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Abstract. We show that the free weakly E-ample monoid on a
set X is a full submonoid of the free inverse monoid FIM(X) on
X. Consequently, it is ample, and so coincides with both the free
weakly ample and the free ample monoid FAM(X) on X. We
introduce the notion of a semidirect product Y ∗ T of a monoid T
acting doubly on a semilattice Y with identity. We argue that the
free monoid X∗ acts doubly on the semilattice Y of idempotents
of FIM(X) and that FAM(X) is embedded in Y ∗ X∗. Finally
we show that every weakly E-ample monoid has a proper ample
cover.

1. Introduction

A monoid M is left ample1 if it is isomorphic to a submonoid of a
symmetric inverse monoid IX which is closed under the unary opera-
tion α 7→ α+, where α+ = αα−1 = Idomα, that is, the identity map on
the domain domα of α. Right ample monoids are defined dually and
we say that a monoid M is ample if it is both left and right ample. In
Section 2 we recall that (left, right) ample monoids have abstract char-
acterisations obtained from the generalisations R∗ and L∗ of Green’s
relations R and L respectively, and form quasi-varieties of algebras.
Clearly inverse monoids are ample, but the latter class is much wider:
ample monoids are not in general regular.

Since the classes of left ample and of ample monoids are non-trivial
quasi-varieties [17], we know that the free left ample monoid and the
free ample monoid exist on any non-empty set X. The natural question
is then, what do these free algebras look like? The description of the
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free left ample monoid on X was provided by the first author in [8]2

and reformulated in [16]: it is a submonoid of the free inverse monoid
FIM(X) on X. What then, of the structure of the free ample monoid
FAM(X) on X? Perhaps surprisingly, results for ample monoids are
harder to obtain than those in the one-sided case. For example, there is
no embedding theorem for ample monoids into inverse monoids anal-
ogous to those that exist for left and right ample monoids (see, for
example, Theorem 4.5 of [23]). The main result of this article shows
that FAM(X) embeds as a full submonoid of FIM(X).

The classes of (left, right) ample monoids are contained in the classes
of weakly (left, right) ample monoids and these are themselves con-
tained in the yet wider classes of weakly (left, right) E-ample monoids.
Whereas (left, right) ample monoids and weakly (left, right) ample
monoids form quasi-varieties, weakly (left, right) E-ample monoids
form varieties of algebras [17].

Weakly left E-ample monoids exist under a variety of names, and
have recently attracted considerable attention. We believe their first
occurrence to be as reducts of the embeddable function systems of
Schweizer and Sklar [33], which were developed through a series of pa-
pers in the 1960s. Function systems were revisited by Schein in [31],
correcting a misconception of [33]. A survey of this material, in the set-
ting of relation algebras, was given by Schein in [32] and more recently
by Jackson and Stokes [22]. Weakly left E-ample semigroups (under
another name) appear for the first time as a class in their own right
in the work of Trokhimenko [35]. They are the type SL2 γ-semigroups
of the papers of Batbedat [1, 2] published in the early 1980s. In this
decade they have arisen in the work of Jackson and Stokes [21] in
the guise of (left) twisted C-semigroups and in that of Manes [25] as
guarded semigroups, motivated by consideration of closure operators
and categories, respectively. The work of Manes has a forerunner in
the restriction categories of Cockett and Lack [4], who were influenced
by considerations of theoretical computer science. Indeed the third
author and Hollings refer in [18] to weakly E-ample semigroups as
two-sided restriction semigroups.

A monoid M is weakly left E-ample if it is isomorphic to a submonoid
of some partial transformation monoid PT X , closed under the unary
operation α 7→ α+ = Idomα; note that we no longer claim that α+ =
αα−1, since α−1 may not exist. Here ‘E’ is both a generic symbol,
and refers to the specific set {α+ | α ∈ M} of local identities of PT X
contained in M . If E = E(M) then M is said to be weakly left ample.

2In fact, [8] actually considers the left/right dual case for semigroups.
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Weakly right (E)-ample monoids are defined dually, and a monoid is
weakly (E)-ample if it is both weakly left and weakly right (E)-ample
(with respect to the same set of idempotents). As in the ample case,
weakly (left, right) (E)-ample monoids have axiomatic descriptions,

this time involving the further generalisations R̃ and L̃ (R̃E and L̃E)
of R and L respectively, and form quasi-varieties (indeed in the ‘E’
case, varieties), so that free algebras exist [17]. It is known [14] that
the free weakly left ample monoid coincides with the free left ample
monoid; we show here that the corresponding result holds in the two
sided case. Indeed the rather stronger statement is true, namely that
the free weakly E-ample monoid is FAM(X).

The free inverse monoid is proper and thus by O’Carroll [28] em-
beds into a semidirect product of a group with a semilattice. Since
FAM(X) embeds into FIM(X) the same must be true for FAM(X).
We show this directly, via an investigation of what we call double ac-
tions of monoids on semilattices. By saying that a monoid T , acting
by morphisms on the left and right of a semilattice Y with identity,
acts doubly, we mean that the two actions are related via the compat-
ibility conditions (specified in Section 6). In such a case we show that
the semidirect product Y ∗ T contains as a full subsemigroup a weakly
E-ample monoid Y ∗m T , where here E ∼= Y , which we call the monoid
part of Y ∗T . Further, Y ∗mT is weakly ample if T is unipotent (that is,
the only idempotent of T is the identity) and ample if T is cancellative.
We argue that X∗ acts doubly on the semilattice Y of FAM(X) and
further, FAM(X) is isomorphic to Y ∗m X∗.

Finally, we consider proper covers for weakly E-ample monoids. On
any weakly E-ample monoid M we denote by σE the least monoid
congruence such that E is contained in a congruence class; if E =
E(M), then σ = σE(M) is the least unipotent monoid congruence on

M . A cover of M is a weakly E-ample monoid M̂ together with a
surjective E-separating morphism (that is, separating the idempotents

of E), which respects R̃E and L̃E. We say that M is proper if R̃E∩σE =

ι = L̃E ∩ σE, We show that if T is a monoid acting doubly on a
semilattice Y with identity, then Y ∗m T is proper, and moreover any
weakly E-ample monoid has a cover of the form E ∗m X∗. It follows
that any weakly E-ample monoid has a proper ample cover.

The structure of the paper is as follows. After Section 2 in which we
give further details concerning ample and weakly (E-)ample monoids,
we recall the structure of the free inverse monoid in Section 3. We
are then in a position to show in Section 4 that the free weakly E-
ample monoid on a set X embeds fully into FIM(X), and consequently
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coincides with the free weakly ample monoid and the free ample monoid
FAM(X). Our embedding allows us to determine, in Section 5, the
relations R∗,L∗ and D∗ = R∗ ∨ L∗ on FAM(X) and to argue that
FAM(X) is residually finite.

In Section 6 we change tack and consider double actions of monoids
on semilattices with identity. We show how to obtain such a double
action from any weakly E-ample monoid with any given set of gener-
ators; this is followed by a brief Section 7 using these techniques to
construct proper ample covers of weakly E-ample monoids. In Sec-
tion 8 we revisit FAM(X) and give the promised description in terms
of semidirect products. We finish with a discussion of FA covers in
Section 9; these are the analogue for weakly E-ample monoids of the
notion of an F-inverse cover of an inverse monoid.

2. Weakly E-ample and ample monoids

In this section we remind the reader of the alternative approaches
towards, and some salient facts concerning, the classes of monoids un-
der consideration here. Further details and references may be found in
[17].

We presented left ample monoids in the introduction via their rep-
resentations as submonoids of symmetric inverse monoids. They have
alternative descriptions via the relation R∗ and as a quasi-variety of
algebras of type (2, 1, 0), which we now outline.

The relation R∗ is defined on a monoid M by the rule that for any
a, b ∈M , aR∗ b if and only if for all x, y ∈M ,

xa = ya if and only if xb = yb.

It is easy to see that R∗ is a left congruence, R ⊆ R∗ and R = R∗ if
M is regular. In general, however, the inclusion can be strict.

Let M be a monoid such that E(M) is a semilattice. From the com-
mutativity of idempotents it is clear that any R∗-class contains at most
one idempotent. Where it exists we denote the (unique) idempotent in
the R∗-class of a by a+. If every R∗-class contains an idempotent, + is
then a unary operation on M and we may regard M as an algebra of
type (2, 1, 0); as such, morphisms must preserve the unary operation
of + (and hence the relation R∗). We may refer to such morphisms
as ‘(2, 1, 0)-morphisms’ if there is danger of ambiguity. Of course, any
semigroup isomorphism must preserve all the additional operations.
Similarly, if X is a set of generators of a left ample monoid as an al-
gebra with the augmented signature, then we say that X is a set of
(2, 1, 0)-generators and write M = 〈X〉(2,1,0) for emphasis. We remark
here that if M is inverse, then a+ = aa−1 for all a ∈M .
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Proposition 2.1. A monoid M is left ample if and only if E(M) is
a semilattice, every R∗-class of M contains an idempotent and the left
ample identity (AL) holds:

ae = (ae)+a for all a ∈M, e ∈ E(M) (AL).

As algebras of type (2, 1, 0), left ample monoids form a quasi-variety.

The relation L∗ is the dual of R∗ and may be used to give an ab-
stract characterisation of right ample monoids. We denote the unique
idempotent in the L∗-class of a, where it exists, by a∗. Observe that if
M is inverse, then a∗ = a−1a for all a ∈ M . The right ample identity
(AR) states that ea = a(ea)∗ for all a ∈ M, e ∈ E(M). Right ample
monoids form a quasi-variety of algebras of type (2, 1, 0) where now the
unary operation is a 7→ a∗. A monoid is ample if it is both left and
right ample; ample monoids therefore form a quasi-variety of algebras
of type (2, 1, 1, 0). We remark that as any inverse monoid is certainly
ample, any submonoid of an inverse monoid that is closed under + and
∗ is ample. On the other hand it is undecidable whether a finite ample
monoid embeds as a (2, 1, 1, 0)-algebra into an inverse monoid [19].

We now turn our attention to the ‘weak’ case. Let E be a set of
idempotents contained in a monoid M ; at this stage we do not insist

that E = E(M). The relation R̃E on M is defined by the rule that for

any a, b ∈M , a R̃E b if and only if for all e ∈ E,

ea = a if and only if eb = b,

that is, a and b have the same set of left identities from E. It is

easy to see that for any monoid M , we have R ⊆ R∗ ⊆ R̃E, with
both inclusions equalities if M is regular and E = E(M); in general,

however, these inclusions can be strict. The relation R̃E is certainly
an equivalence; however, unlike the case for R and R∗, it need not be
left compatible, not even when E = E(M).

Suppose now that E forms a commutative subsemigroup of M ; we
will say simply that E is a semilattice. It is clear that in this case any

R̃E-class contains at most one idempotent from E. If every R̃E-class
contains an idempotent of E, we again have a unary operation a 7→ a+,

where a+ is now the (unique) idempotent of E in the R̃E-class of a.
We may then consider M as an algebra of type (2, 1, 0). In the case
that E = E(M), we drop the ‘E’ from notation and terminology, for

example, we write R̃E(M) more simply as R̃.

Proposition 2.2. Let M be a monoid and E ⊆ E(M). Then M is

weakly left E-ample if and only if E is a semilattice, every R̃E-class of
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M contains an idempotent of E, the relation R̃E is a left congruence,
and the left ample identity (AL) holds:

ae = (ae)+a for all a ∈M and e ∈ E (AL).

As algebras of type (2, 1, 0), weakly left E-ample monoids form a vari-
ety, and weakly left ample monoids a quasi-variety.

It is worth making the remark that if M is a weakly left E-ample
monoid, then E = {a+ : a ∈ M}. Moreover, the identity of M must
lie in E, for we must have that 1+ = 1.

The relations L̃ and L̃E on a monoid M are the duals of R̃ and
R̃E; weakly right (E-)ample monoids may be defined in terms of these
relations. In each case, we denote the dual of the operation + by ∗. As
stated in the introduction, a monoid is weakly (E-)ample if it is both
left and right weakly (E-)ample where E = {a+ : a ∈ M} = {a∗ : a ∈
M}. The classes of ample, weakly ample and weakly E-ample monoids
form quasi-varieties (in the weakly E-ample case, varieties) of algebras
of type (2, 1, 1, 0).

We now give two technical results which will be useful in the subse-
quent sections. The first follows immediately from the fact that in a

weakly left (right) E-ample monoid, R̃E (L̃E) is a left (right) congru-
ence; the relation 6 appearing in its statement is the natural partial
order on E.

Lemma 2.3. Let M be a weakly E-ample monoid. Then for any a, b ∈
M and e ∈ E:

(i) (ab)+ = (ab+)+ and (ab)∗ = (a∗b)∗;
(ii) (ea)+ = ea+ and (ae)∗ = a∗e;
(iii) (ab)+ 6 a+ and (ab)∗ 6 b∗.

The following result is proven inductively, using the ample identities
together with Lemma 2.3.

Lemma 2.4. Let M be a weakly E-ample monoid, a an element of M
and e1, . . . , en ∈ E. Then

e1 . . . ena = a(e1a)∗ . . . (ena)∗ and ae1 . . . en = (ae1)
+ . . . (aen)+a.

Consequently,

(e1 . . . ena)∗ = (e1a)∗ . . . (ena)∗ and (ae1 . . . en)+ = (ae1)
+ . . . (aen)+.

Finally in this section we present a short discussion of the relation
σE on a monoid M , where E ⊆ E(M) is a subsemilattice of M . The
relation σE is defined by the rule that for any a, b ∈M ,

a σE b if and only if ea = eb
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for some e ∈ E. It is clear that σE is a right congruence on M . If
E = E(M), we write σ for σE(M). From [6, 14, 17, 20, 23] we have the
following.

Proposition 2.5. Let M be a monoid and E ⊆ E(M) a subsemilattice:
(i) if M is weakly left E-ample, then σE is the least congruence on

M such that e σE f for all e, f ∈ E;
(ii) if M is weakly left ample, then σ is the least unipotent congruence

on M ;
(iii) if M is left ample, then σ is the least right cancellative congru-

ence on M ;
(iv) if M is ample, then σ is the least cancellative congruence on M ;
(v) if M is inverse, then σ is the least group congruence on M .

Considerations of duality now tell us that if M is (weakly) ample,
then a σ b if and only if af = bf for some f ∈ E(M), and if M is
weakly E-ample, then a σE b if and only if af = bf for some f ∈ E.

It is well known that an inverse monoid is E-unitary if and only if
it is proper, where here proper means that R ∩ σ = ι or equivalently,
L ∩ σ = ι. Analogously, we say that a left ample monoid is proper if

R∗ ∩ σ = ι, a weakly left ample monoid is proper if R̃ ∩ σ = ι and a

weakly left E-ample monoid is proper if R̃E ∩ σE = ι. Since R∗ = R̃
for a left ample monoid (and so certainly for an inverse monoid), there
is little danger of ambiguity. In the two sided case (where in general
we do not have the natural duality guaranteed by the existence of the
involution −1 in the inverse case), we say that an ample monoid is
proper if R∗ ∩ σ = L∗ ∩ σ = ι, with the obvious alterations in the
weakly (E-)ample cases. Proper left ample monoids are E-unitary, but
the converse is not true [6].

3. Free algebras and the free inverse monoid on X

Let C be a class of algebras with a common signature and let X be
a set; if C has no nullary operations, we insist that X be non-empty.
Recall that A ∈ C is free on X if there exists an embedding ι : X → A
such that for any B ∈ C and any map κ : X → B, there is a unique
morphism θ : A → B such that ιθ = κ. It is well known and easy to
see that if C is closed under taking of subalgebras, then the uniqueness
of θ is equivalent to Xι being a generating set for A. Classic results of
universal algebra [3, 26] tell us that if C is any non-trivial quasi-variety,
then a free algebra on X exists, and is unique up to isomorphism. One
of the first questions one therefore asks about a quasi-variety (or indeed
a variety) of algebras is: what is the structure of the free algebra on
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a given set? Since every algebra in a quasi-variety is a homomorphic
image of a free algebra, this question is of some importance.

For the purposes of this paper we first recall the construction of the
free inverse monoid FIM(X). Our account follows that in [20], the
reader is also referred to the original texts of [29] and [27]. For clarity
and completeness we first outline the construction of the free monoid
and the free group on a set X.

First, the free monoid. Let X be a set. By a word w over X we mean
a finite string w = x1x2 . . . xn, where xi ∈ X, 1 6 i 6 n and n > 0; the
length of w is then n. We allow as a word the empty string, denoted
here by 1, which has length 0. The free monoid FM(X) on X is then
given by

FM(X) = {w | w is a word over X}
with binary operation of juxtaposition, and injection ι : X → FM(X)
which associates x ∈ X with the corrresponding word of length 1 in
FM(X). It is standard to denote FM(X) by X∗ and identify X with
Xι.

Let Y be a set and let v, w ∈ Y ∗. We say that v is a prefix of w if
w = vw′ for some w′ ∈ Y ∗. The relation 6 is then defined on Y ∗ by
the rule that for any v, w ∈ Y ∗,

w 6 v if and only if v is a prefix of w.

Clearly, 6 is a partial order on Y ∗ that is compatible with multipli-
cation on the left, and 1 is the greatest element of Y ∗. For future
convenience we define the notation w↓ for w = x1 . . . xn ∈ Y ∗ by

w↓ = {1, x1, x1x2, . . . , x1 . . . xn},
that is, w↓ is the set of prefixes of w.

Armed with the description of free monoids, we can progress to free
groups. Again, let X be a set, and now let X−1 = {x−1 : x ∈ X}
be a set in bijective correspondence with X such that X ∩ X−1 = ∅.
Consider the free monoid (X ∪ X−1)∗. A word w ∈ (X ∪ X−1)∗ is
reduced if w contains no sub-word of the form xx−1 or x−1x. Words
w, v ∈ (X ∪ X−1)∗ are equivalent if v can be obtained from w by a
process of insertion and deletion of factors of the form xx−1 and x−1x,
where x ∈ X. It is a fact that any word w ∈ (X ∪X−1)∗ is equivalent
to a unique reduced word wr. The free group FG(X) on X is then
given by

FG(X) = {w ∈ (X ∪X−1)∗ | w is reduced}
with binary operation · where

w · v = (wv)r.
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Note that we may consider X∗ as a submonoid of FG(X) and identify
elements of X with positive reduced words of length one. It is useful to
note that for w = xε11 . . . x

εn
n ∈ FG(X), where xi ∈ X and εi ∈ {1,−1},

we have w−1 = x−εnn . . . x−ε11 .
The free group is, in turn, used in the construction of the free inverse

monoid, which we now describe. For any w ∈ FG(X) we have, of
course, that w is a word in the free monoid (X ∪ X−1)∗, and we can
therefore refer to prefixes of w. We say that a subset A of the free
group FG(X) is prefix closed if w ∈ A implies that every prefix of w is
in A. Let Z be the semilattice of finite subsets of FG(X) under union.
For g ∈ FG(X) and A ∈ Z we put

g · A = {g · h | h ∈ A};
clearly FG(X) then acts on Z by automorphisms. For future purposes
we remark that if w ∈ FG(X), then

w−1 · w↓ = (w−1)↓.

Let Y denote those elements of Z that are prefix closed, so that for
any A ∈ Z we have that A ∈ Y if and only if

w ∈ A⇒ w↓ ⊆ A.

We note that if A ∈ Y , then 1 ∈ A. The free inverse monoid FIM(X)
on X is then given by

FIM(X) = {(A, g) | A ∈ Y , g ∈ A}
with multiplication

(A, g)(B, h) = (A ∪ g ·B, g · h},
and injection ι : X → FIM(X) given by

xι = ({1, x}, x).

The identity of FIM(X) is ({1}, 1), and the semilattice of idempotents
is

E(FIM(X)) = {(A, 1) : A ∈ Y}.
For any (A, g) ∈ FIM(X) we have that

(A, g)−1 = (g−1 · A, g−1)

whence

(A, g)+ = (A, g)(A, g)−1 = (A, 1)

and

(A, g)∗ = (A, g)−1(A, g) = (g−1 · A, 1).

It is worth recording the following, which may be found in [24, 20].
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Lemma 3.1. For any (A, g), (B, h) ∈ FIM(X):
(i) (A, g)R (B, h) if and only if A = B;
(ii) (A, g)L (B, h) if and only if g−1 · A = h−1 ·B;
(iii) (A, g)D (B, h) if and only if A = a ·B for some a ∈ A;
(iv) (A, g)σ (B, h) if and only if g = h.
Consequently, FIM(X) is proper.

We now define a subset of FIM(X), to which we give the temporary
notation A(X), by

A(X) = {(A, g) ∈ FIM(X) | g ∈ X∗}.

Clearly, A(X) is a submonoid of FIM(X) that is closed under both the
unary operations + and ∗. Since ample monoids form a quasi-variety
of algebras of type (2, 1, 1, 0), we immediately deduce the following.

Corollary 3.2. The monoid A(X) is ample.

Certainly A(X) contains Xι; we will see in the next section that
A(X) is the free weakly E-ample (and hence also the free ample, and
the free weakly ample) monoid on X.

4. The free weakly E-ample monoid on X

We begin this section by showing that A(X) is generated by Xι.

Lemma 4.1. For any set X,

A(X) = 〈Xι〉(2,1,1,0) =
〈{

({1, x}, x) | x ∈ X
}〉

(2,1,1,0)
.

Proof. For convenience in this proof we drop the subscript indicating
the signature. We remark first that since ({1}, 1) is the image of the
nullary operation, ({1}, 1) ∈ 〈Xι〉. Let (A, g) ∈ A(X), where g 6= 1.
Since A is prefix closed and g ∈ A, it is certainly true that

(A, g) = (A, 1)(g↓, g).

We show that (A, 1) and (g↓, g) ∈ 〈Xι〉, whence the result follows. It
is clear that if g = x1 . . . xn where xi ∈ X, then

(g↓, g) = ({1, x1}, x1) . . . ({1, xn}, xn) = x1ι . . . xnι ∈ 〈Xι〉,

so we must concentrate on proving that (A, 1) ∈ Xι for an arbitrary
A ∈ Y .

Since A is prefix closed, we have that

A = g↓1 ∪ . . . ∪ g↓m
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for some g1, . . . , gm ∈ A; from the description of 6 given in Section 3,
we may take g1, . . . , gm to be the elements of A that are minimal with
respect to the partial ordering 6 on (X ∪X−1)∗. Now

(A, 1) = (g↓1, 1) . . . (g↓m, 1),

so that our task is to show that (g↓, 1) ∈ 〈Xι〉, for any non-identity
reduced word g ∈ (X ∪X−1)∗. We proceed by induction on the length
of such a g. If g has length 1, then g = x or g = x−1, for some x ∈ X.
If g = x, then (g↓, 1) = ({1, x}, 1) ∈ Xι. On the other hand, if g = x−1,
then (g↓, 1) = ({1, x}, x)∗ ∈ 〈Xι〉.

Suppose that the length of g is k > 1, so that g = xh or g = x−1h
for some x ∈ X and reduced h ∈ (X ∪ X−1)∗ with length k − 1, and
make the inductive assumption that (h↓, 1) ∈ 〈Xι〉. If g = xh, then

(g↓, x) = ({1, x}, x)(h↓, 1) ∈ 〈Xι〉,
so that

(g↓, 1) = (g↓, x)+ ∈ 〈Xι〉.
On the other hand, if g = x−1h, then(

(h↓, 1)({1, x}, x)
)∗

= (h↓ ∪ {x}, x)∗

= (x−1 · (h↓ ∪ {x}), 1)
= (g↓, 1),

so that (g↓, 1) ∈ 〈Xι〉 as required. �

Suppose now that X is a set and θ : X → M is a map from X to a
weakly E-ample monoid M with E ⊆ E(M) a semilattice containing
1. Certainly θ lifts to a (2, 0)-morphism from X∗ to M , which for
convenience we also denote by θ. We now define θ′ : FG(X) → E
inductively as follows:

1θ′ = 1

and for any x ∈ X, g, h ∈ FG(X) with xg, x−1h reduced,

(xg)θ′ = (xθ gθ′)+ and (x−1h)θ′ = (hθ′xθ)∗.

In the next result, bear in mind that hk denotes juxtaposition in the
free monoid (X ∪X−1)∗.

Lemma 4.2. Let X,M, θ and θ′ be defined as above. Then for any
g, h, k ∈ FG(X) and w ∈ X∗:

(i) if g = hk with hk reduced as written, then gθ′ 6 hθ′ in E;
(ii) if g = wk with wk reduced as written, then gθ′ = (wθ kθ′)+;
(iii) if g = w−1k with w−1k reduced as written, then gθ′ = (kθ′wθ)∗;
(iv) wθ′ = (wθ)+ and w−1θ′ = (wθ)∗;
(v) (w · g)θ′wθ = (wθ gθ′)+wθ = wθgθ′;
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(vi) wθ(w−1 · g)θ′ = wθ(gθ′wθ)∗ = gθ′wθ.

Proof. (i) Notice that if e, f ∈ E with e 6 f , then for any a ∈ M , we
have that ae = a(fe) = (af)e, so that by Lemma 2.3, (ae)+ 6 (af)+.
Dually, (ea)∗ 6 (fa)∗.

Let g, h, k ∈ FG(X) be such that g = hk. We show by induction on
the length of h that gθ′ 6 hθ′. If h = 1, then

gθ′ 6 1 = 1θ′ = hθ′.

Suppose now that the length of h is n > 1 and the result is true for all
h’s of length n− 1. We have that h = xw or h = x−1w for some x ∈ X
and w ∈ FG(X), where w has length n− 1; our inductive assumption
gives that (wk)θ′ 6 wθ′.

In the first case g = xwk and

gθ′ = (xwk)θ′ = (xθ (wk)θ′)+ 6 (xθ wθ′)+ = hθ′.

On the other hand, if h = x−1w, then

gθ′ = (x−1wk)θ′ = ((wk)θ′ xθ)∗ 6 (wθ′ xθ)∗ = hθ′.

The result follows by induction.
(ii) Suppose that g = wk. We proceed by induction on the length

of w, the result being clear if w = 1. Suppose now that w = xv
where x ∈ X and v ∈ X∗, and make the inductive assumption that
(vk)θ′ = (vθ kθ′)+. Using Lemma 2.3 we have that

gθ′ = (xvk)θ′ = (xθ (vk)θ′)+ = (xθvθ kθ′)+ = ((xv)θ kθ′)+ = (wθ kθ′)+.

The result follows.
The argument for (iii) is dual to that for (ii), and (iv) follows imme-

diately from (ii) and (iii).
(v) If wg is reduced, then w · g = wg and using (ii) and (AL),

(w · g)θ′wθ = (wg)θ′wθ = (wθ gθ′)+wθ = wθgθ′

as required.
Suppose now that w = x1 . . . xn and let g = x−1

n . . . x−1
j h where

h 6= x−1
j−1k for k ∈ FG(X). Observe that since g is reduced, we also have

that h does not begin with xj. Put u = x1 . . . xj−1 and v = xj . . . xn,
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so that w = uv. Then

(w · g)θ′wθ = (uh)θ′wθ
= (uθ hθ′)+ uθ vθ using (ii)
= uθ hθ′ vθ since M is weakly E-ample
= uθ vθ(hθ′ vθ)∗ again, since M is weakly E-ample
= wθ(hθ′ vθ)∗

= wθ(v−1h)θ′ using (iii)
= wθ gθ′

= (wθ gθ′)+wθ.

(vi) The argument is dual to that for (v).
�

Lemma 4.3. Let X,M, θ and θ′ be defined as above. Then the mapping
θ : A(X)→M given by

({g1, . . . , gn}, w)θ = g1θ
′ . . . gnθ

′wθ

is a (2, 1, 1, 0)-morphism such that ιθ = θ.

Proof. Since θ′ : FG(X)→ E and E is a semilattice, certainly θ is well
defined. For any x ∈ X we have

xιθ = ({1, x}, x)θ = 1θ′ xθ′ xθ = (xθ)+xθ = xθ,

using the fact that 1θ′ = 1 and the fact that xθ′ = (xθ)+ by definition
of θ′. Clearly θ also preserves the identity.

To see that θ is a semigroup morphism, let (A,w), (B, v) ∈ A(X)
where

A = {g1, . . . , gm}, B = {h1, . . . , hn} ⊆ FG(X).

Then, making use of the fact that E is a semilattice,

((A,w)(B, v))θ = (A ∪ w ·B,wv)θ
= ({g1, . . . , gm, w · h1, . . . , w · hn}, wv)θ
= g1θ

′ . . . gmθ
′ (w · h1)θ

′ . . . (w · hn)θ′(wv)θ
= g1θ

′ . . . gmθ
′ (w · h1)θ

′ . . . (w · hn)θ′wθ vθ
= g1θ

′ . . . gmθ
′ (wθ h1θ

′)+ . . . (wθ hnθ
′)+wθ vθ by Lemma 4.2 (v)

= g1θ
′ . . . gmθ

′wθ h1θ
′ . . . hnθ

′ vθ by Lemma 2.4
= (A,w)θ(B, v)θ

as required.
From remarks preceding Lemma 3.1 we have

(A,w)+θ = (A, 1)θ = g1θ
′ . . . gmθ

′ 1θ = g1θ
′ . . . gmθ

′.

But w ∈ A ∩ X∗; without loss of generality we can assume w = gm.
From Lemma 4.2 (iv), gmθ

′ = (gmθ)
+, and so

(A,w)+θ = g1θ
′ . . . gmθ

′(wθ)+ = (g1θ
′ . . . gmθ

′wθ)+ =
(
(A,w)θ

)+
,
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so that θ preserves +.
It remains to show that θ preserves ∗. With (A,w) as above,

(A,w)∗θ = (w−1 · A, 1)θ
= ({w−1 · g1, . . . , w

−1 · gm}, 1)θ
= (w−1 · g1)θ

′ . . . (w−1 · gm)θ′

= (w−1)θ′(w−1 · g1)θ
′ . . . (w−1 · gm)θ′ since 1 ∈ A

= (wθ)∗(w−1 · g1)θ
′ . . . (w−1 · gm)θ′ by Lemma 4.2 (iv)

= (wθ(w−1 · g1)θ
′ . . . (w−1 · gm)θ′)∗ by Lemma 2.3

= (g1θ
′ . . . gmθ

′wθ)∗ by Lemma 4.2 (vi)
=

(
(A,w)θ

)∗
.

Thus θ : A(X)→M is a (2, 1, 1, 0)-morphism as claimed. �

From Lemmas 4.1 and 4.3 we can now deduce our main result.

Theorem 4.4. For any set X the submonoid of FIM(X) given by

A(X) = {(A, g) ∈ FIM(X) | g ∈ X∗}

is the free weakly E-ample monoid on X. Moreover, since A(X) is
ample, A(X) is both the free weakly ample monoid and the free ample
monoid FAM(X) on X.

We remark that we have concentrated for convenience on monoids.
Deleting all references to a multiplicative identity in the definition of
ample and weakly (E-)ample monoids, we obtain the quasi-varieties of
of ample and weakly (E-)ample semigroups. A cursory examination of
the proof of Theorem 4.4 shows us that the free (weakly (E-)) ample
semigroup on X is FAM(X) \ {1}.

5. Properties of FAM(X)

Theorem 4.4 identifies FAM(X) as the submonoidA(X) of FIM(X)
introduced at the end of Section 3. We remark that FAM(X) is a
full submonoid of FIM(X), that is, it contains all the idempotents of
FIM(X).

From the fact that FAM(X) is a (2, 1, 1, 0)-subalgebra of FIM(X)
we deduce that for any (A, g), (B, h) ∈ FAM(X),

(A, g)R∗ (B, h) in FAM(X) ⇔ (A, g)+ = (B, h)+

⇔ (A, g)R (B, h) in FIM(X);

the dual comment holding for L∗. The following result is now immedi-
ate from Lemma 3.1.
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Proposition 5.1. Let X be a non-empty set. Then for any elements
(A, g), (B, h) ∈ FAM(X):

(i) (A, g)R∗ (B, h) if and only if A = B;
(ii) (A, g)L∗ (B, h) if and only if g−1 · A = h−1 ·B;
(iii) (A, g)σ (B, h) if and only if g = h.

Corollary 5.2. The monoid FAM(X) is proper.

Proof. From Proposition 5.1 we see that R∗ ∩ σ = ι = L∗ ∩ σ. �

To show that the relation D∗ is the restriction to FAM(X) of the
relation D in FIM(X) requires a little more work.

First, we observe that R∗ ◦ L∗ 6= L∗ ◦ R∗ in FAM(X). To see this,
take x ∈ X and notice that from Proposition 5.1,

({1, x}, 1}R∗ ({1, x}, x)L∗ ({1, x−1}, 1).

If ({1, x}, 1)L∗ (B, h)R∗ ({1, x−1}, 1), then from (B, h)R∗ ({1, x−1}, 1)
we would be forced to have B = {1, x−1} and h = 1, but it is not true
that ({1, x}, 1)L∗ ({1, x−1}, 1).

From Proposition 5.1 it is immediate that for any (A, g), (B, h) ∈
FAM(X),

(A, g)R∗ ◦ L∗(B, h) if and only if k−1 · A = h−1 ·B
for some k ∈ A ∩X∗. If this holds, then B = h · k−1 · A = w · A with
w = h · k−1. Notice that as A = w−1 ·B and 1 ∈ B, we must have that
w−1 ∈ A. We now build on this observation.

Proposition 5.3. For any (A, g), (B, h) ∈ FAM(X),

(A, g)D∗ (B, h) if and only if B = w · A for some w ∈ FG(X).

Proof. Suppose that (A, g)D∗ (B, h) so that, as D∗ = R∗∨L∗, we have
(A, g) (R∗ ◦L∗)m(B, h) for some m ∈ N [20]. We show by induction on
m that there exists w ∈ FG(X) with B = w · A.

The case m = 1 is immediate from remarks preceding this proposi-
tion. For m > 1 we have that

(A, g) (R∗ ◦ L∗)m−1 (C, k)R∗ ◦ L∗ (B, h)

for some (C, k) ∈ FAM(X). We make the inductive assumption that
there exists an element w1 ∈ FG(X) with C = w1 · A. On the other
hand, from the case for m = 1 we know that there exists w2 ∈ FG(X)
with B = w2 · C. Clearly then B = (w2 · w1) · A.

Conversely, suppose that B = w · A for some w ∈ FG(X). Observe
that, as 1 ∈ B we must have that w−1 ∈ A, and as 1 ∈ A, we must
have w ∈ B. From the construction of FG(X), we can write

w = u1 · v−1
1 · u2 · v−1

2 · . . . · un · v−1
n = u1v

−1
1 u2v

−1
2 . . . unv

−1
n
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for some u1, v1, . . . , un, vn ∈ X∗. Again we proceed by induction.
If n = 1 then as both A and B are prefix closed, we have that u1 ∈ B

and v1 ∈ A, so that from Proposition 5.1 we have that

(A, g)R∗ (A, v1)L∗ (B, u1)R∗ (B, h),

so that (A, g)D∗ (B, h) as required.
Now let n > 2 and make the inductive assumption that our claim is

true for n−1. Let k = u1v
−1
1 . . . un−1v

−1
n−1. From w = kunv

−1
n we obtain

that vn, vnu
−1
n ∈ A, since w−1 ∈ A and A is prefix closed. This tells us

that (A, vnu
−1
n ) ∈ FIM(X) and as FIM(X) is certainly closed under

∗, we have that unv
−1
n · A ∈ Y and hence (unv

−1
n · A, un) ∈ FAM(X).

As B = k · (unv−1
n ·A) our induction hypothesis, together with the case

for n = 1, gives

(A, g)D∗ (unv
−1
n · A, un)D∗ (B, h)

as required. �

An ample monoidM is residually finite (in the class of ample monoids)
if for any a, b ∈M with a 6= b, there is a finite ample monoid N and a
(2, 1, 1, 0)-morphism ϕ : M → N such that aϕ 6= bϕ.

Proposition 5.4. The free ample monoid FAM(X) is residually fi-
nite.

Proof. Let (A, g), (B, h) ∈ FAM(X) with (A, g) 6= (B, h). From Theo-
rem 3.6 of [27] we know that FIM(X) is residually finite as an (inverse)
monoid. Hence there exists a finite inverse monoid N and a monoid
morphism θ : FIM(X) → N such that (A, g)θ 6= (B, h)θ. Since mor-
phisms between inverse semigroups preserve inverses we certainly have
that for any (C, k) ∈ FIM(X),

(C, k)+θ = ((C, k)(C, k)−1)θ = (C, k)θ(C, k)θ−1 = (C, k)θ+

and dually, θ preserves ∗. Hence ϕ = θ|FAM(X) : FAM(X) → N is
a (2, 1, 1, 0)-morphism and so Im ϕ is a (2, 1, 1, 0)-subalgebra of N .
It follows that Im ϕ is a finite ample monoid and clearly (A, g)ϕ 6=
(B, h)ϕ. �

We remark that consequently, FAM(X) is certainly residually finite
in both the class of weakly ample and the class of weakly E-ample
monoids.

An algebra A is hopfian if the identity congruence is the only con-
gruence ρ on A such that A/ρ ∼= A. As remarked in [7], a result of
Evans [5] that says that in any variety the finitely generated residually
finite algebras are hopfian, is also valid for quasi-varieties.
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Corollary 5.5. If X is a finite set, then the monoid FAM(X) is
hopfian.

6. Semidirect products and weakly E-ample monoids

After considering semidirect products of semilattices by monoids, we
introduce the notion of a double action of a monoid on a semilattice
with identity. We then show how to construct proper weakly E-ample
monoids from semidirect products of monoids acting doubly on a semi-
lattice with identity. In the following sections we demonstrate that
FAM(X) may be constructed in this manner and show how our tech-
nique provides a transparent method of obtaining covers for (weakly
(E-))ample monoids.

Let T be a monoid, acting on the left of a semilattice Y by mor-
phisms. That is, there is a map from T ×Y to Y , given by (t, y) 7→ t ·y,
such that for all s, t ∈ T and for all e, f ∈ Y :

1 · e = e, (st) · e = s · (t · e) and s · (ef) = (s · e)(s · f).

The semidirect product Y ∗T is the set Y ×T under a binary operation
given by

(e, s)(f, t) = (e(s · f), st).

The proof of the following lemma is straightforward, and follows in
a similar way to that of [13, Proposition 3.1] in the unipotent case.

Lemma 6.1. Let S = Y ∗ T be the semidirect product of a monoid T
with a semilattice Y .

Then:
(i) S is a proper weakly left Y -ample semigroup, where

Y = {(e, 1) | e ∈ Y } ∼= Y ;

(iii) for all (e, t) ∈ S, (e, t)+ = (e, 1);
(iv) for all (e, s), (f, t) ∈ S,

(e, s) R̃Y (f, t) if and only if e = f ;

(v) for all (e, s), (f, t) ∈ S,

(e, s)σY (f, t) if and only if s = t;

(vi) S/σY ' T .

Suppose now that T is a monoid acting by morphisms on the left of
a semilattice Y with identity.

We now define the monoid part Y ∗m T of Y ∗ T to be

Y ∗m T = {(e, t) : e 6 t · 1} ⊆ Y ∗ T.
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Lemma 6.2. Let T be a monoid acting by morphisms on a semilattice
Y with identity. Then Y ∗m T as defined above is a subsemigroup of
Y ∗T containing Y . Moreover, Y ∗m T is a proper weakly left Y -ample
monoid, with identity (1, 1).

Proof. Clearly 1 · 1 = 1, so that Y ⊆ Y ∗m T .
Let (e, s), (f, t) ∈ Y ∗m T ; we have

(e, s)(f, t) = (e(s · f), st).

From (f, t) ∈ Y ∗m T we have that f 6 t · 1 and since the action ·
preserves order,

s · f 6 s · (t · 1) = st · 1.
Hence

e(s · f) 6 st · 1
so that Y ∗m T is closed.

We now verify that (1, 1) is the identity of Y ∗mT . Let (e, s) ∈ Y ∗mT ;
then

(1, 1)(e, s) = (1(1 · e), 1 s) = (e, s)

and on the other hand,

(e, s)(1, 1) = (e(s · 1), s 1) = (e, s)

since e 6 s · 1.
By Lemma 6.1, Y ∗ T is a proper weakly left Y -ample semigroup

such that (e, s)+ = (e, 1). Since Y ⊆ Y ∗m T it is clear that Y ∗m T
is closed under + and consequently, Y ∗m T is a weakly left Y -ample

monoid which as such is proper, that is, σY ∩ R̃Y = ι.
�

We denote a right action of a monoid T on a semilattice Y by

(e, t) 7→ e ◦ t.
We say that a monoid T acts doubly on a semilattice Y with identity,

if T acts by morphisms on the left and right of Y and the compatibility
conditions hold, that is

(t · e) ◦ t = (1 ◦ t)e and t · (e ◦ t) = e(t · 1)

for all t ∈ T, e ∈ Y .

Proposition 6.3. Let T be a monoid acting doubly on a semilattice Y
with identity. Then

Y ∗m T = {(e, t) : e 6 t · 1} ⊆ Y ∗ T
is a proper weakly Y -ample monoid with identity (1, 1) such that

(e, t)+ = (e, 1) and (e, t)∗ = (e ◦ t, 1).
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If T is unipotent, then Y ∗m T is weakly ample. If T is left (right)
cancellative, then Y ∗m T is right (left) ample.

Proof. From Lemma 6.2, we know that Y ∗m T is weakly left Y -ample,
and as such is proper.

We now show that Y ∗m T is weakly right Y -ample. Let (e, s) be an
element of Y ∗m T . Observe that

(e, s)(e ◦ s, 1) = (e(s · (e ◦ s), s) = (e e(s · 1), s)

using the second of the compatibility conditions. But e 6 s · 1 so that
(e, s)(e ◦ s, 1) = (e, s).

Suppose now that (e, s)(f, 1) = (e, s). Then e(s · f) = e hence

(e(s · f)) ◦ s = e ◦ s
⇒ (e ◦ s)((s · f) ◦ s) = e ◦ s
⇒ (e ◦ s)(1 ◦ s)f = e ◦ s
⇒ e ◦ s 6 f

so that (e ◦ s, 1) 6 (f, 1) and (e, s) L̃Y , (e ◦ s, 1).

To show that L̃Y is right compatible, suppose that (e, s) L̃Y (f, t),
and (g, u) ∈ Y ∗m T . Then e ◦ s = f ◦ t and calculating,(

(e, s)(g, u)
)∗

= (e(s · g), su)∗

=
(
(e(s · g)) ◦ su, 1

)
=

(
(e(s · g)) ◦ s) ◦ u, 1

)
=

(
((e ◦ s)((s · g) ◦ s)) ◦ u, 1

)
=

(
((e ◦ s)(1 ◦ s)g) ◦ u, 1

)
=

(
((e ◦ s)g) ◦ u, 1

)
as e ◦ s 6 1 ◦ s.

But e ◦ s = f ◦ t so that our argument gives

(e, s)(g, u) L̃Y (f, t)(g, u)

and L̃Y is a right congruence as required.
Let (e, s) ∈ Y ∗m T, (f, 1) ∈ Y . Then

(e, s)((f, 1)(e, s))∗ = (e, s)(fe, s)∗

= (e, s)((fe) ◦ s, 1)
= (e (s · ((fe) ◦ s)), s)
= (e (s · ((f ◦ s)(e ◦ s))), s)
= (e((s · (f ◦ s))(s · (e ◦ s))), s)
= (e f(s · 1) e(s · 1), s)
= (ef, s)
= (f, 1)(e, s),

thus completing the proof that Y ∗m T is weakly right Y -ample.
To argue that Y ∗m T is proper as a weakly Y -ample monoid, all

that remains is to show that L̃Y ∩ σY = ι. To this end, suppose
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that (e, s), (f, t) ∈ Y ∗m T are related by L̃Y ∩ σY , so that s = t and
e ◦ s = f ◦ t. Now

e = e(s · 1) = s · (e ◦ s) = t · (f ◦ t) = f(t · 1) = f

so that (e, s) = (f, t) as required.
If T is unipotent then it is clear that Y = E(Y ∗mT ), so that Y ∗mT is

weakly ample. Suppose now that T is right cancellative. To show that
Y ∗m T is left ample, it remains only to show that (e, s)R∗ (e, s)+ =
(e, 1), for any (e, s) ∈ Y ∗m T . To this end, let (e, s), (f, t) and (g, u)
be elements of Y ∗m T with

(f, t)(e, s) = (g, u)(e, s).

From (f(t·e), ts) = (g(u·e), us) we obtain f(t·e) = g(u·e) and ts = us.
Right cancellativity of T yields that t = u and consequently,

(f, t)(e, 1) = (g, u)(e, 1)

and (e, s)R∗ (e, 1).
Finally, suppose that T is left cancellative. Let (e, s) ∈ Y ∗m T ; we

argue that (e, s)L∗ (e ◦ s, 1) = (e, s)∗. If (f, t), (g, u) ∈ Y ∗m T with

(e, s)(f, t) = (e, s)(g, u),

then we have st = su, so that from left cancellation in T , t = u.
Further, e(s · f) = e(s · g) and so

(e ◦ s)((s · f) ◦ s) = (e ◦ s)((s · g) ◦ s),

giving by compatibility,

(e ◦ s)(1 ◦ s)f = (e ◦ s)(1 ◦ s)g.

As e ◦ s 6 1 ◦ s we deduce that (e ◦ s)f = (e ◦ s)g and hence

(e ◦ s, 1)(f, t) = ((e ◦ s)f, t) = ((e ◦ s)g, u) = (e ◦ s, 1)(g, u).

�

Consider again a monoid T acting doubly on a semilattice Y with
identity. It may be thought that the construction provided in Propo-
sition 6.3 is somewhat one-sided. However, letting

T ∗m Y = {(t, e) : e 6 1 ◦ t}

and defining θ : Y ∗m T → T ∗m Y by

(e, t)θ = (t, e ◦ t)

we claim that θ is an isomorphism.
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To this end, let t ∈ T and e ∈ Y . As e ◦ t 6 1 ◦ t, we have that
(t, e ◦ t) ∈ T ∗m Y . By the same token, (t · e, t) ∈ Y ∗m T . If e 6 1 ◦ t
then

(t · e, t)θ = (t, (t · e) ◦ t)
= (t, (1 ◦ t)e)
= (t, e)

so that θ is onto. Suppose now that (e, s), (f, t) ∈ Y ∗m T . Then

((e, s)(f, t))θ = (e(s · f), st)θ
= (st, (e(s · f)) ◦ st)
= (st, ((e(s · f)) ◦ s) ◦ t)
= (st, ((e ◦ s)(1 ◦ s)f) ◦ t)
= (st, ((e ◦ s)f) ◦ t)
= (st, ((e ◦ s) ◦ t)(f ◦ t))
= (s, e ◦ s)(t, f ◦ t)
= (e, s)θ(f, t)θ

so that θ is a morphism.
To see that θ is one-one, again let (e, s), (f, t) ∈ Y ∗m T . Then

(e, s)θ = (f, t)θ ⇒ (s, e ◦ s) = (t, f ◦ t)
⇒ e ◦ s = f ◦ t and s = t
⇒ s · (e ◦ s) = s · (f ◦ s) and s = t
= (s · 1)e = (s · 1)f and s = t
⇒ e = f and s = t
⇒ (e, s) = (f, t)

as e, f 6 s · 1.
Clearly (e, 1)θ = (1, e), for any e ∈ E, so that θ is an isomorphism

preserving the distinguished subsemilattices of Y ∗m T and T ∗m Y .

We now give a natural construction of monoids of the form Y ∗m T ,
starting with any weakly E-ample monoid M .

Let T be any submonoid of M . Define actions of T on the left and
right of E by the rule

t · e = (te)+ and e ◦ t = (et)∗

for all t ∈ T and e ∈ E. Notice that for any e, f ∈ E and s, t ∈ T we
have 1 · e = (1e)+ = e,

s · (t · e) = s · (te)+ = (s(te)+)+ = (ste)+ = st · e,

using Lemma 2.3, and

t · (ef) = (tef)+ = (te)+(tf)+ = (t · e)(t · f)
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by Lemma 2.4. We have thus verified that (t, e) 7→ t · e is an action by
morphisms, the proof for ◦ being dual.

Lemma 6.4. Let T act on both sides of E as above. Then T acts
doubly on E.

Proof. It remains only to show that the compatibility conditions hold.
Let e ∈ E and t ∈ T . Then

t · (e ◦ t) = t · (et)∗ = (t(et)∗)+ = (et)+ = et+ = e(t · 1),

using the ample condition. Dually, (t · e) ◦ t = e(1 ◦ t).
�

Proposition 6.5. Let M be a weakly E-ample monoid and let T be a
submonoid of M , acting on E as above. Then the map θ : E ∗mT →M
given by

(e, t)θ = et

is an E-separating (2, 1, 1, 0)-morphism, where E = {(e, 1) : e ∈ E}. If
M = ET , then E ∗m T is a proper cover for M .

Proof. From Proposition 6.3, E∗mT is a proper weakly E-ample monoid
where E ∼= E.

For any (e, s), (f, t) ∈ E ∗m T ,

((e, s)(f, t))θ = (e(s · f), st)θ
= e(s · f)st
= e(sf)+st
= e(sf)t
= (es)(ft)
= (e, s)θ(f, t)θ.

Moreover, using Proposition 6.3 again, and the fact that e 6 s · 1 =
s+,

(e, s)+θ = (e, 1)θ = e = es+ = (es)+ = ((e, s)θ)+

and further,

(e, s)∗θ = (e ◦ s, 1)θ = e ◦ s = (es)∗ = ((e, s)θ)∗.

Since (1, 1)θ = 1, we have that θ is a (2, 1, 1, 0)-morphism which is
clearly an isomorphism from E onto E.

Suppose now that M = ET . Let m ∈M ; by assumption, m = es =
(es+)s for some e ∈ E, s ∈ T . Now es+ 6 s+ so that (es+, s) ∈ E ∗m T
and clearly m = (es+, s)θ. Thus θ is onto, hence completing the proof
that E ∗m T , together with θ, form a proper cover for M . �
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As an example to illustrate Proposition 6.5, let M be a weakly E-
ample monoid, with set of generators X, where M is regarded as a
(2, 1, 1, 0)–algebra. We write

M = 〈X〉(2,1,1,0).

Clearly M contains a submonoid T generated by X; we write

T = 〈X〉(2,0).

Lemma 6.6. Let M,X and T be as above. Then M = ET and E ∗mT
is a cover of M .

Proof. Notice that as 1 ∈ E∩T , we have that E∪T ⊆ ET , and so ET
is closed under the nullary and both unary operations. If es, ft ∈ ET ,
where e, f ∈ E and s, t ∈ T , then

(es)(ft) = e(sf)t = e(sf)+st ∈ ET.

Consequently, as X ⊆ ET and ET is closed under all the basic opera-
tions, M ⊆ ET as required. �

In the next section we strengthen this result by showing that a weakly
E-ample monoid has a proper cover which is ample.

7. A covering theorem

Lawson showed in [23] that every ample semigroup has a proper
ample cover, from which the corresponding result for monoids is im-
mediate. Lawson’s result is, in fact, a consequence of a more general
result of Simmons [34]. The first two authors used different techniques
to demonstrate in [10] that an ample monoid S has a proper cover,
which may be taken to be finite, if S is finite. In [12] we explain how
the results of [13] and [15] may be used to prove that a (finite) weakly
ample monoid has a (finite) proper cover. Further, Proposition 3.3 of
[15] tells us that finite proper weakly ample monoids are, in fact, ample,
so that finite weakly ample monoids have finite ample covers.

Our aim in this section is to give a simple and direct proof of the fol-
lowing result. In Section 9 we follow this with an alternative approach
inspired by [8] and [30] which consider the right ample and inverse cases
respectively.

Theorem 7.1. Let M be a weakly E-ample monoid. Then M has a
proper ample cover.

Proof. Let M be a weakly E-ample monoid; pick any set X of genera-
tors of M as a (2, 1, 1, 0)-algebra and let T = 〈X〉(2,0), so that T acts
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doubly on E via morphisms via

t · e = (te)+ and e ◦ t = (et)∗,

where t ∈ T and e ∈ E. Clearly then X∗ acts by morphisms on E if
we define

w · e = w · e and e ◦ w = e ◦ w
where w is the image of w ∈ X∗ in T . It is easy to check that in this
way X∗ acts doubly on E. From Theorem 6.3 we know that

E ∗m X∗ = {(e, w) : e 6 w+} ⊆ E ∗X∗

is a proper ample monoid.
Define ϕ : E ∗m X∗ → E ∗m T by

(e, w)ϕ = (e, w).

It is easy to check that ϕ is a surjective idempotent separating (2, 1, 1, 0)-
morphism. From Proposition 6.5 and Lemma 6.6, E∗mT , together with
θ : E ∗m T → M given by (e,m)θ = em, form a proper cover. Hence
E ∗m X∗, together with ϕθ, form the required proper ample cover for
M . �

8. The free ample monoid revisited

Recall from Section 3 that for a non-empty set X, Y denotes the
semilattice of finite prefix closed subsets of FG(X) under union. In
this section we use our results concerning double actions of monoids
on semilattices with identity, to show that FAM(X) is isomorphic to
Y ∗m X∗, with actions given below, and hence embedded in Y ∗X∗.

Let X be a non-empty set. We define a left and right ‘actions’ of X∗

on Y by

u • A = u↓ ∪ u · A and A ◦ u = (u−1)↓ ∪ u−1 · A
for any u ∈ X∗ and A ∈ Y .

Lemma 8.1. With the definitions as given above, X∗ acts doubly on
Y.

Proof. Let A,B ∈ Y and u, v ∈ X∗.
Certainly 1 • A = 1↓ ∪ 1 · A = A, since 1 ∈ A. Notice also that if

w = u · a = u0a2

where u = u0a1 and a = a−1
1 a2 ∈ A and u0a2 is reduced, then any

prefix of w is either a prefix of u, hence lying in u↓, or else of the form
u0a21 where a2 = a21a22 say. In this case a−1

1 a21 ∈ A and

u0a21 = u · a−1
1 a21 ∈ u · A.
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Thus u↓ ∪ u · A ∈ Y .
To see that • is an action, notice that

u • (v • A) = u • (v↓ ∪ v · A)
= u↓ ∪ u · v↓ ∪ u · (v · A)
= (uv)↓ ∪ uv · A
= uv • A.

To see that X∗ acts by morphisms on the left of Y , observe that

u • (A ∪B) = u↓ ∪ u · (A ∪B)
= u↓ ∪ u · A ∪ u ·B
= (u↓ ∪ u · A) ∪ (u↓ ∪ u ·B)
= u • A ∪ u •B.

The proof that ◦ is an action by morphisms is dual.
Finally, we check one of the compatibility conditions, the proof of

the other being dual. Calculating, we have

(u • A) ◦ u = (u↓ ∪ u · A) ◦ u
= (u−1)↓ ∪ u−1 · (u↓ ∪ u · A)
= (u−1)↓ ∪ u−1 · u↓ ∪ u−1 · (u · A)
= (u−1)↓ ∪ A
= ({1} ◦ u) ∪ A

since u−1 · u↓ = (u−1)↓.
�

¿From Proposition 6.3, Y ∗mX∗ is a proper ample monoid; we claim
it is FAM(X).

Proposition 8.2. The free ample monoid FAM(X) coincides with
Y ∗m X∗.

Proof. We must show that as a set, A(X) = Y ∗m X∗, and that multi-
plication in A(X) coincides with that in Y ∗m X∗.

We first note that for A ∈ Y and w ∈ X∗,
(A,w) ∈ Y ∗m X∗ ⇔ A 6 w • {1}

⇔ w • {1} ⊆ A
⇔ w↓ ⊆ A
⇔ w ∈ A
⇔ (A,w) ∈ A(X).

Now for (A,w), (B, v) ∈ Y ∗mX∗, multiplying in that monoid we have

(A,w)(B, v) = (A ∪ w •B,wv)
= (A ∪ w↓ ∪ w ·B,wv)
= (A ∪ w ·B,wv),
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as w↓ ⊆ A, coinciding with multiplication in A(X) as required.
�

9. FA covers

Recall that on a weakly E-ample monoid M there is a partial order
6 called the natural partial order defined by

a 6 b if and only if a = eb for some e ∈ E.
Of course, from the ample conditions, it follows that a 6 b if and only
if a = bf for some f ∈ E.

For an inverse monoid M we recall from Proposition 2.5 that σ =
σE(M) is the least group congruence. An F -inverse monoid is an inverse
monoid in which every σ-class has a maximum element (under the
natural partial order). An F-inverse monoid is necessarily proper, and
every inverse monoid has an F-inverse cover (see [30, 24]).

Our final goal is to give an analogue of this result for weakly E-ample
monoids. First, we note that the definition of a weakly left FA-monoid
in [11] applies to weakly left E-ample monoids; thus a weakly left E-
ample monoid M is weakly left FA if every σE-class of M contains a
maximum element, and for all a, b ∈M ,

m(a)+m(ab)+ = (m(a)m(b))+ (FL)

where m(a) is the maximum element in the σE-class of a. It is shown
in [11] that if a weakly left ample monoid M is weakly left FA, then
M is (left) proper, and (FL) is equivalent to

m(a)+m(ab) = m(a)m(b)

for all a, b ∈ M . The same arguments apply to a weakly left E-ample
monoid. Weakly right FA monoids are defined similarly with (FL)
replaced by its dual:

m(ab)∗m(b)∗ = (m(a)m(b))∗

for all elements a, b in the monoid.
If M is a left ample monoid which is weakly left FA, then following

[9] we say that it is left FA. For our present purposes, we can restrict
attention to ample monoids which are FA, that is, both left and right
FA. The free ample monoid FAM(X) on a set X is an example of
such a monoid. For, if (A, g) ∈ FAM(X), then, using Proposition 5.1
and the definition of the natural order, it is readily verified that (g↓, g)
is the maximum element in the σ-class of (A, g). Routine calculations
now establish that (FL) and its dual hold, and so we have the following
lemma.
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Lemma 9.1. The free ample monoid FAM(X) on a set X is an FA
monoid.

Next, let ρ be a (2, 1, 0)-congruence on a right ample monoid M . As
in [8] we define the relation ρmin on M by

a ρminb if and only if ae = be for some e ∈ E(M) with e ρ a∗ρ b∗.

The following result is essentially Proposition 1.5 of [8].

Proposition 9.2. Let ρ be a (2, 1, 0)-congruence on a right ample
monoid M . Then ρmin is a (2, 1, 0)-congruence on M , ρmin|E(M) =
ρ|E(M) and ρmin ⊆ τ for any semigroup congruence τ on M with
τ |E(M) = ρ|(E(M). Furthermore, M/ρmin is right ample and

E(M/ρmin) = {eρmin : e ∈ E(M)}.

We remark that the statement of Proposition 1.5 in [8] refers to τ
being a (2, 1, 0)-congruence, but the proof given there does not require
this.

Of course, there is a dual result for left ample monoids involving a
congruence ρ′min (of the appropriate kind) defined by

a ρ′minb if and only if fa = fb for some f ∈ E(M) with f ρ a+ρ b+.

Thus if M is an ample monoid, ρmin and ρ′min are both defined on
M , but it follows from Proposition 9.2 and its dual that ρmin = ρ′min so
that in this case ρmin is a (2, 1, 1, 0)-congruence. In fact, it is easy to see
directly that the two congruences are equal using the ample conditions.
The significance of ρmin becomes apparent in the next lemma.

Lemma 9.3. Let ρ be a (2, 1, 1, 0)-congruence on an FA monoid M .
Then M/ρmin is an FA monoid.

Proof. It is clear that ρmin ⊆ σ and so the least cancellative congru-
ence on M/ρmin is σ/ρmin. Hence if m(a) is the maximum element in
the σ-class of a ∈ M , then m(a)ρmin is the maximum element in the
(σ/ρmin)-class of aρmin in M/ρmin. Using this and the fact that ρmin is
a (2, 1, 1, 0)-congruence, we see that condition (FL) and its dual hold
for M/ρmin. �

It is now easy to prove our final result.

Theorem 9.4. Let M be a weakly E-ample monoid. Then M is the
image of an FA monoid under an idempotent separating (2, 1, 1, 0)-
morphism.
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Proof. Every weakly E-ample monoid is an image of a free ample
monoid under a (2, 1, 1, 0)-morphism. Thus M ∼= FAM(X)/ρ for some
set X and (2, 1, 1, 0)-congruence ρ. Now ρmin ⊆ ρ so that writing F
for FAM(X) we have, from the homomorphism theorem for universal
algebras, that F/ρ ∼= (F/ρmin) /(ρ/ρmin). By Lemma 9.1, F is an FA
monoid and hence, by Lemma 9.3, so is F/ρmin. By Proposition 9.2,
ρ|E(F ) = ρmin|E(F ) so that the (2, 1, 1, 0)-congruence ρ/ρmin is idempo-
tent separating and the result follows. �

Since an FA monoid is proper, the above also offers an alternative
proof of Theorem 7.1.

As at the end of Section 4, we consider the case of weakly E-ample
semigroups. If S is a weakly E-ample semigroup, then S1 is a weakly E-
ample monoid, so that by Theorem 7.1 there is a proper ample monoid
U and an idempotent separating (2, 1, 1, 0)-morphism θ : U → S1. It is
easy to see that Sθ−1 together with θ|Sθ−1 : Sθ−1 → S is an idempotent
separating (2, 1, 1)-morphism onto S, so that Sθ−1 is a proper ample
cover of S.

We can also obtain a semigroup analogue of Theorem 9.4 although
it should be noted that we have defined FA monoids but not FA semi-
groups. At the end of Section 4 we observed that FAM(X) \ {1} is
the free weakly E-ample semigroup on the set X. Writing FAS(X)
for this semigroup, we say (following the terminology of [1, 30, 8]) that
an ample semigroup (or monoid) S is quasi-free if S ∼= FAS(X)/τ
for some (2, 1, 1)-congruence τ contained in the congruence σ. Thus
Theorem 9.4 tells us that every weakly E-ample monoid has a quasi-
free cover, and it is easy to adapt its proof to show that every weakly
E-ample semigroup has a quasi-free ample cover.
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