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A simple starting point

Alice and Bob play a game against a dealer, with a countably infinite deck of cards.

The game is based around shuffling and dealing packs of cards.

Fair deals (from the bottom of the pack).

Perfect riffle shuffles.
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The nature of my game
The Dealer deals out his (countably infinite) pack of cards, resulting in everyone
holding an infinite stack of cards.

Alice and Bob merge their stacks together, using a perfect riffle shuffle.

The Dealer merges the result of this with his stack, again using a perfect riffle.

The process repeats. Each round of the game permutes the infinite pack of cards

Alice and Bob will win when

one card, that they mark beforehand,

returns to its original position

in the Dealer’s hand.

The trap :

Alice and Bob are compulsive gamblers, who will not leave until they have won.
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How to play the game?

This is not just a deterministic process.

In each round, Alice and Bob have a choice :

They can place the result of their shuffle to the left or the right of the Dealer’s stack.

It then becomes the first or second deck in the Dealer’s shuffle.

Strategies for Alice and Bob are strings over the set t0, 1u.

We should think of these as either in terms of

Words over the free monoid t0, 1u˚

Points of (binary) Cantor space C.

Exercise : For each choice of card n P N, characterise the subset Un Ď C of Cantor space where Alice & Bob are playing forever.

Does Un contain any open subsets, or do Alice and Bob always have a route to success?
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The two paths you can go by ...

The left hand path Their result becomes the first deck in the Dealer’s shuffle.

γLpnq “

$

’

’

’

’

&

’

’

’

’

%

4n
3 n pmod 3q “ 0

4n`2
3 n pmod 3q “ 1

2n´1
3 n pmod 3q “ 2

The right hand path Their result becomes the second deck in the Dealer’s shuffle.

γRpnq “

$

’

’

’

’

&

’

’

’

’

%

2n
3 n pmod 3q “ 0

4n´1
3 n pmod 3q “ 1

4n`1
3 n pmod 3q “ 2
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Which card should they mark ??

Alice and Bob, for entirely unjustified reasons, chose 8 as their ‘lucky number’. They
are more used to playing with 52 cards, where Riffle shuffles are performed by a cut,

then a merge :

A 52 card pack returns to its original position after 8 steps :

What happens in the countably infinite case?
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A potentially poor strategy

When Alice and Bob consistently place their cards on the right :

The 3x ` 1 problem & its generalisations – Jeffrey Lagarias (1985)

Writing about L. Collatz : “In his notebook dated July 1, 1932, he considered the
function

n ÞÑ

$

’

’

’

’

&

’

’

’

’

%

2
3 n if n ” 0 pmod 3q

4
3 n ´ 1

3 if n ” 1 pmod 3q

4
3 n ` 1

3 if n ” 2 pmod 3q

He posed the problem of whether the cycle containing 8 is finite or infinite. I will call
this the Original Collatz Problem. His original question has never been answered.”

It is conjectured, and widely believed, that the cycle containing 8 is infinite.

It is entirely possible that the OCP is undecidable.
— if this is the case, we could never know.
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(Almost) Lost Mathematics?

The original Collatz problem almost vanished into obscurity. It was rescued and
popularised by Jeffrey Lagarias1, who archives all things Collatz-related.

Unfortunately ..

We no longer have the original (1984) letter from Collatz to Lagarias describing his
motivation :

Why he was looking at this particular function?

What is special about the number 8?

Whether there is a connection to his (much) more famous problem??

Any story about Alice, Bob, and decks of cards is a convenient fabrication that
nevertheless allows us to place this problem in context.

1Many thanks to J. Lagarias (Univ. Michigan), for useful references & anecdotes!
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Providing context

Our overall claims :

Alice & Bob’s game should be thought of as ‘tracing paths through geometric /
combinatorial polyhedra’.

There are many close connections with multiple topics in pure mathematics,
logic, theoretical & practical computer science, and category theory.

The (left- and right-) Collatz bijections

γL : N Ñ N and γR : N Ñ N

play a particularly important rôle in all these areas.

These Collatz bijections are canonical coherence isomorphisms,
in the sense of category theory.

There is a close link between the original Collatz conjecture,
and his more famous 3x ` 1 problem.
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Splitting the game into individual steps

We wish to model (and compose) :

1 Shuffles of countably infinite Decks of Cards

ℵ0 cardsℵ0 cards

Merged Deck
of ℵ0 cards

ShuffleShuffle

2 Using the result of a shuffle as the input to another :

Deck DDeck CDeck BDeck A

Merged
Deck

Shuffle 3

Shuffle 2Shuffle 1Shuffle 1 Shuffle 2

Shuffle 3

3 Deals, as an inverse operation to shuffles.

ℵ0 cards ℵ0 cards ℵ0 cards

ℵ0 cards

ShuffleDeal
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First – modeling infinitary shuffles

A (mathematical) strategy :

We simply take the (well-studied) finite case, and, “check everything still works”.

Shuffles are modeled by monotone bijections; bijectivity ensures all cards are used,
and monotonicity accounts for,

“If card a is above card b before the shuffle,it is still above b afterwards.”

We axiomatise ‘multiple decks’ using the disjoint union, NZ N “ Nˆ t0u Y Nˆ t1u,
and use the induced partial order :

px , iq ď py , jq iff x ď y and i “ j

Our shuffles are then (monotone) Hilbert-Hotel style bijections, and a deal is simply
the inverse of a shuffle.
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Starting to axiomatise ..
We define Bijℵ0

to be the groupoid given by :

Objects All countably infinite sets,

Arrows Bijections between c.i. sets.

Disjoint union defines a groupoid homomorphism Z : Bijℵ0
ˆ Bijℵ0

Ñ Bijℵ0
.

A categorical tensor

This is a semi-monoidal tensor, satisfying all the usual MacLane-Kelly axioms,
apart from those that mention a unit object.

Such structures were axiomatised and studied in

J. Kock (2008) Elementary remarks on units in monoidal categories

A. Joyal, J. Kock (2013) Coherence for weak units

We may therefore assume it is strict, so

X0 Z X1 Z . . .Z Xk
def .
“ X0 ˆ t0u Y X1 ˆ t1u Y . . .Y Xk ˆ tku

peter.hines@york.ac.uk Fun & Games in Hilbert’s Casino www.peterhines.info 12 / 88



Shuffles as Cantor points

In both the finite & infinite case, we may describe a shuffle of k decks of cards

as a sequence p0, p1, p2, p3, . . . over the set t0, . . . , k ´ 1u.

This has the intuition of an operational description :

“Take from deck p0, then p1, then p2, then . . . ”

We recover this description by using the identity NZk
– Nˆ t0, . . . , k ´ 1u,

N
ψ´1
//

sequenceψ ))

Nˆ t0, . . . k ´ 1u

π2

��
t0, . . . , k ´ 1u

This point of the Cantor space over t0, . . . , k ´ 1u is the sequence of plays for Ψ.

The two descriptions are entirely interchangeable – we will generally describe shuffles
as bijections.
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The riffle shuffles

We define the k -deck riffle shuffle Ωk : NZk
Ñ N to be the bijection Ωk pn, iq “ kn ` i

for all pn, iq P NZk , with the natural diagrammatics :

Ω1 : N Ñ N n ÞÑ n

Ω2 : NZ N Ñ N
pn, 0q ÞÑ 2n
pn, 1q ÞÑ 2n ` 1

Ω3 : NZ NZ N Ñ N
pn, 0q ÞÑ 3n
pn, 1q ÞÑ 3n ` 1
pn, 2q ÞÑ 3n ` 2

Ω4 : NZ NZ NZ N Ñ N

pn, 0q ÞÑ 4n
pn, 1q ÞÑ 4n ` 1
pn, 2q ÞÑ 4n ` 2
pn, 3q ÞÑ 4n ` 3

The inverse of Ωn is the n-player fair deal.
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Composition of shuffles

We wish to model hierarchical composition of shuffles, where we ‘use the result of
one shuffle as an input to another’, and the algebra of how these may be composed.

Deck BDeck A

Merged
Deck

ShuffleShuffle 1 where Deck B arises from

Deck YDeck X

Deck
B

Shuffle 2Shuffle 2

The natural setting for this is the theory of Operads
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First, some intuition
Consider 3-argument and 2-argument functions Foop , , q and Barp , q that accept,
and return, elements of the same type2.

There are three distinct ways to plug Bar into Foo to make an operation of arity 4.

FoopBarp , q, , q or Foop ,Barp , q, q or Foop , ,Barp , qq

These are axiomatised as ‘indexed compositions’.

Foo ˝1 Bar Foo ˝2 Bar Foo ˝3 Bar

Foo

Bar

Foo

Bar

Foo

Bar

2Allowing for distinct data-types leads to the theory of ‘coloured operads’.
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A formal definition :

A (non-symmetric) operad consists of disjoint indexed sets of operations

H “ tH1 , H2 , H3 , . . . , Hn , . . .u

– the unary, binary, ternary, , . . . , n-ary , . . . operations, which may be composed.
Given

an operation F P Hx ,

an operation G P Hy ,

there are x different compositions

F ˝1 G , F ˝2 G , F ˝3 G , . . . , F ˝x G

all giving an operation of arity x ` y ´ 1.
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Three simple axioms (axiomatising Referential Transparency?)

1 There exists an identity Id ˝1 T “ T and T ˝k Id “ T .
2 “Composition is associative”

3 “Parallel composites commute”

Diagrams ‘borrowed’ from Tai-Danae Bradley’s Math3ma blog
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Formal definitions

An operad is an indexed family of disjoint sets H “ tH1,H2,H3 . . .u of ‘operations’,
together with composition functions

˝i : Hn ˆHm Ñ Hm`n´1 , i “ 1 . . . n

that include an identity in H1, and satisfy the following:

For all f P Hn, g P Hm, and h P Hp,

pf ˝j gq ˝i h “

$

’

’

’

&

’

’

’

%

pf ˝i hq ˝j`p´1 g if 1 ď i ď j ´ 1

f ˝j pg ˝i´j`1 hq if j ď i ď m ` j ´ 1

pf ˝i´m`1 hq ˝j g if i ě m ` j

It is nearly always more convenient to work graphically!
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Operads of card shuffles
Unsurprisingly, plugging together card shuffles forms an operad.

(It is an example of a standard construction :
the endomorphism operad in a semi-monoidal category)

A tree such as :

ψ

φ

Nλ

NNN

N

represents a shuffle (i.e. monotone bijection) of five decks of cards :

ψp1N Z φpλZ 1Nqq : NZ NZ NZ NZ N Ñ N
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The object of study

We define Riff , the operad of hierarchical riffle shuffles to be the operad generated
by the perfect riffle shuffles tΩkuką1

The obvious diagrammatics :

As we only have one generator of each arity, we may
draw H-R shuffles as unlabled planar trees.

We leave identities implicit.

We do not distinguish between and

Each k -leaf tree determines a monotone Hilbert-hotel style bijection from k copies of N
to a single copy of N.
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What bijections do they determine??
An illustrative example : T “ Ω4 ˝3 pΩ2 ˝2 Ω3q “ pΩ4 ˝3 Ω2q ˝4 Ω3

T pn, iq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

4n i “ 0
4n ` 1 i “ 1
8n ` 2 i “ 2
24n ` 6 i “ 3
24n ` 14 i “ 4
24n ` 22 i “ 5
4n ` 3 i “ 6

Each T p , iq is a linear map n ÞÑ Xin ` Yi .

As T is a bijection,

impT p , iqq X impT p , jqq “ H and
7
ď

i“0

impT p , jqq “ N

The bijection T ‘covers the natural numbers with linear sequences’.
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Counting coefficients

The general case, card n from deck i :

...

n

. . . . . .

. . . . . .

. . . . . .

Branch a1 out of b1

Branch a2 out of b2

. . .

Branch ak out of bk

We have an injection n ÞÑ Xin ` Yi . How to compute Xi and Yi ?

Trivially, Xi “
śk

j“1 bj .

(Corollary : we cannot have Xi “ Xj @i , j , for a prime number of decks of cards).

We may simply write down the value of Yi .
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Relating two strands of Cantor’s work

Über Einfache Zahlensysteme” – G. Cantor (1869)

On Simple Number Systems studied mixed-radix counting : positional number
systems where the base used varies between columns.

Familiar example : pre-decimal / post-brexit British currency

4 Farthings = 1 Penny , 12 Pennies = 1 Shilling , 20 Shillings = 1 Pound ...

We may simply write down the value of Yi

Yi “
base bk base bk´1 . . . base b1

ak ak´1 . . . a1

(Note : bk bk´1 . . . b1 is an ordered factorisation of Xi ).

Transformations between different mixed-radix counting systems are particularly well-studied in the
Fast Fourier Transforms re-discovered by Cooley & Tukey (... but originally due to Gauss).
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Topological connections

It is natural to interpret Shuffles as determining open covers of N.

Recall : Every shuffle T P Riff k determines a distinct3 indexed family

tT p , iq : N Ñ Nui“0..k´1 of linear maps.

Their images satisfy, for all i ‰ j ,

T pN, iq X T pN, jq “ H ,
k´1
ď

i“0

T pN, iq “ N

and so “cover” the natural numbers with disjoint linear sequences.

This should be thought of topologically — every shuffle determines a

(distinct) ordered finite open cover of N, in some suitable topology.

3Claim to be justified shortly ...
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From topologies to primes

Define the linear subsets of N by lin “ taN` bubăaPN Y tHu.

This contains N and tHu. By the Chinese Remainder Theorem, it is also closed under
intersection.

It is therefore the basis for a topology pro Ď 2N, the profinite topology on the free
monogenic monoid.

1 Introduced by Ch. Reutenauer, Une topologie du monoı̈de libre (1979)
2 Based on the profinite topology for groups (M. Hall 1950)
3 Also used by H. Furstenberg (1955), to give a topological proof of the infinitude of

the primes.

Our interest : All the operations we will consider, including the Collatz bijections, will
be continuous (in fact, homeomorphisms) w.r.t. this topology.
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Some points on the profinite topology of pN,`q
1 The basic open sets are clopen – both open and closed. We may write aN` b as

the complement of the open set
Ť

c‰b aN` c.

2 Open sets are always infinite (the key to Furstenberg’s proof ...)

3 There is an isomorphism (of locales) between
The subtopology with basis tkaN` bubăka Ď pro.

The usual clopen topology on the k th Cantor space Ck

– i.e. the space of one-sided infinite strings over t0, . . . , k ´ 1u.

The correspondence

A basic open set of Ck is of the form wCk , for some word w of the free monoid
t0, . . . , k ´ 1u˚.

Denote the length of w by |w |, then interpret w itself as a k-ary number.

The corresponding linear subset is k |w|`1N` w .

Remark These arise from the sub-operad of Riff generated by Ωk .
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To justify the claim of “uniqueness”

Proposition : Riff is freely generated by tΩjuj“2,3,4,....

No two distinct k -leaf trees determine the same bijection from NZk to N.

i.e. Riff is isomorphic to the formal operad rpt of “rooted planar trees”.

Proof (outline) : This may be shown by induction on the number of leaves.

The only non-trivial step

We need to show that the generating set tΩK uką0 is minimal — no perfect riffle can be
produced by composing other perfect riffles.

We do this by showing that the generators ΩK are a very special type of shuffle.

Definition A shuffle of k decks of cards Ψ : Nˆ t0, . . . , k ´ 1u Ñ N is standard
when it is monotone in both variables.
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Standard shuffles

An operational characterisation :

This has the natural interpretation that, at any stage of the shuffle,

# of cards placed from deck i
ě

# of cards placed from deck i ` 1

As a consequence, the sequence of plays will be an infinitary Ballot sequence.

Equivalently : The tableau determined by a standard shuffle is a (infinitary) standard
Young tableau, with ordered rows & columns.

Ψp0, 0q Ψp1, 0q Ψp2, 0q Ψp3, 0q . . .

Ψp0, 1q Ψp1, 1q Ψp2, 1q Ψp3, 1q . . .
...

...
...

...
Ψp0, k ´ 1q Ψp1, k ´ 1q Ψp2, k ´ 1q Ψp3, k ´ 1q . . .

The generators tΩ1,Ω2,Ω3, . . .u are certainly standard – which composites are
similarly standard?
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Characterising standard riffle shuffles

For a composite S ˝k T to be standard, we need the following :

1 S and T are themselves both standard.
2 S is of arity k – i.e. the product is the (associative) overproduct

S

é

T def .
“ S ˝k T @S P Riff k

given by grafting onto the far right leaf.

As an illustrative example, consider Ω4 ˝2 Ω2. All the generators are standard, but this
composite is not standard :

0 4 8 12 16 . . .

1 5 9 13 17 . . .

2 6 10 14 18 . . .

3 7 11 15 19 . . .

0 4 8 12 16 . . .

1 9 17 25 33 . . .

5 13 21 29 36 . . .

2 6 10 14 18 . . .

3 7 11 15 19 . . .
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Operadic composition as ‘splitting rows’

In the general setting, consider some standard Ψ P Riff k , with tableau

Ψp0, 0q Ψp1, 0q Ψp2, 0q Ψp3, 0q . . .
...

...
...

...
Ψp0, xq Ψp1, xq Ψp2, xq Ψp3, xq . . .

...
...

...
...

Ψp0, k ´ 1q Ψp1, k ´ 1q Ψp2, k ´ 1q Ψp3, k ´ 1q . . .

For some standard Φ P Riff j , the tableau for Ψ ˝x Φ is given by replacing row x by the
following block :

Ψp0, 0q Ψp1, 0q Ψp2, 0q Ψp3, 0q . . .
...

...
...

...
ΨpΦp0, 0q, xq ΨpΦp1, 0q, xq ΨpΦp2, 0q, xq ΨpΦp3, 0q, xq . . .

...
...

...
...

ΨpΦp0, j ´ 1q, xq ΨpΦp1, j ´ 1q, xq ΨpΦp2, j ´ 1q, xq ΨpΦp3, j ´ 1q, xq . . .
...

...
...

...
Ψp0, k ´ 1q Ψp1, k ´ 1q Ψp2, k ´ 1q Ψp3, k ´ 1q . . .

The ‘standard’ property is preserved precisely when the final row is split.
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Standard ” Right-Associated

We may characterise standard hierarchical riffle shuffles

These are given by arbitrary overproducts of generators.

Ωx0

é

Ωx1

é

Ωx2

é

. . .

é

ΩxN

No generator is a non-trivial composite of this form; therefore, the generating set is
minimal, and by induction Riff is freely generated.

Every distinct finite sequence of natural numbers determines a distinct standard
shuffle / standard Young tableau, by

n0n1 . . . nx ÞÑ Ωn0`2

é
Ωn1`2

é

. . .

é

Ωnx`2

i.e. there exists an injective monoid homomorphism from the free monoid over the
natural numbers to pRiff ,

é

q, given by stdpnq def
“ Ωn`2.
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A brief digression ...

Operads with infinitary compositions?
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From monoids to Cantor spaces

We may extend this to one-sided infinite strings (i.e. points of CN, the Cantor space
over the natural numbers) in a natural way.

Consider some infinite sequence

Ωx0

é

Ωx1

é

Ωx2

é

Ωx3

é

. . .

along with the sequence of tableaux determined by the prefixes :
1 Ωx0

2 Ωx0

é

Ωx1

3 Ωx0

é

Ωx1

é

Ωx2

4 Ωx0

é

Ωx1

é

Ωx2

é

Ωx3

At each step, every natural number N either:

moves left (& possibly downwards as well), or

stays in the same place ... at which point it remains there!

These will define infinitary standard shuffles, or monotone bijections Nˆ N – N.
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The simplest worked example:
The simplest is the infinitary overproduct Ω2

é

Ω2

é

Ω2

é

Ω2

é

. . . that may be thought

of as “the right fixed point for the binary riffle shuffle” :
...

We may give this explicitly, as the “of course” bijection

!px , yq “ 2x`1y ` 2x
´ 1

a bijection from Nˆ N to N, monotone in both variables.

Why ‘of course’ ?

I first came across this function being used to model a logical operation (the
“exponential”, a.k.a. the “bang” or “of course” modality) in :

“Geometry of Interaction (I) : interpretation of System F”
– Jean-Yves Girard (1989)

.
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Shuffling infinitely many decks of cards ..

Giving the tableau explicitly :

0 2 4 6 8 10 . . .

1 5 9 13 17 21 . . .

3 11 19 27 35 43 . . .

7 23 39 55 71 87 . . .

15 47 79 111 143 175 . . .

31 94 159 223 287 351 . . .
...

...
...

...
...

...
. . .

The sub-tableaux given by considering the first n natural numbers

form an inclusion-ordered unbounded sequence of

finitary standard Young tableaux,

for any monotone bijection

Ψ : Nˆ N Ñ N

peter.hines@york.ac.uk Fun & Games in Hilbert’s Casino www.peterhines.info 36 / 88



Shuffling infinitely many decks of cards ??

Alternatively, the sequence of plays π2!´1 : N Ñ N is given by

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1

0 2 0 1 0 3 0 1 0 2 0 1 0 5 0 1 0 2

0 1 0 3 0 1 0 2 0 . . .

This is the (ballot) ruler sequence — sequence number A007814 in the
Online Encyclopedia of Integer Sequences (https://oeis.org/A007814)

Picture taken from “On the ubiquity of the Ruler sequence” – J. Nuño, F. Muñoz (2020)
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A fun application
The ruler sequence rpnq determines Hamiltonian paths (– those that visit each vertex
exactly once) in hypercube graphs :

The simple prescription :
Index axes (i.e. dimensions) by the natural numbers,
On step n, move along axis rpnq.

visits each vertex exactly once.
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Concretely, how could we perform this shuffle??

The ruler series is the sequence of plays for the bijection ! “ Ω2

é

Ω2

é

Ω2
é

Ω2

é

. . .

1 0
1 0 1
1 1 0

1 0 0 2
1 0 1 0
1 1 0 1
1 1 1 0

1 0 0 0 3
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 2
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

1 0 0 0 0 4

For an arbitrary (infinite) overproduct Ωx0

é

Ωx1

é

Ωx2

é

Ωx3

é

. . ., we simply count in a
mixed-radix system with columns labeled by . . . , x3, x2, x1, x0.
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Back to the finite setting ...

We now consider combining Shuffles and Deals

and recover the setting for Alice & Bob’s game.
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Associahedra and Shuffles

The operad rpt of Rooted Planar Trees (– Riff ) has a (very) close connection with
the associahedra introduced by J. Stasheff in his PhD thesis (see also D. Tamari,
S. MacLane, J. Milnor).

Diagrams again ‘borrowed’ from T.-D. Bradley’s blog, www.math3ma.com.
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Our interpretation
The facets (vertices, edges, faces, etc.) of the associahedron Kn are simply n-leaf
rooted planar trees, or well-bracketed strings of symbols.

Mappings between facets arise as composites of deleting and inserting pairs of
brackets

In our setting ...

We interpret

“facets of Kn” as “shuffles of n decks of cards”

which leads to

“mappings between facets” as “bijections on the natural numbers”.

We derive bijections on the natural numbers that,

“rearrange the result of one shuffle into that of another”,

and consider these to live within IN, the symmetric inverse monoid.
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Mappings between shuffles / facets?

Give Φ,Ψ P Riff k , re-arranging the result of Φ into that of Ψ is performed by a bijection
on N

NZ . . .Z N

Φ

%%

Ψ

yy
N N

ΨΦ´1
oo

A definition

We define the k -deck rearrangements

R1 ãÑ R2 ãÑ R3 ãÑ R4 ãÑ . . .

to be the inclusion-ordered sequence of sets of bijections given by :

Rk “ tΨΦ´1 : Ψ,Φ P Riff ku Ď IN

giving the rearrangements as their union, R “
Ť8

j“1 Rj .
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Diagrammatics and sequences

We use the obvious diagrammatic notation for composites of

of shuffles & inverses of shuffles, such as :

The inclusion-ordering R1 ãÑ R2 ãÑ R3 ãÑ . . . then comes from

the identities IdN “ Ω2Ω2
´1

“ Ω3Ω´1
3 “ Ω4Ω´1

4 “ . . .

which may be drawn as : “ “ “ “ . . .

In general, for all S,T P Riffk , and X P Riff N

pS ˝r X qpT ˝r X q´1
“ ST´1

P IN
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Rearrangements in context

Each rearrangement is a (finite, disjoint) union of monotone partial injections :

taiN` bi ÞÑ ciN` diui“1...K

(with an obvious connection with Nivat & Perot’s polycyclic monoids).

They are bijective versions of congruential functions, defined in
“Unpredictable Iterations” – J. Conway (1971)

used to encode Turing machine halting problems (undecidability / universal
computability) on iterated functions systems such as Collatz’s operators.

They are also a very special form of congruential function, used in
“Functional equations associated with congruential functions”
— S. Berckel (1994)

to simplify & extend Conway’s result.

Historical question : Were Soviet mathematicians (e.g. S. Maslov / Y. Matiasevich) also aware of Conway’s / Berckel’s results ??
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Some illustrative examples

The simplest non-trivial example, K3, has two vertices, and one edge.

pp‚‚q‚q p‚p‚‚qqp‚‚‚q

Interpreted as card shuffles, we have

Left “ Ω2 ˝1 Ω2 Ω3 Right “ Ω2 ˝2 Ω2

Leftpn, iq “

$

’

’

’

’

&

’

’

’

’

%

4n i “ 0

4n ` 2 i “ 1

2n ` 1 i “ 2

Ω3pn, iq “

$

’

’

’

’

&

’

’

’

’

%

3n i “ 0

3n ` 1 i “ 1

3n ` 2 i “ 2

Rightpn, iq “

$

’

’

’

’

&

’

’

’

’

%

2n i “ 0

4n ` 1 i “ 1

4n ` 3 i “ 2
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Mapping between three-deck shuffles

pp‚‚q‚q p‚p‚‚qq//p‚‚‚qoo

α “ Left .Right´1 γL “ Left .Ω´1
3 γR “ Right .Ω´1

3

αpnq “

$

’

’

’

’

&

’

’

’

’

%

2n n pmod 2q “ 0

n ` 1 n pmod 4q “ 1

n´1
2 n pmod 4q “ 3

γLpnq “

$

’

’

’

’

&

’

’

’

’

%

4n
3 n pmod 3q “ 0

4n`2
3 n pmod 3q “ 1

2n´1
3 n pmod 3q “ 2

γRpnq “

$

’

’

’

’

&

’

’

’

’

%

2n
3 n pmod 3q “ 0

4n´1
3 n pmod 3q “ 1

4n`1
3 n pmod 3q “ 2

The associator The (left) Collatz bijection The (right) Collatz bijection
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Alice and Bob split the associator
The associator α and its inverse α´1 factor in a natural way, as

N N
γLoo N

γ´1
Roo

α

OO and N

α´1

��

γ´1
L

// N
γR

// N

where we may give γ´1
L and γ´1

R explicitly, as

γ´1
L pnq “

$

’

’

’

’

&

’

’

’

’

%

3n
4 n pmod 4q “ 0

3n´2
4 n pmod 4q “ 2

3n`1
2 n pmod 2q “ 1

and γ´1
R pnq “

$

’

’

’

’

&

’

’

’

’

%

3n
2 n pmod 2q “ 0

3n`1
4 n pmod 4q “ 1

3n´1
4 n pmod 4q “ 3

About the associator α :

1 It is an associativity isomorphism from category theory.
2 It is central to some logical models.
3 It is core to some well-known group theory, complexity theory, and cryptography.
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Elementary properties

For arbitrary rearrangments, we may write down some basic properties.

1 R1 “ R2 “ tIdNu.

2 Rk is closed under inverses : pTS´1
q
´1
“ pST´1

q

3 Rk is not closed under the composition of IN, for k ą 2.

4 A family of composites that are contained in Rk is

those of the form pUT´1
q pTS´1

q “ pUS´1
q , S,T ,U P Riff k

5 Each rearrangement is a homeomorphism w.r.t. the profinite topology.

6 There is a sequence of embeddings R1 ãÑ R2 ãÑ R3 ãÑ R4 ãÑ R5 ãÑ . . .
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A ’posetal’ property

Point 4 is the triviality that, for any three k -deck shuffles S,T ,U, the following diagram
commutes :

NZk

U

��

NZk
Id

NZkoo

T

��

NZk
Id

NZkoo

N N
UT´1

oo

T´1

EE

N
TS´1

oo

S´1

OO

However, recall the correspondence between shuffles and formal trees. We may also
interpret this as a functor / groupoid homomorphism.

A definition

Let us denote by RPT the groupoid whose objects are rooted planar trees, where
RPTpS,T q has a single element iff S,T have the same number of leaves,
and is empty otherwise.

There is then an obvious functor from RPT to IN.
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The obvious functor

We define the functor / homomorphism Γ : RPT Ñ IN as follows :

Objects ΓpT q “ N, for all trees T P ObpRPTq

Arrows Given k -leaf trees S,T P ObpRPTq, let us

Denote the unique arrow of RPTpS,T q by S Ñ T

Denote the interpretation of S,T as shuffles by
xSy, xT y : NZk

Ñ N.

Using this notation, ΓpS Ñ T q “ xT yxSy
´1

Functoriality follows rather trivially!

However, we may

1 interpret formal tree re-arrangements as bijections on the natural numbers,

2 build commuting diagrams, based on associahedra, over IN.
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Commuting diagrams ...

Arbitrary paths through Kn may be labeled by elements of Rn.

The composite along any two paths with the same source and target is the same.

The sequence of inclusions R1 ãÑ R2 ãÑ R3 ãÑ R4 ãÑ . . . means that

each path in Kn determines multiple paths in Kn`a, with the same labels.
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A question of emhpasis

The (Computer Science?) interpretation as congruential bijections is “untyped” — we
consider paths between arbitrary facets of arbitrary associahedra.

This is in contrast to :

Algebra It is common to consider mappings defined by trees where all
branchings have the same arity (binary trees, ternary trees, etc.)

The polycyclic monoids & Thompson groups revisited
— M. V. Lawson (2020)

Category theory / coherence This studies mappings between trees with the same
geometric interpretation (vertices, edges, faces, etc.)

A survey of definitions of n-categories — T. Leinster (2001)

Where algebra meets category theory meets logic ...

The algebraic and categorical approaches are distinct, except when considering
1-skeletons (vertices & edges) of associahedra – mappings between binary trees.
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A relevant reference or two ...

Via two different routes, we arrive at the same place :

Category Theory A categorical characterisation of Thompson’s group F
– M. Fiore, T. Leinster (2010)

Algebra The Polycyclic Monoids & The Thompson Groups”
– M. Lawson (2007)

The key result ...

As a corollary of either of these, the congruential functions derived from the
sub-operad of binary trees form a group : Richard Thompson’s group F .

These correspond to mappings between vertices of associahedra.

Questions :
1 Can we characterise (algebraically or categorically) mappings between adjacent

vertices?
2 Can we express Thompson’s F as a group generated by Collatz bijections?
3 What is the connection with category theory?
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Time for a definition!

Abstractly, it may be defined as the group with:

A countably infinite set of generators tx0, x1, x2, . . .u

Relations given by
x´1

k xnxk “ xn`1 for all k ă n

Other presentations are possible, but this is the most standard (pun intended).

It also has a particularly relevant description as :

– pairs of binary trees with the same number of leaves.

which we naturally interpret as

– pairs of vertices on the same associahedron.

– pairs of shuffles in the sub-operad of Riff generated by Ω2.
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A graphical illustration
In, for example, José Burillo’s book “Introduction to Thompson’s group F”, we find the
key notion of equivalence that accounts for both deciding equality, and composition.

Given binary trees R,S,T , then composition satisfies pT ,SqpS,Rq “ pT ,Rq.
We should think of equivalence classes of trees

is equivalent to

From our viewpoint ..

1 One of these pairs is upside down

2 They should be connected at the leaves.

3 The key ‘eliminating matching carets’ step “ is the first in a series of

identities giving inclusions of rearrangements

R1 ãÑ R2 ãÑ R3 ãÑ R4 ãÑ . . .
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Standard theory & explicit calculations ...

It is well-known (e.g. Burillo’s book) that two pairs of
trees are enough to generate the whole of F

ð ð

n ÞÑ

$

’

’

’

’

&

’

’

’

’

%

2n n pmod 2q “ 0

n ` 1 n pmod 4q “ 1

n´1
2 n pmod 4q “ 3

n ÞÑ

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

n n pmod 2q “ 0

2n ´ 1 n pmod 4q “ 1

n ` 2 n pmod 8q “ 3

n´1
2 n pmod 8q “ 7

This is the associator α.
How to describe this?
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We need some category theory ...
It is by now folklore (i.e. rediscovered many times) that :

Given a (non-abelian) monoid with a categorical tensor, the associativity isomorphisms
form an isomorphic copy of F .

A non-comprehensive list :

R. McKenzie, R. Thompson (1971): Close connection between Thompson’s group F , and associativity laws

PMH, M. V. Lawson (1998) A class of associativity isomorphisms via inverse semigroup theory.

K. Brown (2004) A group homomorphism ‹ : F ˆ F Ñ F that is associative up to conjugation by some fixed element.

P. Dehornoy (2005) ‘The only [non-trivial] relations in this presentation of F correspond to the well-known MacLane-Stasheff pentagon.’

M. Brinn (2005) ‘the resemblance of the usual coherence theorems with Thompson’s group F ’.

M. V. Lawson (2006) The associativity isomorphisms from inverse semigroup theory form a copy of F .

M. Fiore, T. Leinster (2010) Thompson’s group F is the symmetry group of an idempotent U in the free strict monoidal category generated by U.
(Equivalently, F is the free semi-monoidal category with one object).

PMH (2016) “In the free case, this group [of asociators] is Thompson’s F .”

What is the monoid / tensor associated with this
description of F as congruential bijections ??
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Shuffles in conjunction
In his “Geometry of Interaction” series of papers, Jean-Yves Girard gave
representations of (various fragments of) Linear Logic, within IN,
the symmetric inverse monoid on the natural numbers.

Particularly relevant is the model of conjunction found in
“Geometry of Interaction (I) : interpretation of System F” (1989)

Given partial injections f , g P IN, define rf ‹ gspnq “

$

&

%

2.f
` n

2

˘

n even,

2.g
` n´1

2

˘

` 1 n odd.
.

This is an injective homomorphism / categorical tensor

His ‘conjunction’ r ‹ s : IN ˆ IN Ñ IN satisfies :

rf ‹ gsrh ‹ ks “ fh ‹ gk .

rId ‹ Ids “ Id

rf ‹ gs´1
“

“

f´1
‹ g´1‰
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Thinking concretely

An operational view

1 Deal a deck of cards into two stacks, using Ω2
´1.

2 Apply f to Deck 0 and g to Deck 1.
3 Merge the results, using the riffle shuffle Ω2.

We draw this in the natural way as rf ‹ gs “ f g and interpret bracketing as tree

structure, so rf ‹ rg ‹ hss is given by f g ˚ h

. . .

. . .

= f g h
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Associators for Girard’s conjunction

Note that r ‹ s is not associative. In general, rf ‹ rg ‹ hss ‰ rrf ‹ gs ‹ hs.

A general principle :

No injective homomorphism M ˆM Ñ M on a non-abelian monoid can satisfy this
condition.

“Coherence and Strictification for Self-Similarity”
(PMH) Journal of Homotopy & Related Structures 2016

Instead, it is associative ‘up to conjugation by a fixed element’

rrf ‹ gs ‹ hs “ α rf ‹ rg ‹ hss α´1

This ‘fixed element’ is the associator α “ γLγ
´1
R derived from K3.

It is one of the two generators of F .

The other generator of F is simply rId ‹ αs.
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Mapping between adjacent vertices?

The connection between associativity isomorphisms and the 1-skeletons (i.e. vertices
and edges) of associahedra is well-known :

“Given any n objects of a monoidal category, the associativity isomor-
phisms give a [commuting] diagram whose shape is the 1-skeleton of Kn”

— M. Kapranov (1993)

What about when the category in question only has one object??

All vertices are labeled by the same object — and paths between them are labeled by
members of the same group (i.e. Thompson’s F) of associativity isomorphisms.

In our setting: Each associahedron Kn determines a commuting diagram of
congruential bijections on N.
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How this is done ...

For each edge of Kn between n-leaf binary trees T1 and T2 :

First choose a direction
T1

~~
T2

(It is usual to base this on the Tamari ordering)

Label the edge by the ‘corresponding rearrangement’
T1

xT2yxT1y´1~~
T2

Finally, replace every vertex by the natural numbers
N

xT2yxT1y´1��
N
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K4 — MacLane’s pentagon

N

N

N

N

N

COMMUTES

α

α

Id ‹ α

α

α ‹ Id

n ÞÑ

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

4n n pmod 2q “ 0

n ` 2 n pmod 4q “ 1

n`1
2 n pmod 8q “ 3

n´3
4 n pmod 8q “ 2

We may check arithmetically ...

This is MacLane’s famous pentagon condition : α2
“ pα ‹ IdqαpId ‹ αq

Question : In arbitrary associahedra, which elements of F end up labeling edges?
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A non-minimal generating set

Recall : Two vertices are adjacent iff (equivalently)

1 We may remove a pair of brackets from each to get the same edge-label
p‚p‚‚qq +3 p‚ ‚ ‚q pp‚‚q‚qks

2 We may map one to the other by a single rebracketing. ð

The “symmetric generating set” of F

Introduced by P. Dehornoy (2011), and may be characterised by

“Pairs of trees that differ by a single rotation [application of associativity]”

— this precisely captures mappings between adjacent vertices.
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Characterising Dehornoy’s generators, categorically

P. Dehornoy introduced his generating set in terms of “indexings of subtrees by finite
binary sequences”.

We may understand these categorically, via Girard’s tensor :

An inductive definition

We characterise Dehornoy’s generators D by
1 α P D.
2 Given d P D, then r1 ‹ ds , rd ‹ 1s P D.

i.e. The closure of the associator under the functors rId ‹ s and r ‹ Ids.

We may then interpret his binary strings as describing repeated applications of the
injective homomorphisms rId ‹ s , r ‹ Ids : IN Ñ IN to the associator α.

Thompson’s F is the free, monogenic, monoid-with-tensor.
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A fun application ...

Associahedra & operads in cryptography

Two questions :
1 Would it be wise to base a cryptosystem on a “free monogenic structure”?
2 What – if anything – is the connection between

1 Thompson’s group F
2 Prime factorisations?
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Some relevant references :

Combinatorial group theory and public key cryptography
V. Shpilrain & G. Zapata (2004)
Commuting Action Key Exchange (CAKE) – a generic proposal for cryptosystems
based on algebraic structures.

Thompson’s group F and Public Key Cryptography
— V. Shpilrain & A. Ushakov (2004)
“This group has several properties that make it particularly fit for cryptographic
purposes”

The Shpilrain-Ushakov Protocol is always breakable
— F. Matucci (2006)

Length-Based Cryptanalysis: the case of Thompson’s group
— Ruinskiy, Shamir, Tsaban (2007)
“no practical public key cryptosystem based on the difficulty of solving an
equation in this group can be secure.”
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Why study a dead protocol??

One interesting comment needs to be considered :

The difficulty of solving equations “resembles the factorization problem at
the heart of the RSA cryptosystem.” — Shpilrain & Ushakov (2004)

The combination of always breakable and resembles RSA should perhaps be
investigated further ...

Some significant previous work

“Arithmetree” (2001) — J.-L. Loday’s non-commutative arithmetic based on
associahedra and planar trees.

“The arithmetic of trees” (2008) – A. Bruno, D. Yasaki consider primes &
factorisations within Loday’s system.

Is it possible that Thompson’s F , in a disguised manner, is manipulating prime
factorisations?
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Labeling K4 with (ordered) finite open covers of N
Our starting point is labeling K4 (the whole of it .. not just MacLane’s pentagon) with
ordered finite open covers of N

2N, 4N ` 1,
8N ` 3, 8N ` 7.

4N, 4N ` 2,
4N ` 1, 4N ` 3.

8N, 8N ` 4,
4N ` 2, 2N ` 1.

4N, 8N ` 2,
8N ` 6, 2N ` 1.

2N, 8N ` 1,
8N ` 5, 4N ` 3.

4N, 4N ` 1,
4N ` 2, 4N ` 3.

3N, 3N ` 1,
6N ` 2, 6N ` 4.

6N, 6N ` 3,
3N ` 1, 3N ` 2.

2N, 6N ` 1,
6N ` 3, 6N ` 5.

3N, 6N ` 1,
6N ` 4, 3N ` 2.

6N, 6N ` 2,
6N ` 4, 2N ` 1.

This makes it easy to just write down the rearrangements.
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Particularly simple rearrangements

2N, 4N ` 1,
8N ` 3, 8N ` 7.

4N, 4N ` 2,
4N ` 1, 4N ` 3.

8N, 8N ` 4,
4N ` 2, 2N ` 1.

4N, 8N ` 2,
8N ` 6, 2N ` 1.

2N, 8N ` 1,
8N ` 5, 4N ` 3.

4N, 4N ` 1,
4N ` 2, 4N ` 3.

3N, 3N ` 1,
6N ` 2, 6N ` 4.

6N, 6N ` 3,
3N ` 1, 3N ` 2.

2N, 6N ` 1,
6N ` 3, 6N ` 5.

3N, 6N ` 1,
6N ` 4, 3N ` 2.

6N, 6N ` 2,
6N ` 4, 2N ` 1.

n ÞÑ

$

&

%

n ` 1 n pmod 4q “ 1
n ´ 1 n pmod 4q “ 2
n otherwise.

One rearrangement stands out as particularly simple.
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Additive rearrangements on N

A rearrangement θ is K -additive for some K ą 0 when there exists some set of
integers t´K ă xi ă K ui“0..K´1 Ď Z such that

θpnq “ n ` xj @ n pmod K q “ j

Simple properties :

θ is K -additive ñ
1 θpK ` nq “ K ` θpnq, for all n P N.
2 it is also KT -additive, for all T ą 0.
3 it is uniquely determined by its action on t0, . . . ,K ´ 1u.
4 the orbit of every natural number under θ is bounded. For all n P N,

θL
pnq “ n for some L ď K
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Another monoid operation on operads
For all A P Riff m and B P Riff n, we define Ab B P Riff mˆn to be the result of

“Grafting a copy of B onto every leaf of A.”

Formally : Ab B “ pp. . . ppA ˝m Bq ˝m´1 Bq ˝m´2 . . .q ˝1 Bq.

Note that b is strictly associative and has an identity; pX ,bq is a monoid.

Remark : We may think of this as a (strict) categorical tensor on the groupoid RPT

Illustrative example :

The operation Ω2 b Ω3 b Ω2 P Riff 12 is given by

This is determined by the ordered factorisation 12 “ 2ˆ 3ˆ 2.
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Rearrangements from prime factorisations

Consider distinct primes P ‰ Q P N, together with the associahedron KPQ .

The shuffles ΩP b ΩQ P Riff PQ and ΩQ b ΩP P Riff PQ are then distinct facets

of the associahedron KPQ , and there are (non-identity) paths between them.

Proposition The composite along any such path is an additive rearrangement.

(Outline) Proof : From the explicit description of members of Riff ,

pΩP b ΩQqpn, iq “ PQn ` σpiq and pΩQ b ΩPqpn, iq “ QPn ` τpiq

for some distinct permutations σ, τ on t0, . . . ,PQ ´ 1u.

Composing gives,

pΩP b ΩQqpΩQ b ΩPq
´1
pnq “ PQ

ˆ

n ´ τpiq
QP

˙

` σpiq “ n ` pσpiq ´ τpiqq

for some 0 ď i ă PQ
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Can F be manipulating such factorisations?

Not all additive rearrangements in Kn come from (ordered) prime factorisations of n.
Every associahedron Kně4 has paths labeled by additive rearrangements, simply
because R4 ãÑ R5 ãÑ R6 ãÑ . . .

Question : Can any of these live on the 1-skeleton – and thus form part of
Thompson’s F , and so play a rôle in the Shpilrain-Ushakov protocol ?

The only additive rearrangement in F is the identity

Binary trees where the all leaf-edge paths have the same length are of the form
Ω2 b Ω2 b . . . b Ω2 — we get at most one per associahedron.

An interesting (Collatz / Conway -style) distinction ?

The orbit of every natural number, under a rearrangement determined by a prime
factorisation, is bounded.

(“Conjecture”) The torsion-freeness of F implies that for every element f ‰ I P F ,
there exists some x P N whose orbit under f is unbounded.
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Rearrangements as canonical
coherence isomorphisms

In ‘traditional’ settings the Collatz operators are hidden

— they occur in matching pairs that make up the associator.

When we move beyond the 1-skeleton, this is no longer the case!
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A Commuting Pentagram
Let us take MacLane’s pentagon over Thompson’s F , with Girard’s conjunction, and
add in the factorisation of the associator as Collatz bijections :

N

N

N

N

N

N

N

N

N

N

COMMUTES

α

γ´1
R

γL

α

γ´1
R

γL

I ‹ α

I ‹ γ´1
R

I ‹ γL

α

γ´1
R

γL

α ‹ I

γ´1
R ‹ I

γL ‹ I

(i.e. including the rearrangements between vertices and edges).
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A Commuting Pentagram

Looking at the inner pentagon, we recover the rearrangements between edges :

N

N

N

N

N

N

N

N

N

N

COMMUTES

α

γ´1
R

γL

α

γ´1
R

γL

I ‹ α

I ‹ γ´1
R

I ‹ γL

α

γ´1
R

γL

α ‹ I

γ´1
R ‹ I

γL ‹ I
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Another commuting Pentagon

A commuting diagram of rearrangements between edges :

N

N

N

N

N

COMMUTES

γ´1
R γL “ α´1

pγ´1
L ‹ IqγL

γ´1
R pI ‹ γRq

γ´1
R pI ‹ γLq

pγR ‹ IqγL
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A suitable setting ??

We could continue, and consider :

Mappings between edges in arbitrary Kn,

Mappings between higher-dimensional facets (faces, volumes, etc.) of Kn

It is worthwhile to take a more structural approach, and ask :
For what setting is this describing a form of coherence?

The route to this is through generalising Girard’s conjunction

When viewed in terms of card shuffles, it is natural to consider Girard’s conjunction to
be the first of a series of homomorphic embeddings

k times
hkkkkkkikkkkkkj

r ‹ . . . ‹ s : pINq
ˆk

ãÑ IN for all k P N

and indeed, view these as defining an operad.
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Generalising conjunctions

We generalise Girard’s conjunction to the following injective homomorphisms, given by
conjugation by ΩK .

f g f g h

. . .

. . .

. . .

. . .

. . .

f0 f1
. . .

fk

The intuition :

A deck of cards is split into k decks using the deal Ω´1
k . Maps f0, f1, . . . , fk´1 are

applied to the respective decks, which are then shuffled together using ΩK .

Writing this out explicitly,

rf0 ‹ f1 ‹ . . . ‹ fk´1spnq “ k .fr
´n ´ r

k

¯

` r where n pmod kq “ r

Each of these defines an injective inverse semigroup homomorphism.
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Generalised conjunctions as an operad

Define BOB, the operad of Bobzien Conjunctions4 BOB to be generated by

tId , r ‹ s , r ‹ ‹ s , r ‹ ‹ ‹ s , . . .u

It is a sub-operad of the endomorphism operad of IN in the monoidal category pInv,ˆq
of inverse monoids with Cartesian product.

Note : it is freely generated by one generator of each arity.

4As an explanation for the terminology, please see “The Combinatorics of Stoic Conjunction”,
S. Bobzien, Oxford Studies in Ancient Philosophy (2011)
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The key properties

1 Bobzien Conjunctions preserve compositions & identities.

Yes – they are homomorphisms!
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The key properties

1 Members of BOB preserve compositions & identities.

2 The set R of rearrangements is closed under members of BOB.

Outline :

We only need to show this for generators of BOB.

Consider some TS´1
P RN along with ΩK P Riff k . Then by definition

rId ‹ . . . ‹ pTS´1
q ‹ ¨ ¨ ¨ ‹ Ids “ pΩK ˝j T qpΩK ˝j Sq´1

for some 0 ď j ă k ; this is a member of RN`k´1.

We may then appeal to the fact that r ‹ . . . ‹ s is a homomorphism.
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The key properties
1 Members of BOB preserve compositions & identities.

2 The set of rearrangements is closed under members of BOB.

3 Arbitrary re-bracketings arise via conjugation by members of R.

This is by construction.

In BOB2,BOB3 we have :

rebracketing via the associator αrf ‹ rg ‹ hssα´1
“ rrf ‹ gs ‹ hs

removing brackets via the right Collatz operator

γ´1
R rf ‹ rg ‹ hssγR “ rf ‹ g ‹ hs

adding brackets via (the inverse of) the left Collatz operator

γLrf ‹ g ‹ hsγ´1
L “ rrf ‹ gs ‹ hs
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The key properties

1 Members of BOB preserve compositions & identities.

2 The set of rearrangements is closed under members of BOB.

3 Arbitrary re-bracketings arise via conjugation by members of R.

4 Rebracketings are unique.

Consider Γ ‰ ∆ P BOBk , and λ, µ P Rk that satisfy

λ´1Γp , . . . , qλ “ ∆p , . . . , q “ µ´1Γp , . . . , qµ

Then here exist some P,Q P Riff k such that

Γp , . . . , q “ Pp , . . . , qP´1 and ∆ “ Qp , . . . , qQ´1

As the operad Riff is freely generated, λ “ QP´1
“ µ
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The key properties

1 Members of BOB preserve compositions & identities.

2 The set R of rearrangements is closed under members of BOB.

3 Arbitrary re-bracketings arise via conjugation by members of R.

4 Rebracketings are unique.

5 All diagrams over R determined by paths through associahedra
are guaranteed to commute.

— this was our starting point.
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A final question!
The operad BOB of Bobzien Conjunctions is isomorphic to

The formal operad of rooted planar trees

Riff , the operad of hierarchical riffle shuffles.

Can we label the facets of the associahedron Kn by the generalised
conjunctions in BOBn, consider mappings between these,

and start the whole process again??

No : Bobzien Conjunctions are injections, but not isomorphisms.

A very bizarre fact

In a more general setting (i.e. Rings, rather than inverse semigroups) we may do
exactly that.

“An Application of Polycyclic Monoids to Rings” — PMH , M. V. Lawson (1996)

gives necessary and sufficient conditions for a ring R to be isomorphic to all matrix
rings MnpRq, for n ą 0 P N. These arise directly from the bijections found in Riff .
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