
INDEPENDENCE ALGEBRAS or v∗-ALGEBRAS

Victoria Gould

1. Motivation

For further reading on the background for v∗-algebras I recommend ‘The origins
of independence algebras’ by J. Araujo and J. Fountain, DOI No:
10.1142/97898127026160004

Similarities between End V (V vector space over division ring) and T (X):

∃ a natural definition of rank : for α ∈ End V, rank α is dim(Im α) and for
α ∈ T (X), rank α is |Im α|.

Let m ≤ n ∈ N and let T = End V (dim V = n) or TX , (|X| = n). Let

Tm = {α ∈ T : dim α ≤ m}.

Then Tm is an ideal. We have

T0 ⊂ T1 ⊂ . . . ⊂ Tn

and these are the only ideals of T and for m ≥ 1 the Rees quotient

Tm/Tm−1

is completely 0-simple. Further, if

E = {α = α2 : rank α < n}

then
〈E〉 = Tn−1

(for V this is due to Erdös and Reynolds and Sullivan, for TX due to Howie.)

2. Closure operators and matroids

Let A be a set and C : P(A) → P(A). Then C is a closure operator on A if for all
X, Y ∈ P(A):
(i) X ⊆ C(X);
(ii) if X ⊆ Y then C(X) ⊆ C(Y );
(iii) C(X)=C(C(X)).

Condition (i) says that C is extensive, condition (ii) that C is order preserving and
condition (ii) that C is idempotent.
Let A be any algebra, then

SgA : P(A) → P(A)

is a closure operator on A, where

X 7→ SgA(X) = 〈X〉.

SgA(∅) = ∅ iff A has no constants.
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A closure operator C on a set B is algebraic if for all X ⊆ B

C(X) =
⋃

{C(Y ) : Y ⊆ X, |Y | < ∞}.

Clearly SgA is an algebraic closure operator.

Definition The exchange property (EP) for a closure operator C on a set A is
defined as follows:
(EP) For all X ⊆ A and x, y ∈ A, if x /∈ C(X) but x ∈ C(X ∪ {y}), then

y ∈ C(X ∪ {x}).

Definition A set A with an algebraic closure operator with (EP) is a matroid.
there are many equivalent ways of defining a matroid.

Examples (1) V vector space. We have

〈X〉 = {λ1xi1 + . . . λnxin : n ∈ N, λi ∈ D, xij ∈ X}.

Let
x ∈ 〈X ∪ {y}〉 but x /∈ 〈X〉.

Then
x = λ1xi1 + . . . λnxin + λy

for λ, λi ∈ D, xij ∈ X. Note λ 6= 0. Then

y =
1

λ
x+

−λ1

λ
xi1 . . .+

−λn

λ
xin ∈ 〈X ∪ {x}〉.

(2) Let X be a set - it is an algebra with no operations. Then

〈X〉 = X

so if

x ∈ 〈X ∪ {y}〉 but x /∈ 〈X〉

then
y = x ∈ 〈X ∪ {x}〉.

(3) A a G-act on a set A over a group G. We have

〈X〉 =
⋃

x∈X

Gx

so if
x ∈ 〈X ∪ {y}〉 but x /∈ 〈X〉

then
x = gy

for some g ∈ G, hence
y = g−1x ∈ 〈X ∪ {y}〉.

If G is trivial, then effectively, A is a set
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3. Independence algebras

The next ingredient of our approach to the definition of an independence algebra
is that of an independent subset.

Definition Let C be a closure operator on a set A, and let X ⊆ A. Then X is
C-independent if for all x ∈ X, x /∈ C(X \ {x}).

If A is an algebra then we refer to SgA-independent sets more simply as independent
sets.

Example (1) The independent subsets of V are the linearly independent subsets.
(2) For sets, every subset is independent.
(3) A a G-set, then X is independent iff X contains at most one element from each
orbit, that is, |X ∩Gx| ≤ 1 for each x ∈ S.

Fact Let C be an algebraic closure operator with (EP) on a set A, and let Y ⊆ X ⊆
A. Then the following conditions are equivalent:
(i) Y is a maximal C-independent subset of X;
(ii) Y is C-independent and C(Y ) = C(X);
(iii) Y is minimal with respect to C(Y ) = C(X).

Definition Let A be an algebra. A basis of A is a minimal generating set.
So, if (EP) holds for 〈, 〉, them a basis is also a maximum independent set.

Definition An algebra A algebra has the free basis property if (F) holds:
(F) For any basis X of A and function α : X → A, α can be extended to an

element of End A .

Definition An algebra A is an independence algebra if it has (EP) and (F).

Examples of Independence algebras (1) V
(2) X a set - a basis is just X.
(3) A basis of a G-set A is a transversal X of orbits. If α : X 7→ A, can extend

α : A 7→ A by putting gx 7→ g(xα).

Definition Let C be an algebraic closure operator with (EP) on a set X. The
C-rank of X, written ρC(X), is |Y |, where Y is a maximal C-independent subset of
X.

Fact ρC is well-defined.
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4. The results

Let A be an independence algebra. Write ρ for ρ〈 , 〉.

Definition Let α ∈ End A. The rank of α is ρ(Im α).

Theorem (G) Let A be an independence algebra of rank n. Let m ≤ n ∈ N and
let

Tm = {α ∈ End A : dim α ≤ m}.

Then Tm is an ideal of End A. We have

T0 ⊂ T1 ⊂ . . . ⊂ Tn

and these are the only ideals of End A. For m ≥ 1 the Rees quotient

Tm/Tm−1

is completely 0-simple.

Theorem (Fountain and Lewin) Further, if

E = {α = α2 : rank α < n}

then
〈E〉 = Tn−1.


