E−inversive semigroups.
This concept was originally studied by Thierrin and
subsequently by a large number of authors.
Included in this class of semigroup are the classes of all
regular semigroups, inverse semigroups, groups,
eventually regular semigroups (that is to say every element
has a power that is regular), periodic semigroups (every
element is of finite order) and finite semigroups.
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Discrete Log

Example (Massey-Omura)
Let S be a commutative semigroup that acts on a set X and
suppose that for each s ∈ S there is an inverse element s−1

with the property that s−1sx = x for all x ∈ X . Suppose now
that Alice wants to send Bob a secure message x . She
chooses a secret random element of the semigroup s, say and
sends Bob the value sx . Bob also chooses a secret random
element of the semigroup t , say and sends Alice the value
t(sx). Alice then computes tx = (s−1s)(tx) = s−1(t(sx)) and
sends this to Bob. Bob then computes x = t−1(tx) as required.
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Discrete Log

Example (Massey-Omura)
We can in fact remove the need for S to be commutative if we
assume that X is an (S,S)−biact.
The beauty of such a scheme is that the values of s and t are
chosen at random, do not need to be exchanged in advance
and do not need to be re-used.
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Discrete Log

Example (Generalised ElGamal encryption)
In this system, we again assume that S is a (not necessarily
commutative) semigroup that acts on a set X and that a shared
secret key, s ∈ S, has previously (or concurrently) been
exchanged. Alice chooses a secret random value c ∈ S, while
Bob chooses a secret random value d ∈ S and publishes sd as
his public key. Alice then sends the pair of values ((c(sd))x , cs)
to Bob, who computes (cs)d = c(sd) and hence (c(sd))−1 and
so recovers x .

Again the values c and d do not have to be re-used.
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E−dense semigroups

Let S be an E−dense semigroup, let L(s) = {s′ ∈ S|s′s ∈ E}
and let

W (s) = {s′ ∈ S|s′ss′ = s′}

be the set of weak inverses of s.

Notice that if s′s ∈ E then s′ss′ ∈W (s) and (s′ss′)s = s′s.

Conversely, if s′ ∈W (s) then s′s ∈ E .
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E−dense semigroups

Let S be an E−dense semigroup with a band of idempotents E
and define a partial order on S by

s ≤ t if and only if either s = t or ∃e, f ∈ E with s = te = ft .

If A is a subset of S then define

Aω = {s ∈ S|a ≤ s for some a ∈ A}

and notice that A ⊆ Aω. It is also clear that (Aω)ω = Aω.

We say that A is closed in S if Aω = A.
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E−dense semigroups

A subset A of a semigroup S is called unitary in S if whenever
sa ∈ A or as ∈ A it necessarily follows that s ∈ A. If E is a
unitary subset of S then we shall refer to S as an E−unitary
semigroup.

Lemma (Reither (94))
Let S be an E−dense semigroup. Then S is E−unitary if and
only if E is a band and Eω = E.
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E−dense acts

Let S be an E−dense semigroup, let X be a non-empty set and
let S × X → X be a ‘partial’ action with the property that (st)x
exists if and only if tx and s(tx) exists and then (st)x = s(tx).

We say that the action is an E−dense action of S on X , and
refer to X as an E−dense S−act, if

1 the action is cancellative; meaning that whenever sx = sy
then x = y ;

2 the action is reflexive; that is to say, for each s ∈ S, if sx
exists then there exists s′ ∈W (s) such that s′(sx) exists.
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E−dense acts

The domain of an element s ∈ S is the set

Ds = DX
s = {x ∈ X |sx exists}.

We shall denote the domain of an element x ∈ X by

Dx = {s ∈ S|sx exists}.

Clearly x ∈ Ds if and only if s ∈ Dx . Notice also that it follows
from the definition that x ∈ Ds if and only if x ∈ Ds′s for some
s′ ∈W (s).
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E−dense acts

Example (Wagner-Preston action)

Let S be an E−dense semigroup with semilattice of
idempotents E and X a set on which S acts (on the left) - in
other words the action on X is a total action. For each s ∈ S
define

Ds = {x ∈ X |∃s′ ∈W (s), x = s′sx} = {s′sx |x ∈ X , s′ ∈W (s)}

and define an E−dense action of S on X by s ∗ x = sx for all
x ∈ Ds.
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E−dense acts

A element x of X is said to be effective if Dx 6= Ø.
An E−dense S−act X is effective if all its elements are
effective.
Let x ∈ X and define the S−orbit of x as

Sx = {sx |s ∈ Dx} ∪ {x}.

An E−dense S−act is transitive if for all x , y ∈ X , there
exists s ∈ S with y = sx .
Notice that this is equivalent to X being locally cyclic in the
sense that for all x , y ∈ X there exists z ∈ X , s, t ∈ Dz with
x = sz, y = tz.
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Transitive acts

Lemma
An E−dense S−act is effective and transitive if and only if it
has only one S−orbit.

Notice that Sx = Sy if and only if y ∈ Sx and so the orbits
partition X .

The transitive acts are precisely the indecomposable E−dense
acts.



Background E−dense acts Applications to cryptography

Transitive acts

Suppose that S is an E−dense semigroup and that H is a
subsemigroup of S. If for all h ∈ H,W (h) ∩ H 6= Ø then we will
refer to H as an E−dense subsemigroup of S.

For example, if E is a band then E is an E−dense
subsemigroup of S.

Proposition
Let S be an E−dense semigroup with semilattice of
idempotents E and let H be an E−dense subsemigroup of S.
Then H is closed in S if and only if H is unitary in S.
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Transitive acts

Let T ⊆ S be sets and suppose that ρ is an equivalence on T .
Then we say that ρ is a partial equivalence on S with domain T .

If now T is an E−dense subsemigroup of an E−dense
semigroup S and if ρ is left compatible with the multiplication on
S then ρ is called a left partial congruence on S and the set
T/ρ of ρ−classes will be denoted by S/ρ.
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Transitive acts

Theorem
Let H be a closed E−dense subsemigroup of an E−dense
semigroup S and suppose that E is a semilattice. Define

πH = {(s, t) ∈ S × S|∃s′ ∈W (s), s′t ∈ H}.

Then πH is a left partial congruence on S and the domain of πH
is the set DH = {s ∈ S|∃s′ ∈W (s), s′s ∈ H}.
The (partial) equivalence classes are the sets (sH)ω for s ∈ DH .

The sets (sH)ω, for s ∈ DH , are called the left ω−cosets of H in
S.

The set of all left ω−cosets is denoted by S/H.
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Transitive acts

Theorem
If H is a closed E−dense subsemigroup of an E−dense
semigroup S with semilattice of idempotents E then S/H is a
transitive E−dense S−act with action given by s · X = (sX )ω
whenever X , sX ∈ S/H.

Theorem
Let S be an E−dense semigroup with semilattice of
idempotents E, let X be an effective, transitive E−dense
S−act, let x ∈ X and let H = Sx . Then X is isomorphic to S/H.
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Locally Free acts

In analogy with group theory, and following Funk (2010), we
shall say that an E−dense S−act X is locally free if for all
x ∈ X ,Sx = (Ex )ω.

Theorem
Let S be an E−dense semigroup with semilattice of
idempotents E and let X be an E−dense S−act. Then X is
locally free if and only if for all x ∈ X , s, t ∈ Dx , whenever
sx = tx there exists e ∈ Sx such that se = te.
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Graded acts

Let S be an E−dense semigroup, let e ∈ E and let [e] denote
the order ideal generated by e. This is the set

[e] = {s ∈ S|s ≤ e} = {s ∈ E |s = es = se} = eE .

Let X be an E−dense S−act. Following Steinberg (2001) we
say that the action is graded if there exists a function p : X → E
such that for all e ∈ E ,De = p−1([e]), and refer to p as the
grading.
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Graded acts

Proposition
Let S be an E−dense semigroup with semilattice of
idempotents E, and X a graded E−dense S−act with grading
p : X → E. Then X is locally free if and only if for all
x ∈ X ,Sx = p(x)ω.

Conversely, if X is an E−dense S−act with the property that for
all x ∈ X there exists ex ∈ E with Sx = exω, then X is locally
free and graded with grading p : X → E given by p(x) = ex .



Background E−dense acts Applications to cryptography

Locally free, transitive and graded

Theorem
Let S be an E−dense semigroup with a semilattice of
idempotents E. Then X is a locally free, transitive, graded
E−dense S−act if and only if there exists e ∈ E such that
X ∼= Se ∼= Le.
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Graded acts

It is easy to check that E is a graded E−dense S−act with
action given by s ∗ e = ses′ for s′ ∈W (s), and with grading
1E : E → E , the identity function.

Theorem
Let S be an E−dense semigroup with semilattice of
idempotents E and X an E−dense S−act. The following are
equivalent.

1 X is a graded E−dense S−act,
2 there exists an E−dense S−map f : X → E,
3 X is an effective E−dense S−act and for all x ∈ X, Sx

contains a minimum idempotent.
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Graded acts

Corollary
If X is an E−dense S−act and E is finite then X is graded.
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Decrypt Keys

If K (s, x) = {t ∈ S|ts ∈ Sx}, the decrypt key space, then we
know that W (s) ⊆ L(s) ⊆ K (s, x).

Theorem
Let S be an E−dense semigroup, let (X , s) be an
S−cryptosystem and let x ∈ X. Then

1 K (s, x) is closed,
2 (SxW (s)Ssx )ω ⊆ K (s, x),
3 If E is a band then (SxW (s)Ssx )ω = K (s, x),
4 If S is an inverse semigroup then K (s, x) =

(
Sxs−1)ω.

5 If S is a group then K (s, x) = Sxs−1.
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Decrypt Keys

To minimise the size of K (x , s) we may wish to restrict attention
to locally fee acts where Sx = Eω and to E−unitary semigroups
where Eω = E (when E is a band).

Such semigroups will be referred to as E−unitary dense
semigroups.

In this case it turns out that

K (s, x) = {t |ts ∈ Sx} = {t |ts ∈ E} = L(s) = (W (s))ω.
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E−unitary dense semigroups

Let C be a small category with a set of objects, Obj C and a
disjoint collection of sets, Mor(u, v) of morphisms, for each pair
of objects u, v ∈ Obj C.

The identity morphism on u is denoted by 0u and composition
of morphisms is denoted by p + q.

For each object u ∈ Obj C the set Mor(u,u) is a monoid under
composition and is called the local monoid of C at u.

C is locally idempotent if each local monoid Mor(u,u) is a
band, and C is strongly connected if for every u, v ∈ Obj C,
Mor(u, v) 6= Ø.
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E−unitary dense semigroups

Let G be a group. An action of the group G on a category C, is
given by a group action on Obj C and Mor C such that

1 if p ∈ Mor(u, v) then gp ∈ Mor(gu,gv),
2 g(p + q) = gp + gq for all g ∈ G,p,q ∈ Mor C, (whenever

both sides are defined),
3 g0u = 0gu for all g ∈ G,u ∈ Obj C.

The action is said to be transitive if for all objects u, v ∈ Obj C
there exists g ∈ G,gu = v , and free if the action on the objects
if a free action (i.e. Su = {1} for all u ∈ Obj C).



Background E−dense acts Applications to cryptography

E−unitary dense semigroups

Now suppose that C is a strongly connected, locally idempotent
category and that the group G acts transitively and freely on C.
Let u ∈ Obj C and let

Cu = {(p,g)|g ∈ G,p ∈ Mor(u,gu)}.

Then Cu is a monoid with multiplication defined by

(p,g)(q,h) = (p + gq,gh).
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E−unitary dense semigroups

Theorem (Almeida, Pin, Weil 1992)
Let S be a monoid with band of idempotents E. Then S is
E−unitary dense if and only if there exists a strongly
connected, locally idempotent category C and a group G that
acts transitively and freely on C and S is isomorphic to Cu for
some (any) u ∈ Obj C.
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E−unitary dense semigroups

Let Obj C = G, a group, and for u, v ∈ Obj C define
Mor(u, v) = {(u,g, v)|g ∈ G, v = gu}.

This is called the derived category of the group G. The
underlying graph is often called the left Cayley graph of G.

The induced action of G on C is given by
g(u, s, v) = (gu,gsg−1,gv).

Then Cu is an E−unitary dense monoid and Cu ∼= C1 ∼= G.
Notice that in this case every morphism in C is an isomorphism
and so C is a groupoid.
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E−unitary dense semigroups
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E−unitary dense semigroups

Let S be finite (or at least E is finite) and E a semilattice so that
every E−dense act is graded and so X is a locally free
E−dense S−act if and only if X ∼=

⋃̇
Sei for some idempotents

ei , where the action is that given by the Wagner-Preston action.

If X is a locally free total act then as every idempotent acts on
ei , we can deduce that for each i ,ei = f , the minimum
idempotent in S.

Conversely if f is the minimum idempotent in S then Sf ∼= S/fω
is a locally free transitive cancellative total S−act.
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E−unitary dense semigroups

Theorem
Let S be a finite E−dense semigroup with semilattice of
idempotents E, let s ∈ S and let f be the minimum idempotent
in S. Then (X , s) is a locally free S−cryptosystem if and only if
X ∼=

⋃̇
Sf . In addition, if S is E−unitary then for each

x ∈ X , |K (s, x)| = |(W (s))ω|.

In the above example where S = G ∪̇ eG, the minimum
idempotent is e and X = eG = Ge is a locally free cancellative
S−act and for each x ∈ X , |K (s, x)| = 2.
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Completely Regular semigroups

In the classic discrete log cipher, a group acts freely on a group
by exponentiation. We now briefly consider a group acting
freely on a semigroup by exponentiation. It is clear that the
semigroup needs to be periodic as every element will need to
have finite order.

We will in fact restrict our attention to completely regular
semigroups where every element lies in a subgroup of S.
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Completely Regular semigroups

Suppose now that S is a completely simple semigroup,
considered as a Rees matrix semigroupM[G; I,Λ; P] and
suppose also that G is finite, of order r so that gr = 1 for all
g ∈ G.

Define an action of Ur , the group of units in Zr , on S by
n · x = xn, so that if x = (i ,g, λ) then

n · x = (i , (gpλi)
n−1g, λ).

This action is clearly a free action and group actions are always
cancellative.
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Completely Regular semigroups

Suppose now that n is coprime to r and that mn ≡ 1 mod r .
Then

xmn = (i , (gpλi)
mn−1g, λ) = (i , (gpλi)

mnp−1
λi , λ) =

(i , (gpλi)p−1
λi , λ) = (i ,g, λ) = x .

Consequently if we know n, xn and P, then we can compute
xmn and so recover x .
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Completely Regular semigroups

Suppose now we know x , xn and G. Can we compute n? f we
also know P then we know pλi and so (gpλi)

n. Consequently,
the discrete log problem in this case is equivalent to that in the
classic discrete log problem.

So P has to be kept secret.
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Completely Regular semigroups

Computing n using trial multiplication attack would consists of
computing gmqm−1 for 1 ≤ m ≤ n and q ∈ G in order to find the
relevant pair (n,pi).

If gcd(m − 1, |G|) = 1 then there exists k such that
k(m − 1) ≡ 1 mod |G| and so for any q ∈ G,qk(m−1) = q.
Consequently

gnpn−1
i = gm

((
gn−mpn−1

i

)k
)m−1

and so there is no unique pair (n,pi) that can be computed by
simple trial multiplication attack alone.
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