Min network of congruences on an inverse semigroup

Ying-Ying Feng

Foshan University, Guangdong, P. R. China

York Semigroup, November 13th 2019

This is joint work with Li-Min Wang, Lu Zhang, Hai-Yuan Huang and Zhi-Yong Zhou.

2 Congruence networks on inverse semigroups

Various classes of semigroups

- group $S \subseteq I, B \cap I = S, \cdots$
- regular semigroup $-(\forall a \in S)(\exists x \in S) axa = a$
- inverse semigroup every element of S has a unique inverse
 - S is regular, and its idempotents commute
- completely regular semigroup

— every element of S lies in a subgroup of S

- band every element of *S* is idempotent
- semilattice commutative idempotent semigroup
- Clifford semigroup S is regular and the idempotents of S are central

- a semilattice of groups

- *E*-unitary semigroup $-(\forall e \in E_S)(\forall s \in S) es \in E_S \Rightarrow s \in E_S$

- congruence
 - a compatible equivalence relation

 $(\forall s,t,s',t'\in \mathcal{S}) \ [(s,t)\in\rho \ \text{and} \ (s',t')\in\rho] \Rightarrow (ss',tt')\in\rho$

- both a left and a right congruence

 $(\forall s,t,a\in S)\;(s,t)\in
ho\Rightarrow(as,at)\in
ho$, $(sa,ta)\in
ho$

- semigroup S $\xrightarrow{\text{congruence } \rho}$ quotient semigroup S/ ρ
- significance
 - obtain information on internal structure and homomorphic images
 - 'All the important structure theorems for inverse semigroups are based on various special congruences.'¹

¹Petrich, M.: *Inverse semigroups*. Wiley, New York (1984)

- significance
 - obtain information on internal structure and homomorphic images
 - 'All the important structure theorems for inverse semigroups are based on various special congruences.'²

✓ S is an E-unitary inverse semigroup
$$\iff \sigma \cap \mathcal{L} = \varepsilon$$

 $S = \mathcal{M}(G, \mathcal{X}, \mathcal{Y}) = \{(A, g) \in \mathcal{Y} \times G \mid g^{-1}A \in \mathcal{Y}\}$
 $\mathcal{Y} = S/\mathcal{L}, \ G = S/\sigma$

 $\checkmark S \text{ is a Clifford semigroup } \iff \mu = \eta$ $S = [Y; G_{\alpha}, \phi_{\alpha,\beta}]$ $Y = S/\eta = S/\mathcal{J}$

²Petrich, M.: Inverse semigroups. Wiley, New York (1984)

kernel-trace approach

Let ρ be a congruence on S,

$$\operatorname{tr} \rho = \rho|_{E_S}, \qquad \ker \rho = \{ x \in S \, | \, (\exists e \in E_S) \, x \, \rho \, e \}.$$

Result

Let ρ be a congruence on S. Then

$$a \ \rho \ b \iff a^{-1}a \ \mathrm{tr} \ \rho \ b^{-1}b, \ ab^{-1} \in \ker \rho.$$

 $\bullet~\mathcal{T}$, $\mathcal{K}\text{-relation}$

Let $\rho, \theta \in \mathcal{C}(S)$, $\rho \mathcal{T} \theta \iff \operatorname{tr} \rho = \operatorname{tr} \theta, \qquad \rho \mathcal{K} \theta \iff \ker \rho = \ker \theta.$ • kernel-trace approach

$$\operatorname{tr} \rho = \rho|_{E_S}, \qquad \ker \rho = \{ x \in S \, | \, (\exists e \in E_S) \, x \, \rho \, e \}.$$

• \mathcal{T} , \mathcal{K} -relation

 $\rho \, \mathcal{T} \, \theta \iff \operatorname{tr} \rho = \operatorname{tr} \theta, \qquad \rho \, \mathcal{K} \, \theta \iff \ker \rho = \ker \theta.$

Result

For any
$$\rho \in \mathcal{C}(S)$$
, $\rho \mathcal{T} = [\rho_t, \rho^T]$, $\rho \mathcal{K} = [\rho_k, \rho^K]$, where
 $a \rho_t b \iff ae = be \text{ for some } e \in E_S, e \rho a^{-1} a \rho b^{-1} b$,
 $a \rho^T b \iff a^{-1} ea \rho b^{-1} eb \text{ for all } e \in E_S$,
 $\rho_k = (\rho \cap \mathcal{L})^*$,
 $a \rho^K b \iff [xay \in \ker \rho \iff xby \in \ker \rho \text{ for all } x, y \in S^1]$.

- kernel-trace approach
- \mathcal{T} , \mathcal{K} -relation
- congruence networks
 - single out various classes of semigroups of particular interest
 - structure

Congruence network

 ρ_t

 $(\rho_k)_t$

min network of ρ

 ρ_k

 $(\rho_t)_k$

congruence network of ρ

[1982, Petrich - Reilly]

min network of ω

Proposition

The following conditions on an inverse semigroup S are equivalent.

- (1) S is an $E\omega$ -Clifford semigroup;
- (2) $\sigma \cap \mathcal{L}$ is a congruence;
- (3) $\sigma \cap \mathcal{R}$ is a congruence;
- (4) $\sigma \cap \mathcal{L} = \sigma \cap \mathcal{R};$

(5)
$$\sigma \cap \mathcal{L} = \sigma \cap \mu$$
;

(6) there exists an idempotent

separating E-unitary congruence on S;

(7) $\pi \subseteq \mu$;

(8)
$$\pi_t = \varepsilon$$
;

(9) $e\sigma$ is a Clifford semigroup for every $e \in E(S)$;

(10) *S* satisfies the implication $xy = x \Rightarrow y \in E(S) \zeta;$

(11)
$$E(S)\omega \subseteq E(S)\zeta;$$

(12) $\pi \cap \mathcal{F} = \varepsilon$.

Proposition

The following statements concerning a congruence ρ on an inverse semigroup S are equivalent. (1) ρ is an $E\omega$ -Clifford congruence; (2) $\pi_{\rho} \subseteq \rho^{T}$, where π_{ρ} is the least E-unitary congruence on S containing ρ ; (3) tr $\pi_{\rho} = \text{tr } \rho$.

 Wang, L. M., Feng, Y. Y.: Eω-Clifford congruences and Eω-E-reflexive congruences on an inverse semigroup. Semigroup Forum 82, 354–366 (2011)

Feng, Y. Y., Wang, L. M., Zhang, L., Huang, H. Y.: A new approach to a network of congruences on an inverse semigroup. Semigroup Forum 99, 465–480 (2019)

Definition

On S we define inductively the following two sequences of congruences:

$$\begin{aligned} \alpha_0 &= \omega = \beta_0;\\ \alpha_n &= (\beta_{n-1})_t, \quad \beta_n = (\alpha_{n-1})_k,\\ \text{for } n &\ge 1. \end{aligned}$$

We call the aggregate $\{\alpha_n, \beta_n\}_{n=0}^{\infty}$,
together with the inclusion relation for
congruences, the min network of ω on S .

min network of $\boldsymbol{\omega}$

min network of ω

ker α_n -is-Clifford semigroups and β_n -is-over-*E*-unitary semigroups

Proposition

For $n \ge 1$, the following conditions on an inverse semigroup S are equivalent: (1) *S* is a ker α_n -is-Clifford semigroup; (2) $[a \alpha_n b \text{ and } a^{-1}a \leq b^{-1}b] \implies$ $aa^{-1} < bb^{-1}$; (3) $\alpha_n \cap \mathcal{L} = \alpha_n \cap \mathcal{R};$ (4) $\alpha_n \cap \mathcal{L}$ is a congruence; (5) $\alpha_n \cap \mathcal{R}$ is a congruence; (6) $\alpha_n \cap \mathcal{L} = \alpha_n \cap \mu$; (7) there exists an idempotent separating β_{n-1} -is-over-E-unitary congruence on S; (8) $\beta_{n+1} \subseteq \mu$; (9) $(\beta_{n+1})_t = \varepsilon$; (10) $\beta_{n+1} \cap \mathcal{F} = \varepsilon$; (11) ker $\alpha_n \subseteq E_s \zeta$; (12) S satisfies the implication xy = x, $x^{-1}x \alpha_n y y^{-1} \Rightarrow y \in E_s \zeta.$

Proposition

For $n \ge 1$, the following conditions on an inverse semigroup S are equivalent: (1) *S* is a β_n -is-over-*E*-unitary semigroup; (2) $\beta_n \cap \mathcal{F}$ is a congruence; (3) $\beta_n \cap C$ is a congruence; (4) $\beta_n \cap \mathcal{F} = \beta_n \cap \tau$; (5) $\beta_n \cap \mathcal{C} = \beta_n \cap \tau$; (6) there exists an idempotent pure ker α_{n-1} -is-Clifford congruence on S; (7) $\alpha_{n+1} \subseteq \tau$; (8) $\alpha_{n+1} \cap \mathcal{L} = \varepsilon$; (9) $(\alpha_{n+1})_k = \varepsilon;$ (10) tr $\beta_n \subset$ tr $\tau;$ (11) S satisfies the implication xy = x, $x^{-1}x \alpha_{n+1} yy^{-1} \Rightarrow y \in E_s$.

ker α_n -is-Clifford congruences and β_n -is-over-*E*-unitary congruences

Proposition

For $n \ge 1$, the following statements concerning a congruence ρ on an inverse semigroup S are equivalent: (1) ρ is a ker α_n -is-Clifford

congruence;

(2) $(\beta_{n+1})_{\rho} \subseteq \rho^{T}$, where $(\beta_{n+1})_{\rho}$ is the least β_{n-1} -is-over-Eunitary congruence on S containing ρ ; (3) tr $(\beta_{n+1})_{\rho} = \text{tr } \rho$.

Theorem

 α_{n+2} is the least ker α_n -Clifford congruence on S.

Proposition

For $n \ge 1$, the following statements concerning a congruence ρ on an inverse semigroup S are equivalent: (1) ρ is a β_n -is-over-E-unitary congruence; (2) $(\alpha_{n+1})_{\rho} \subseteq \rho^K$, where $(\alpha_{n+1})_{\rho}$ is the least ker α_{n-1} -is-Clifford congruence on S containing ρ ; (3) ker $(\alpha_{n+1})_{\rho} = \ker \rho$.

Theorem

 β_{n+2} is the least β_n -is-over-E-unitary congruence on S.

Quasivarieties

Definition (Petrich - Reilly, 1982)

An inverse semigroup S might satisfy one of the following implications:

 $\begin{array}{ll} (A_0) \ x = y; & (A_1) \ x^{-1}x = y^{-1}y; \\ (A_2) \ y \in E\zeta; \\ (A_n) \ xy = x, \ x \ \beta_{n-3} \ y \Rightarrow y \in E\zeta, \\ n \ge 3; \\ (B_0) \ x = y; & (B_1) \ y \in E; \\ (B_n) \ xy = x, \ x \ \beta_{n-2} \ y \Rightarrow y \in E, \\ n \ge 2. \end{array}$

Theorem (Petrich - Reilly, 1982)

 (1) α_n is the minimum congruence ρ on S such that S/ρ satisfies (A_n);
 (2) β_n is the minimum congruence ρ on S such that S/ρ satisfies (B_n).

Definition

Theorem

 (1) α_n is the minimum congruence ρ on S such that S/ρ satisfies (A'_n);
 (2) β_n is the minimum congruence ρ on S such that S/ρ satisfies (B'_n).

Theorem

Let n be a non-negative integer. The following statements are valid in any inverse semigroup S.

- Every η-class of S/β_{2n+3} is a β_{2n}-is-over-E-unitary semigroup;
- (2) every η -class of $S/\alpha_{2(n+2)}$ is a ker α_{2n+1} -is-Clifford semigroup;
- (3) $(E_{S/\alpha_{2n+3}})\omega$ is a ker α_{2n} -is-Clifford semigroup;
- (4) $(E_{S/\beta_{2(n+2)}})\omega$ is a β_{2n+1} -is-over-Eunitary semigroup.

Theorem

- (1) α_{n+2} is the least ker α_n -Clifford congruence on S;
- (2) β_{n+2} is the least β_n-is-over-E-unitary congruence on S.

Some future work

- Pattern suitable for others ?
 - In general, NO!
 - Completely regular semigroups ?
- Max network of ε ?

min network of ω on regular semigroups

max network of ε

Bibliography

Billhardt, B.:

On inverse semigroups the closure of whose set of idempotents is a Clifford semigroup.

Semigroup Forum 44, 320-331 (1992)

Pastijn, F., Petrich, M.:

The congruence lattice of a regular semigroup.

J. Pure Appl. Algebra 53, 93-123 (1988)

Petrich, M.: Inverse Semigroups.

Wiley, New York (1984)

Petrich, M .:

Congruences on Inverse Semigroups.

J. Algebra 55, 231-356 (1978)

Petrich, M., Reilly, N. R.:

A network of congruences on an inverse semigroup.

Trans. Amer. Math. Soc. 270, 309-325 (1982)

Thank you !

