Inverse semigroups and inductive groupoids

Victoria Gould York Semigroup 4th May 2010

The Ehresmann-Schein-Nambooripad Theorem

The category I of inverse semigroups and morphisms is isomorphic to the category G of inductive groupoids and inductive functors.

We have mutually inverse functors

Inverse semigroups

A semigroup S is inverse if for all $a \in S$ there exists a unique $a' \in S$ such that

a = aa'a and a' = a'aa'.

Inverse semigroups

A semigroup S is *inverse* if for all $a \in S$ there exists a unique $a' \in S$ such that

$$a = aa'a$$
 and $a' = a'aa'$.

Let S be inverse

Fact 1 Let $a \in S$; then $aa', a'a \in E(S) = \{e \in S : e = e^2\}$ and $a \mathcal{R} aa', a \mathcal{L} a'a$.

Fact 2 For all $e, f \in E(S)$, ef = fe so E(S) is a semilattice (commutative semigroup of idempotents), partially ordered by

$$e \le f \Leftrightarrow e = ef; \ gh = g \land h.$$

Fact 3 (ab)' = b'a'.

Fact 4 Wagner-Preston Representation There exists an embedding $\theta: S \to \mathcal{I}_S$. Specifically For any $s \in S$ we put $s\theta = \rho_s$ where $\rho_s \in \mathcal{I}_S$ is given by dom $\rho_s = Sss'$, $x\rho_s = xs$ for all $x \in \text{dom } \rho_s$.

Fact 5 The semigroup S is *partially ordered* by \leq where $a \leq b$ if and only if a = eb for some $e \in E(S)$.

In fact, the definition of \leq is not left biassed:

$$a \leq b \Leftrightarrow a = bf$$
 for some $f \in E(S) \Leftrightarrow a = aa'b \Leftrightarrow a = ba'a$.

Fact $6 \le$ is a *natural partial order* by which we mean $a \le b, c \le d \Rightarrow ac \le bd$

and \leq restricts to the usual partial order on E(S).

Fact 7 In \mathcal{I}_X ,

 $\alpha \leq \beta$ if and only if $\alpha \subseteq \beta$.

Proof

$$\alpha \leq \beta \Leftrightarrow \alpha = \alpha \alpha' \beta \Leftrightarrow \alpha \alpha^{-1} \beta \Leftrightarrow \alpha = I_{\operatorname{dom} \alpha} \beta \Leftrightarrow \alpha \subseteq \beta.$$

Fact 8 (a) An inverse semigroup S with E(S) = S is **precisely** a semilattice;

(b) An inverse semigroup S with |E(S)| = 1 is **precisely** a group.

Groupoids

A **groupoid** is a category G in which for every $p \in Mor G$ we have $p^{-1} \in Mor G$ with

$$pp^{-1} = I_{\mathbf{d}(p)}$$
 and $p^{-1}p = I_{\mathbf{r}(p)}$.

A one-object small groupoid is precisely a group.

Inverse semigroups \rightarrow Groupoids

Let S be an inverse semigroup. We construct a groupoid $\mathcal{G}(S)$ from S as follows:

$$\operatorname{Mor} \mathcal{G}(S) = S, \ \operatorname{Ob} \, \mathcal{G}(S) = E(S)$$

and for $a \in \operatorname{Mor} \mathcal{G}(S)$,

$$\mathbf{d}(a) = aa', \mathbf{r}(a) = a'a$$

and when $\mathbf{r}(a) = \mathbf{d}(b)$,

$$a \cdot b = ab.$$

It is then easy to check $\mathcal{G}(S)$ is a groupoid, the **trace groupoid of** S, with

$$I_{\mathbf{d}(a)} = aa', \ I_{\mathbf{r}(a)} = a'a \text{ and } a^{-1} = a'.$$

In a small category C we cease to distinguish between an object α and I_{α} , and we identify C with Mor C. We may write $C = (C, \cdot)$ as we are thinking of C as a set with a partial binary operation.

Some justification for $\mathcal{G}(S) = (S, \cdot)$ being a groupoid Suppose $\exists a \cdot b$. Then a'a = bb'. We have

$$\label{eq:d} \begin{split} \mathbf{d}(a \cdot b) &= \mathbf{d}(ab) = (ab)(ab)' = abb'a' = aa'aa' = \mathbf{d}(a) \\ \text{and similarly } \mathbf{r}(a \cdot b) = \mathbf{r}(b). \text{ So,} \end{split}$$

$$\exists (a \cdot b) \cdot c \Leftrightarrow \exists a \cdot (b \cdot c).$$

It is then easy to see we have a s. groupoid, with

$$I_{\mathbf{d}(a)} = aa', I_{\mathbf{r}(a)} = a'a, a^{-1} = a'.$$

$\mathbf{Groupoids} \rightarrow \mathbf{Inverse\ semigroups}$

Let $G = (G, \cdot)$ be a small groupoid. We construct an inverse semigroup S as follows:

 $S = G \cup \{0\}$; the binary operation in S is obtained from that in G by declaring all undefined products to be 0. Then S is an inverse semigroup with 0 such that $E(S) = E(G) \cup \{0\}$ and $a' = a^{-1}$ ($a \in G$) and 0' = 0.

$\mathbf{Groupoids} \rightarrow \mathbf{Inverse\ semigroups}$

Let $G = (G, \cdot)$ be a small groupoid. We construct an inverse semigroup S as follows:

 $S = G \cup \{0\}$; the binary operation in S is obtained from that in G by declaring all undefined products to be 0. Then S is an inverse semigroup with 0 such that $E(S) = E(G) \cup \{0\}$ and $a' = a^{-1}$ ($a \in G$) and 0' = 0.

Problem The semigroup S is *primitive*, that is, for $e, f \in E(S)$,

 $0 \neq e \leq f$ implies that e = f.

For, suppose that $0 \neq e = ef$. Then $e, f \in E(G)$ and $\exists e \cdot f$ in G, so that e = f.

Any primitive inverse semigroup is a 0-disjoint union of 0-simple primitive inverse semigroups, or **Brandt semigroups**.

Inductive Groupoids

Let $G = (G, \cdot)$ be a small groupoid with E(G) = E. Suppose that \leq is a partial order on G. Suppose also:

- (1) $x \leq y$ implies that $x^{-1} \leq y^{-1}$;
- (2) $x \le y, u \le v, \exists xu, \exists yv \text{ implies that } xu \le yv;$
- (3) if $a \in G$ and $e \in E$ with $e \leq \mathbf{d}(a)$, then there exists a unique **restriction** $(e|a) \in G$ with $\mathbf{d}(e|a) = e$ and $(e|a) \leq a$;
- (4) if $a \in G$ and $e \in E$ with $e \leq \mathbf{r}(a)$, then there exists a unique **co-restriction** $(a|e) \in G$ with $\mathbf{r}(a|e) = e$ and $(a|e) \leq a$.

Then $G = (G, \cdot, \leq)$ is called an **ordered groupoid**. If in addition

(5) E is a semilattice

then G is an *inductive groupoid*.

$\mathbf{Inverse\ semigroups} \rightarrow \mathbf{Inductive\ groupoids}$

Let S be an *inverse semigroup* with usual partial ordering \leq . Let $\mathcal{G}(S) = (S, \cdot)$ be the trace groupoid of S defined as above. Then $\mathcal{G}(S) = (S, \cdot, \leq)$ is an *inductive groupoid* with

$$(e|a) = ea, \ (a|e) = ae.$$

Proof Straightforward.

Inductive groupoids \rightarrow Inverse semigroups

Let $G = (G, \cdot, \leq)$ be an inductive groupoid. We define a *pseudoproduct* \otimes on G by the rule that

 $a\otimes b=(a|\mathbf{r}(a)\wedge \mathbf{d}(b))\cdot (\mathbf{r}(a)\wedge \mathbf{d}(b)|b).$

Then $\mathcal{S}(G) = (G, \otimes)$ is an inverse semigroup (having the same partial order as G).

Proof Tricky - difficulty is showing associativity of \otimes ; see Lawson *Inverse semigroups*, World Scientific (1998).

The category G

The **objects** of **G** are inductive groupoids. A **morphism** $\theta : G \to H$ of **G** is a functor such that for any $u, v \in G$, $u \leq v$ in *G* implies that $u\theta \leq v\theta$ in *H* and for any $e, f \in E(G)$, $(e \wedge f)\theta = e\theta \wedge f\theta$.

The Ehresmann-Schein-Nambooripad Theorem

The category \mathbf{I} of inverse semigroups and morphisms is isomorphic to the category \mathbf{G} of inductive groupoids and inductive functors.

For $\theta : S \to T$ in **I** and $F : G \to H$ in **G** put $\mathcal{G}(\theta) = \theta$ and $\mathcal{S}(F) = F$ (on the underlying sets).

We have mutually inverse functors $\mathcal{G} : \mathbf{I} \to \mathbf{G}$ and $\mathcal{S} : \mathbf{G} \to \mathbf{I}$.

