INDEPENDENCE ALGEBRAS or v*-ALGEBRAS

Victoria Gould

1. MOTIVATION

For further reading on the background for v^* -algebras I recommend 'The origins of independence algebras' by J. Araujo and J. Fountain, DOI No: 10.1142/97898127026160004

Similarities between End V (V vector space over division ring) and $\mathcal{T}(X)$:

 \exists a natural definition of rank : for $\alpha \in \text{End } \mathbf{V}$, rank α is dim(Im α) and for $\alpha \in \mathcal{T}(X)$, rank α is $|\text{Im } \alpha|$.

Let $m \leq n \in \mathbb{N}$ and let $T = \text{End } \mathbf{V}$ (dim V = n) or \mathcal{T}_X , (|X| = n). Let $T_m = \{\alpha \in T : \dim \alpha \leq m\}.$

Then T_m is an ideal. We have

$$T_0 \subset T_1 \subset \ldots \subset T_n$$

and these are the *only* ideals of T and for $m \ge 1$ the Rees quotient

$$T_m/T_{m-1}$$

is completely 0-simple. Further, if

$$E = \{ \alpha = \alpha^2 : \text{rank } \alpha < n \}$$

then

$$\langle E \rangle = T_{n-1}$$

(for V this is due to Erdös and Reynolds and Sullivan, for \mathcal{T}_X due to Howie.)

2. CLOSURE OPERATORS AND MATROIDS

Let A be a set and $C : \mathcal{P}(A) \to \mathcal{P}(A)$. Then C is a *closure operator* on A if for all $X, Y \in \mathcal{P}(A)$:

(i)
$$X \subseteq C(X)$$
;

(ii) if $X \subseteq Y$ then $C(X) \subseteq C(Y)$;

(iii)
$$C(X) = C(C(X))$$
.

Condition (i) says that C is extensive, condition (ii) that C is order preserving and condition (ii) that C is idempotent.

Let \mathbf{A} be any algebra, then

$$\operatorname{Sg}^{\mathbf{A}}: \mathcal{P}(A) \to \mathcal{P}(A)$$

is a closure operator on A, where

$$X \mapsto \mathrm{Sg}^{\mathbf{A}}(X) = \langle X \rangle$$

 $\operatorname{Sg}^{\mathbf{A}}(\emptyset) = \emptyset$ iff **A** has no constants.

A closure operator C on a set B is *algebraic* if for all $X \subseteq B$

$$C(X) = \bigcup \{ C(Y) : Y \subseteq X, |Y| < \infty \}.$$

Clearly $Sg^{\mathbf{A}}$ is an *algebraic closure operator*.

Definition The *exchange property* (EP) for a closure operator C on a set A is defined as follows:

(EP) For all $X \subseteq A$ and $x, y \in A$, if $x \notin C(X)$ but $x \in C(X \cup \{y\})$, then $y \in C(X \cup \{x\})$.

Definition A set A with an algebraic closure operator with (EP) is a matroid. there are many equivalent ways of defining a matroid.

Examples (1) **V** vector space. We have

$$\langle X \rangle = \{\lambda_1 x_{i_1} + \dots \lambda_n x_{i_n} : n \in \mathbb{N}, \lambda_i \in D, x_{i_j} \in X\}$$

Let

$$x \in \langle X \cup \{y\} \rangle$$
 but $x \notin \langle X \rangle$

Then

$$x = \lambda_1 x_{i_1} + \dots + \lambda_n x_{i_n} + \lambda y$$

for $\lambda, \lambda_i \in D, x_{i_j} \in X$. Note $\lambda \neq 0$. Then

$$y = \frac{1}{\lambda}x + \frac{-\lambda_1}{\lambda}x_{i_1}\dots + \frac{-\lambda_n}{\lambda}x_{i_n} \in \langle X \cup \{x\} \rangle.$$

(2) Let X be a set - it is an algebra with no operations. Then

$$\langle X \rangle = X$$

so if

$$x \in \langle X \cup \{y\} \rangle$$
 but $x \notin \langle X \rangle$

then

$$y = x \in \langle X \cup \{x\} \rangle.$$

(3) A a G-act on a set A over a group G. We have

$$\langle X \rangle = \bigcup_{x \in X} Gx$$

so if

$$x \in \langle X \cup \{y\} \rangle$$
 but $x \notin \langle X \rangle$

then

$$x = gy$$

for some $g \in G$, hence

$$y = g^{-1}x \in \langle X \cup \{y\} \rangle.$$

If G is trivial, then effectively, \mathbf{A} is a set

3. INDEPENDENCE ALGEBRAS

The next ingredient of our approach to the definition of an independence algebra is that of an independent subset.

Definition Let C be a closure operator on a set A, and let $X \subseteq A$. Then X is C-independent if for all $x \in X$, $x \notin C(X \setminus \{x\})$.

If **A** is an algebra then we refer to $Sg^{\mathbf{A}}$ -independent sets more simply as *independent* sets.

Example (1) The independent subsets of \mathbf{V} are the linearly independent subsets. (2) For sets, every subset is independent.

(3) A a G-set, then X is independent iff X contains at most one element from each orbit, that is, $|X \cap Gx| \leq 1$ for each $x \in S$.

Fact Let C be an algebraic closure operator with (EP) on a set A, and let $Y \subseteq X \subseteq A$. Then the following conditions are equivalent:

- (i) Y is a maximal C-independent subset of X;
- (ii) Y is C-independent and C(Y) = C(X);

(iii) Y is minimal with respect to C(Y) = C(X).

Definition Let **A** be an algebra. A *basis* of A is a minimal generating set. So, if (EP) holds for \langle, \rangle , them a basis is also a maximum independent set.

Definition An algebra \mathbf{A} algebra has the *free basis* property if (F) holds:

(F) For any basis X of A and function $\alpha : X \to A$, α can be extended to an element of End **A**.

Definition An algebra \mathbf{A} is an independence algebra if it has (EP) and (F).

Examples of Independence algebras (1) V

(2) X a set - a basis is just X.

(3) A basis of a G-set **A** is a transversal X of orbits. If $\alpha : X \mapsto A$, can extend $\alpha : A \mapsto A$ by putting $gx \mapsto g(x\alpha)$.

Definition Let C be an algebraic closure operator with (EP) on a set X. The C-rank of X, written $\rho_C(X)$, is |Y|, where Y is a maximal C-independent subset of X.

Fact ρ_C is well-defined.

4. The results

Let **A** be an independence algebra. Write ρ for $\rho_{\langle,\rangle}$.

Definition Let $\alpha \in \text{End } \mathbf{A}$. The *rank* of α is $\rho(\text{Im } \alpha)$.

Theorem (G) Let **A** be an independence algebra of rank n. Let $m \leq n \in \mathbb{N}$ and let

 $T_m = \{ \alpha \in \text{ End } \mathbf{A} : \dim \alpha \le m \}.$

Then T_m is an ideal of End **A**. We have

$$T_0 \subset T_1 \subset \ldots \subset T_n$$

and these are the *only* ideals of End A. For $m \ge 1$ the Rees quotient

$$T_m/T_{m-1}$$

is completely 0-simple.

Theorem (Fountain and Lewin) Further, if

$$E = \{ \alpha = \alpha^2 : \text{rank } \alpha < n \}$$

then

 $\langle E \rangle = T_{n-1}.$