Regularity properties of graph products of semigroups and monoids

Victoria Gould
University of York

York Semigroup, 6th October 2021

Outline of talk

- A bit of motivation
- Some background on semigroup and monoid presentations
- Graph products
- Regularity properties
- The results (joint work with Nouf Alqahtani and Dandan Yang)
- Some further thoughts

A bit of motivation

The construction of a graph product is essentially multiplicative - hence in the framework of semigroup theory.

It allows us to glue together semigroups/monoids/groups/inverse semigroups to produce new ones.

The notions of graph product of semigroups and graph product of monoids are essentially different.

What algebraic properties do graph products have, depending on the same properties of the ingredients?

Example: Fountain and Kambites (2009)

The graph product of right cancellative monoids is right cancellative.

Some background on semigroup and monoid presentations

Presentations

A presentation for an algebra A lying in a variety of algebras \mathbf{V} is given by

$$
\langle X \mid R\rangle
$$

where X is a set and R is a set of relations

$$
t\left(x_{1}, \cdots, x_{n}\right)=s\left(x_{1}, \cdots, x_{n}\right)
$$

where s, t are term operations. This means that A is isomorphic to the free algebra in \mathbf{V} on X, factored by the congruence generated by R.

We are interested in semigroup and monoid presentations.

Some background on semigroup and monoid presentations

Free algebras are defined by universal conditions.

Free semigroup X^{+}on X

The elements of X^{+}are all non-empty words over X, that is all sequences

$$
x_{1} \circ \cdots \circ x_{n}, n \in \mathbb{N}
$$

with binary operation \circ given by

$$
\left(x_{1} \circ \cdots \circ x_{n}\right) \circ\left(y_{1} \circ \cdots \circ y_{m}\right)=x_{1} \circ \cdots \circ x_{n} \circ y_{1} \circ \cdots \circ y_{m} .
$$

Some background on semigroup and monoid presentations

Free monoid X^{*} on X

The elements of X^{*} are all words over X, that is all sequences

$$
x_{1} \circ \cdots \circ x_{n}, n \in \mathbb{N}^{0}
$$

with binary operation \circ given by

$$
\left(x_{1} \circ \cdots \circ x_{n}\right) \circ\left(y_{1} \circ \cdots \circ y_{m}\right)=x_{1} \circ \cdots \circ x_{n} \circ y_{1} \circ \cdots \circ y_{m} .
$$

The empty word is usually denoted by ϵ.

Some background on semigroup and monoid presentations

Let $\langle X \mid R\rangle$ be a monoid presentation, and let M be the monoid it presents. Then

$$
M=X^{*} / R^{\sharp}
$$

where for any $u, v \in X^{*}$ we have $[u]=[v]$ if and only if $u=v$ or there exists a sequence

$$
u=w_{0}, w_{1}, \cdots, w_{n}=v
$$

where for $1 \leq i \leq n$ we have

$$
w_{i-1}=c_{i} p_{i} d_{i}, w_{i}=c_{i} q_{i} d_{i}
$$

where $p_{i}=q_{i}$ or $q_{i}=p_{i} \in R$ and $c_{i}, d_{i} \in X^{*}$.

Some background on semigroup and monoid presentations Example

Let $X=\{a, b, c\}$ and let $R=\{a b=b a\}$.
We have

$$
\begin{aligned}
c c a b a c b a b= & c c a(b a) c b a b \rightarrow c c a(a b) c b a b=c c a a b c(b a) b \\
& \rightarrow c c a a b c(a b) b=c^{2} a^{2} b c a b^{2} .
\end{aligned}
$$

In M we have $[u]=[v]$ iff

$$
u=s_{0} t_{1} s_{1} \cdots t_{n} s_{n}, v=s_{0} t_{1}^{\prime} s_{1} \cdots t_{n}^{\prime} s_{n}
$$

where $s_{0}, s_{n} \in c^{*}, s_{i} \in c^{+}$for $1 \leq i \leq n-1$ and t_{i}, t_{i}^{\prime} each have the same number of as and the same number of $b s$ for $1 \leq i \leq n$.

We could declare a word such as $c^{2} a^{2} b c a b^{2}$ to be in normal form.

Some background on semigroup and monoid presentations Usually, things are more complicated

Gray (Feb 2019)

There is a inverse monoid with one-relator presentation of the form

$$
\langle X: u=1\rangle
$$

with undecidable word problem.

Graph products
 The importance of graph products

Graph products include:
(1) Graph groups and monoids, also known as right-angled Artin groups/monoids, free partially commutative groups/monoids, trace groups(!)/monoids.
(Finitely generated monoids and groups defined by presentations in which the only relations have forms $a \circ b=b \circ a$ for generators a, b.)
(2) Free products of semigroups/monoids/groups.
(3) Restricted direct products of semigroups/monoids/groups.

Graph products - of semigroups

Let $\Gamma=\Gamma(V, E)$ be a simple and undirected graph with no loops.
Let $\mathcal{S}=\left\{S_{\alpha}: \alpha \in V\right\}$ be a set of mutually disjoint semigroups, called vertex semigroups.

The graph product

$\mathscr{G} \mathscr{P}=\mathscr{G} \mathscr{P}(\Gamma, \mathcal{S})$ of \mathcal{S} with respect to Γ is defined by the presentation

$$
\mathscr{G} \mathscr{P}=\langle X \mid R\rangle
$$

where $X=\bigcup_{\alpha \in V} S_{\alpha}$ and with defining relations R :

$$
\begin{aligned}
& \left(R_{1}\right) x \circ y=x y\left(x, y \in S_{\alpha}, \alpha \in V\right) \\
& \left(R_{2}\right) x \circ y=y \circ x\left(x \in S_{\alpha}, y \in S_{\beta},(\alpha, \beta) \in E\right) .
\end{aligned}
$$

Two elements of X^{+}are equal in $\mathscr{G} \mathscr{P}$ if and only if one can get from one to the other by substituting a LHS/RHS of a relation by a RHS/LHS.

What does this mean?

In the corresponding $\mathscr{G} \mathscr{P}$ how do we handle (with natural convention for labelling)

$$
s_{1} \circ s_{2} \circ s_{4} \circ s_{4}^{\prime} \circ s_{2}^{\prime} \circ s_{3} \circ s_{2}^{\prime \prime} ?
$$

We have

$$
\begin{aligned}
s_{1} \circ s_{2} \circ s_{4} \circ s_{4}^{\prime} \circ s_{2}^{\prime} \circ s_{3} \circ s_{2}^{\prime \prime} & \rightarrow s_{1} \circ s_{2} \circ s_{4} s_{4}^{\prime} \circ\left(s_{2}^{\prime} \circ s_{3}\right) \circ s_{2}^{\prime \prime} \\
& \rightarrow s_{1} \circ s_{2} \circ s_{4} s_{4}^{\prime} \circ\left(s_{3} \circ s_{2}^{\prime}\right) \circ s_{2}^{\prime \prime} \\
& =s_{1} \circ s_{2} \circ s_{4} s_{4}^{\prime} \circ s_{3} \circ\left(s_{2}^{\prime} \circ s_{2}^{\prime \prime}\right) \\
& \rightarrow s_{1} \circ s_{2} \circ s_{4} s_{4}^{\prime} \circ s_{3} \circ s_{2}^{\prime} s_{2}^{\prime \prime}
\end{aligned}
$$

Graph products - of monoids

Here we begin with vertex monoids $\mathcal{M}=\left\{M_{\alpha}: \alpha \in V\right\}$, where 1_{α} is the identity of M_{α}, and we have the additional relation

$$
\left(R_{3}\right) 1_{\alpha}=\epsilon, \alpha \in V
$$

$\left(R_{3}\right)$ has the power to really cause trouble. In

$$
s_{1} \circ s_{2} \circ s_{4} s_{4}^{\prime} \circ s_{3} \circ s_{2}^{\prime} s_{2}^{\prime \prime}
$$

if s_{4} and s_{4}^{\prime} are mutually inverse, then

$$
s_{1} \circ s_{2} \circ s_{4} s_{4}^{\prime} \circ s_{3} \circ s_{2}^{\prime} s_{2}^{\prime \prime}=s_{1} \circ s_{2} \circ I_{4} \circ s_{3} \circ s_{2}^{\prime} s_{2}^{\prime \prime} \rightarrow
$$

$s_{1} \circ s_{2} \circ \epsilon \circ s_{3} \circ s_{2}^{\prime} s_{2}^{\prime \prime}=s_{1} \circ s_{2} \circ s_{3} \circ s_{2}^{\prime} s_{2}^{\prime \prime} \rightarrow s_{1} \circ s_{2} \circ s_{2}^{\prime} s_{2}^{\prime \prime} \circ s_{3} \rightarrow s_{1} \circ s_{2} s_{2}^{\prime} s_{2}^{\prime \prime} \circ s_{3}$.

Graph products: left Foata normal form

One first shows that any word may be expressed by a reduced form. This is a word of shortest length in an equivalence class.

Green 1990 - for groups

Any two reduced words in the same equivalence class are shuffle equivalent.
The same argument works for monoids and an easier argument for semigroups.

We then show that elements in $\mathscr{G} \mathscr{P}$ may be written in a normal form we refer to as left Foata normal form.

In the (semigroup) example above,

$$
\left(s_{1} \circ s_{2}\right) \circ s_{4} s_{4}^{\prime} \circ\left(s_{3} \circ s_{2}^{\prime} s_{2}^{\prime \prime}\right)
$$

is in left Foata normal form.

Multiplying in graph products

In a semigroup graph product, if u, v are reduced forms, then if w is any reduced form of $u \circ v$ then

$$
|w| \geq \max \{|u|,|v|\} .
$$

For monoids things are more complicated but not entirely out of control.
Let $x \in X$ and $u=u_{1} \circ \cdots \circ u_{n} \in X^{+}$be reduced.
Then $x \circ u$ reduces to one of reduced forms

$$
x \circ u, \text { or } u_{1} \circ \cdots \circ x u_{k} \circ \cdots u_{n}
$$

or

$$
u_{1} \circ \cdots u_{k-1} \circ u_{k+1} \circ \cdots u_{n} .
$$

Hence in a monoid graph product, if u, v are reduced forms, then if w is any reduced form of $u \circ v$ then

$$
|w| \geq \max \{|u|-|v|,|v|-|u|\} .
$$

Regularity properties Idempotents

Idempotents

An idempotent is an element $e \in S$ such that $e=e^{2}$.
We let $E(S)$ denote the set of idempotents of S.

Idempotents are everywhere

 in...- functional analysis
- classical ring theory
- Stone-Čech compactifications
- idempotent tropical matrices
- Putcha-Renner theory of reductive algebraic monoids
- representation theory of algebras, groups and semigroups

Regularity properties: regularity

Regularity

A semigroup S is regular if for all $a \in S$ there exists a $b \in S$ such that

$$
a=a b a .
$$

If $a=a b a$, then immediately

$$
(a b)^{2}=(a b)(a b)=(a b a) b=a b
$$

so that $a b \in E(S)$.
Many natural examples of semigroups are regular (such as \mathcal{T}_{X}), but...many are not, such as X^{+}and X^{*}.

Regularity properties: regularity

We will see that graph products are not, in general, regular, even if the ingredients are.

Note that if s_{1}, s_{4} are not one-sided units, then $s_{1} \circ s_{4}$ (reduced) is not regular as

$$
s_{1} \circ s_{4} \neq s_{1} \circ s_{4} \circ w \circ s_{1} \circ s_{4}
$$

Regularity properties: another view of regularity

For any semigroup S, the relation \mathcal{R} is defined by the rule

$$
a \mathcal{R} b \Longleftrightarrow a S^{1}=b S^{1}
$$

Very easy fact: mutual divisibility and \mathcal{R}

$$
a \mathcal{R} b \Longleftrightarrow a=b c, b=a d \text { for some } c, d \in S^{1} .
$$

The relation \mathcal{L} is dual to \mathcal{R}.

Easy fact

A semigroup S is regular if and only if for any $a \in S$ we have $e, f \in E(S)$ such that

$$
e \mathcal{R} \text { a } \mathcal{L} f .
$$

Regularity, Abundancy and Fountainicity

We have remarked that \mathcal{R} and \mathcal{L} are relations of mutual divisibility.
For any semigroup S, the relation \mathcal{R}^{*} is defined by the rule that for any $a, b \in S$, we have $a \mathcal{R}^{*} b$ if and only if for all $x, y \in S^{1}$

$$
x a=y a \Longleftrightarrow x b=y b
$$

so that \mathcal{R}^{*} is a relation of mutual cancellativity.

Easy fact

For any semigroup S we have

$$
a \mathcal{R} b \Rightarrow a \mathcal{R}^{*} b
$$

and if S is regular,

$$
a \mathcal{R} b \Leftrightarrow a \mathcal{R}^{*} b .
$$

The relation \mathcal{L}^{*} is defined dually.

Regularity, Abundancy and Fountainicity

Definition

A semigroup S is left abundant/abundant if and only if for any $a \in S$ we have $e \in E(S) / e, f \in E(S)$ such that

$$
e \mathcal{R}^{*} a / e \mathcal{R}^{*} a \mathcal{L}^{*} f
$$

Fact

A monoid M is right cancellative if and only if $E(M)=\{1\}$ and it is left abundant.

The above essentially comes from the following

$$
a \mathcal{R}^{*} 1 \Leftrightarrow(x a=y a \Rightarrow x=y)
$$

Regularity, Abundancy and Fountainicity

For any semigroup S, the relation $\widetilde{\mathcal{R}}$ is defined by the rule that for any $a, b \in S$, we have $a \widetilde{\mathcal{R}} b$ if and only if for any $e \in E(S)$

$$
e a=a \Longleftrightarrow e b=b
$$

The relation $\widetilde{\mathcal{L}}$ is defined dually.
It is a fact that $\mathcal{R}^{*} \subseteq \widetilde{\mathcal{R}}$ and $\mathcal{L}^{*} \subseteq \widetilde{\mathcal{L}}$ with equalities if S is abundant.

Definition

A semigroup S is weakly left abundant/weakly abundant or left Fountain/Fountain if and only if for any $a \in S$ we have $e \in E(S) / e, f \in E(S)$ such that

$$
e \widetilde{\mathcal{R}} a / e \widetilde{\mathcal{R}} a \widetilde{\mathcal{L}} f
$$

Regularity, abundancy and Fountainicity

Examples Regular semigroups, cancellative monoids, $M_{n}(\mathbb{Z})$, restriction monoids, partial transformation monoids, \cdots, Ehresmann semigroups, ...

These ideas arise from many sources and have many names.
Abundancy originally from notions of projectivity for acts
Fountainicity from various studies of small ordered categories, some in the context of Ehresmann's work on pseudo-groups.

See the work of Fountain, Lawson, Cockett, Manes, Jackson, Stokes, El Qallali, Gomes, Szendrei and many others.

The results

Theorem: Alqahtani, Gould and Yang 2020

Any graph product of left abundant (left Fountain) semigroups is left abundant (left Fountain).

Theorem: Gould and Yang 2021

Any graph product of left abundant (left Fountain) monoids is left abundant (left Fountain).

The proofs are very different for monoids, since the extra relation (identifying the monoid identities!) increases the complexity of the reductions.

The results applications and extensions

Corollary

Any free product of abundant (Fountain) semigroups or monoids is abundant (Fountain).

Corollary

Any restricted direct product of abundant (Fountain) semigroups or monoids is abundant (Fountain).

Corollary: Fountain, Kambites, 2009

Any graph product of right cancellative monoids is right cancellative.

Further thoughts

- Decidability questions
- Calculating other algebraic properties such as centers
- Biordered sets of graph products
- Extensions of our ideas to other presentations (e.g. free idempotent generated semigroups)

Thank you for listening.

