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Abstract

We introduce partial actions of weakly left E-ample semigroups, thus extending both the notion of
partial actions of inverse semigroups and that of partial actions of monoids. Weakly left E-ample
semigroups arise very naturally as subsemigroups of partial transformation semigroups which are closed
under the unary operation α 7→ α+, where α+ is the identity map on the domain of α. We investigate
the construction of ‘actions’ from such partial actions, making a connection with the FA-morphisms of
Gomes. We observe that if the methods introduced in the monoid case by Megrelishvili and Schröder, and
by the second author, are to be extended appropriately to the case of weakly left E-ample semigroups,
then we must construct not global actions, but so-called incomplete actions. In particular, we show that a
partial action of a weakly left E-ample semigroup is the restriction of an incomplete action. We specialize
our approach to obtain corresponding results for inverse semigroups.
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Keywords and phrases: augmented action, expansion, incomplete action, inverse semigroup, partial
action, premorphism, weakly left E-ample semigroup.

1. Introduction

Partial monoid actions were introduced by Megrelishvili and Schröder in [22] as a
generalization of the partial group actions of Kellendonk and Lawson [17]. The
authors of [22] considered the partial actions of monoids first on sets and then on
topological and metric spaces. In each instance, they demonstrated that such partial
actions can always be globalized, that is, given the partial action of a monoid M
on a set/space X , we can always construct a larger set/space Y upon which M
acts globally. Consequently, monoid partial actions are precisely restrictions (in an
appropriate sense) of global actions, a fact which indicates both their importance and
the naturalness of the concept.

The study of the partial actions of monoids was taken up in [13], in which it was
shown that the partial monoid actions of Megrelishvili and Schröder (termed strong
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partial actions) are equivalent to a class of mappings called strong premorphisms,
a notion adapted from the work of Kellendonk and Lawson [17] in the group case.
This equivalence is analogous to that between morphisms and global actions. In
terms of strong premorphisms, Megrelishvili and Schröder’s result on globalization
can be phrased thus: given a strong premorphism θ : M→ P T X (where P T X
is the partial transformation monoid on the set X ), we can always find a larger
set Y ⊇ X and a monoid morphism ϕ : M→ TY such that sθ = ι(sϕ)ι−1, for each
s ∈ M , where ι : X→ Y is inclusion. Conversely, given a monoid morphism ϕ :

M→ TY , we can ‘restrict’ ϕ to any subset X of Y to obtain a strong premorphism
θ : M→ P T X .

In the group case, Kellendonk and Lawson [17], and independently Exel [4], present
a second method for constructing an action from a partial action: the expansion
method, in which the set being acted upon is fixed, whilst the group is modified
by taking an expansion, in the sense of Birget and Rhodes [3]. This method has
subsequently been generalized to the monoid case in [13]. In both [17] and [13],
the expansion of choice was the Szendrei expansion of [7, 30].

The partial transformation monoid P T X is a weakly left E-ample semigroup, where
the ‘E’ refers to a particular semilattice (in this case, the semilattice of partial identities
on X ; for details, see Section 2). Indeed, any weakly left E-ample semigroup S
is a (2,1)-subalgebra of P T S , where the unary operation is + : α 7→ Idom α [12]. In
the case where E = E(S) we say that S is weakly left ample. Weakly left E-ample
semigroups appear numerous times in the literature, under a variety of names. We
believe the first instance to be as reducts of the function systems of Schweizer and
Sklar, which were developed through a series of papers [26–29] in the 1960s. This
class of semigroups was touched upon again in [24], but the first person to study
weakly left E-ample semigroups proper was Trokhimenko in [31]; in particular, he
was the first to prove that they may be represented as systems of partial mappings (see
our Theorem 2.2). Weakly left E-ample semigroups appeared also as the type SL2 γ -
semigroups of Batbedat [1, 2] in the early 1980s. More recently, they have arisen in the
work of Jackson and Stokes [15] in the guise of (left) twisted C-semigroups and in that
of Manes [20] as guarded semigroups, motivated by consideration of closure operators
and categories, respectively. Our terminology ‘weakly left E-ample’ was first used
in [8], arrived at from the starting point of the left ample semigroups of Fountain [5, 6]
via the route of replacing considerations of the relation R∗ on a semigroup S by those
of R̃ (hence the ‘weakly’) and by making reference to a specific set of idempotents E
(which may not be the whole of E(S)).

Inverse semigroups are clearly weakly left ample, as are left ample semigroups.
Any monoid is weakly left {1}-ample; the study of strong partial monoid actions thus
far has therefore been concerned with strong unitary premorphisms from weakly left
{1}-ample semigroups to arbitrary weakly left E-ample monoids. The aim of this paper
is to develop the theory for strong premorphisms between arbitrary weakly left E-
ample semigroups S and T (the specialization to monoids being no longer significant),
and thus to consider the strong partial actions of S.
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Note that the term ‘partial action’ has two slightly different uses in the literature;
compare, for example, the definition of ‘partial action’ in [23] with that in [13]. The
sense in which we will use the term derives ultimately from [17] via [22] and [13].
Loosely speaking, our partial actions are ‘partial’ in two senses: first, they are not
defined everywhere; and second, they are equivalent to premorphisms, rather than
morphisms. We will also make use of the other notion of ‘partial action’ but, in the
interests of clarity, we will call such an action an incomplete action.

Recall that the globalization of the partial action of a monoid M on a set X calls
for the construction of a monoid morphism ϕ : M→ TY . In order to extend this
construction to arbitrary weakly left E-ample semigroups, the condition that 1ϕ = 1 is
naturally replaced by a+ϕ = (aϕ)+; this introduces extra complications which require
new techniques. As in the inverse case, if this construction is to be achieved, then
we must allow ϕ to have codomain P T Y , rather than TY . Such a (2,1)-morphism is
not equivalent to a global action, but to an incomplete action. In the case of the partial
action of a weakly left E-ample semigroup S, we modify Megrelishvili and Schröder’s
notion of ‘globalization’ so that we construct a (2,1)-morphism ϕ : S→ P T Y ; we
will refer to this incomplete action as the augmented action of the original partial
action. The expansion method similarly results in the construction of an incomplete
action.

We begin the paper with a brief overview of weakly left E-ample semigroups
(Section 2). In Section 3, we give appropriate definitions of partial actions and
premorphisms in the weakly left E-ample case, and connect these with the existing
definitions in the inverse case.

Section 4 introduces the generalized Szendrei expansion of a weakly left E-ample
semigroup, adapted very slightly from [10]. This is a vital ingredient in the ‘expansion’
method, which we describe in Section 5. We note that weakly left E-ample semigroups
come equipped with a natural partial order. Gomes observed in [10, p. 397] that
if φ : T → S is a (2,1)-morphism onto S, where S and T are weakly left ample
semigroups such that for any s ∈ S, sφ−1 contains a maximum element sφ∗, then
φ∗ : S→ T is a weak premorphism; this easily extends to the case where E may
not be the whole set of idempotents. If, in addition, φ∗ is strong, then φ is called
an FA-morphism from T onto S; the reader should be aware that, in view of
Lemma 3.10, every strong premorphism is order-preserving, as insisted upon in the
definition of an FA-morphism. We show that any strong premorphism θ : S→ T ,
where S and T are weakly left E- (F-)ample, respectively, is associated with an
FA-morphism φ : A→ S, for some weakly left G-ample semigroup A, and a (2,1)-
morphism ρ : A→ T such that φ∗ρ = θ . Our results in Section 5 are then easily seen
to be equivalent to those of [10]. By specializing to the inverse case, we recover the
expansion result of [19, Proposition 6.20].

Section 6 details the construction of the ‘augmented action’ of a given partial action.
Again, we can specialize to partial actions of inverse semigroups. Specifically, we
show that θ : S→ I X is an inverse semigroup premorphism if, and only if, there exist
Y ⊇ X and a morphism ϕ : S→ IY such that sθ = ι(sϕ)ι−1, for all s ∈ S.
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2. Weakly left E-ample semigroups

We give here a very brief overview of weakly left E-ample semigroups. Further
details can be found in the summary [12]1 or [13, Section 1], written for monoids, from
which most of this material is taken. Another useful source for the reader wanting
to see how weakly left E-ample semigroups are related to the function systems of
Schweizer and Sklar [29] and the twisted RC-semigroups of Jackson and Stokes [15] is
the survey article [16], which itself draws much of its material from the comprehensive
paper by Schein [25]. We remark that the ‘E’ in ‘weakly left E-ample’ is both a
generic term and used to refer to a particular set of idempotents. We use the letter ‘E’
where there is no danger of ambiguity; otherwise we employ ‘F’, ‘G’, and so on.

Weakly left E-ample semigroups arise very naturally from partial transformation
monoids in the same way that inverse semigroups arise from symmetric inverse
monoids. Let X be a nonempty set. It is well known that the partial transformation
monoid P T X contains a semilattice of idempotents

EX = {IA : A ⊆ X},

where IA is the identity map on A. In other words, EX is the set of partial identities
in P T X . We now define a unary operation + on P T X by α+ = Idom α , for each
α ∈ P T X . Let S be a subsemigroup of P T X and let E be the set

E = {IZ ∈ EX : Z = dom α, for some α ∈ S}.

If S is closed under +, that is, if E ⊆ S, then we call S a weakly left E-ample
semigroup. Such a subsemigroup can be regarded as a (2,1)-subalgebra of P T X . Since
P T X itself is closed under +, certainly P T X is weakly left EX -ample.

Weakly left E-ample semigroups also have an abstract characterization of which
we will make extensive use. Let S be a semigroup and suppose that E ⊆ E(S) is a
subsemilattice of S. We define the (equivalence) relation R̃ E on S by the rule that

a R̃ E b⇐⇒∀e ∈ E[ea = a⇔ eb = b],

for a, b ∈ S. Thus, two elements a, b are R̃ E -related if, and only if, they have the same
left identities in E . In view of Theorem 2.2 below, there is no danger of ambiguity in
making the following definition.

DEFINITION 2.1. A semigroup S with subsemilattice E ⊆ E(S) is weakly left
E-ample if:

1 We note that whilst all of the material of this section may be found in a variety of published papers
([5, 6, 11, 15, 18], for instance), the set of notes [12] is the only place where the relevant definitions
and results have been collated into a single resource; for this reason, [12] is a useful reference for our
purposes.



[5] Partial actions 359

(1) every element a is R̃ E -related to a (necessarily unique) idempotent in E , denoted
a+;

(2) R̃ E is a left congruence;
(3) for all a ∈ S and all e ∈ E , ae = (ae)+a.

Thus, in a weakly left E-ample semigroup S, a R̃ E b if, and only if, a+ = b+. The
idempotent a+ is a left identity for a. It is also clear that if e ∈ E , then e+ = e. The
identity in condition (3) will be referred to throughout as the ‘left ample identity’.
We note the following simpler condition for an element a ∈ S to be R̃ E -related to an
idempotent e ∈ E :

a R̃ E e⇐⇒ ea = a and ∀ f ∈ E[ f a = a⇒ f e = e]. (2.1)

The following theorem, which first appears in [31], connects the two approaches to
weakly left E-ample semigroups.

THEOREM 2.2. [12, Theorem 5.2] Let S be a weakly left E-ample semigroup,
regarded as an algebra of type (2,1), for some E ⊆ E(S). Then the mapping φ : S→
P T S given by sφ = ρs , where

dom ρs = Ss+ and xρs = xs, ∀x ∈ dom ρs,

is a representation of S as a (2,1)-subalgebra of P T S .

Thus weakly left E-ample semigroups are, up to isomorphism, precisely (2,1)-
subalgebras of partial transformation monoids.

For any semigroup S, if E = E(S), then we denote R̃ E by R̃. Note that R̃⊆ R̃ E ,
for any E . If S is weakly left E-ample with E = E(S), then we call S simply weakly
left ample.

It is easy to see that, in a regular semigroup, R= R̃. It follows that weakly left
ample semigroups generalize inverse semigroups, since every inverse semigroup is
weakly left ample with a+ = aa−1. Note that every monoid is weakly left {1}-ample,
with a+ = 1, for all elements a. A unipotent monoid is therefore weakly left ample.
Weakly left E-ample semigroups also generalize the left ample (formerly, left type-A)
semigroups of Fountain [5, 6].

Let S be a weakly left E-ample semigroup. For the purposes of Section 6, we
observe that if we adjoin an identity 1 to S, then S1 is a weakly left E1-ample monoid.

We note a useful identity involving + which follows easily from the fact that R̃ E is
a left congruence.

LEMMA 2.3. Let S be a weakly left E-ample semigroup, for some E ⊆ E(S), and let
s, t ∈ S. Then (st)+ = (st+)+.

The partial transformation monoid P T X possesses an obvious natural partial order
(that is, a partial order which is compatible with multiplication and which restricts to
the usual partial order on idempotents):

α ≤ β⇐⇒ α = β|dom α. (2.2)
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Note that T X , the full transformation monoid on X , is a submonoid of P T X . Since
the elements of T X are defined on the whole of X , the ordering becomes trivial. In the
abstract characterization of a weakly left E-ample semigroup S, the ordering of (2.2)
becomes the following natural partial order

a ≤ b⇐⇒ a = eb, (2.3)

for some idempotent e ∈ E . Equivalently,

a ≤ b⇐⇒ a = a+b.

This equivalence is justified in [13, Section 1].

LEMMA 2.4. Let S be a weakly left E-ample semigroup with partial order ≤. If s ∈ S
and e ∈ E, then se ≤ s.

PROOF. Applying the left ample identity, we have se = (se)+s ≤ s, by (2.3). 2

We observed earlier that a+ is a left identity for a. We can now say a little more:
a+ is the least left identity for a, with respect to ≤. This is a consequence of (2.1),
together with the definition of ≤. The next result now follows.

LEMMA 2.5 [6, Proposition 1.6]. Let S be a weakly left E-ample semigroup with
partial order ≤, and let s, t ∈ S. Then (st)+ ≤ s+.

3. Partial actions and premorphisms

We begin by summarizing some existing definitions for the actions and partial
actions of monoids; we will shortly adapt these to the case of a weakly left E-ample
semigroup. First, recall the definition of the (global) action of a monoid M on a set X :

DEFINITION 3.1. A monoid M acts (globally) on a set X (on the right) if there is a
mapping X × M→ X , given by (x, s) 7→ x · s, and such that:

(1) x · 1= x , for all x ∈ X ;
(2) (x · s) · t = x · st , for all x ∈ X , for all s, t ∈ M .

The concept of a monoid action generalizes to that of a partial monoid action, in
which the action x · s is not necessarily defined for all pairs (x, s) ∈ X × M . We will
write ‘∃x · s’ to mean ‘the action of s ∈ M on x ∈ X is defined’. As commented in the
Introduction, there exists more than one definition of a ‘partial monoid action’ in the
literature. We have, for example, the definition used in [23] for the ‘partial actions’
of inverse monoids. Since this is not the definition of ‘partial action’ which we will
ultimately adopt, we record it under the name of incomplete action.

DEFINITION 3.2. The incomplete action of a monoid M on a set X (on the right) is a
partial mapping X × M→ X , given by (x, s) 7→ x · s, and such that:
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(PA1) ∃x · 1 and x · 1= x , for all x ∈ X ;
(PA2∗) ∃x · s and ∃(x · s) · t⇔∃x · st , in which case x · st = (x · s) · t .

Incomplete actions were discussed briefly in [13, p. 297] (though not under this
name); it was observed that it is very easy to construct a global action from an
incomplete action: we simply adjoin an extra symbol, say 0, to X and then define
all previously undefined actions to be equal to 0, thereby obtaining the global action
of M on X ∪ {0}. The concept of an incomplete action will nevertheless prove very
useful later on.

The notion of partial action which we will adopt is adapted from that of [13], in
which can be found two further notions of partial monoid action. The first of these, a
weak partial action [13, Definition 2.2], is obtained from the partial group action of
Kellendonk and Lawson [17, p. 87] in a naive way simply by deleting all reference to
inverses. However, it is the second, slightly stronger, notion of partial monoid action,
a strong partial action [13, Definition 2.4], which emerges as being natural. It is
worth noting that the class of weak partial actions properly contains the class of strong
partial actions (see [13, Example 2.11]), which, in turn, properly contains the class of
incomplete actions (see Examples 2 and 3).

Each of the definitions of [13] can, of course, be applied to any monoid; however,
in the particular case of a weakly left E-ample monoid, any results obtained by using
these definitions (in particular, the results of [13]) will not, in general, respect the +

operation. Therefore, for weakly left E-ample monoids, we choose to augment both
definitions of partial action (as well as the definition of an incomplete action) with an
additional axiom which reflects the presence of +.

In the inverse case, the existing work on partial actions concerns semigroups, rather
than monoids. Also, as will be seen in Sections 4 and 5, we no longer need the presence
of an identity in order for the ‘expansion’ method to be applied. For these reasons, we
deal with partial semigroup actions, rather than partial monoid actions. The adaptation
to the semigroup case is effected simply by deleting the ‘identity axiom’—axiom
(PA1) in Definition 3.2; axiom (1) in Definition 3.1. In Section 6, we will find it
necessary temporarily to reinstate axiom (PA1) for strong partial actions; we will then
refer to strong unitary partial actions. In the interests of consistency, we retain the
numbering of [13].

DEFINITION 3.3 (Weak partial action). A weakly left E-ample semigroup S acts
partially (and ‘weakly’) on a set X (on the right) if there is a partial mapping
X × S→ X , given by (x, s) 7→ x · s, and such that:

(PA2′) ∃x · s and ∃(x · s) · t⇒∃x · st , in which case x · st = (x · s) · t ;
(PA3) ∃x · s⇒∃x · s+ and x · s+ = x .

DEFINITION 3.4 (Strong partial action). A weakly left E-ample semigroup S acts
partially and ‘strongly’ on a set X (on the right) if there is a partial mapping
X × S→ X , given by (x, s) 7→ x · s, and such that:
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(PA2) ∃x · s⇒ [∃(x · s) · t⇔∃x · st], in which case x · st = (x · s) · t ;
(PA3) ∃x · s⇒∃x · s+ and x · s+ = x .

DEFINITION 3.5 (Incomplete action). The incomplete action of a weakly left E-
ample semigroup S on a set X (on the right) is a partial mapping X × S→ X , given
by (x, s) 7→ x · s, and such that:

(PA2∗) ∃x · s and ∃(x · s) · t⇔∃x · st , in which case x · st = (x · s) · t ;
(PA3∗) ∃x · s⇔∃x · s+ and x · s+ = x .

Notice that by (PA3), for any e ∈ E , if ∃x · e, then x · e = x . The reasons for including
the stronger axiom (PA3∗) in Definition 3.5 will be explained shortly.

Suppose that we now let S be an arbitrary monoid, regarded as being weakly left
{1}-ample with s+ = 1, for all s ∈ S. Then condition (PA3) holds automatically and
Definitions 3.3 and 3.4 (with (PA1) restored) reduce to [13, Definitions 2.2 and 2.4],
respectively. In what follows, ‘weak partial action’ and ‘strong partial action’ will
mean the partial actions of Definitions 3.3 and 3.4 of the present paper, respectively.

Returning to the general case, we present two examples of partial actions of weakly
left E-ample semigroups: one of a weak partial action which is not strong, and one of
a strong partial action which is not an incomplete action.

EXAMPLE 1. Let S be a weakly left E-ample semigroup and let I be a nonempty set.
We denote by Q the I × I identity matrix and consider the Rees matrix semigroup
M :=M0(S; I, I ; Q). Multiplication in M is given by

0(i, s, j)= 0= 00= (i, s, j)0,

and

(i, s, j)(k, t, l)=

{
(i, st, l) if j = k,
0 if j 6= k.

The idempotents of M are those elements of the form (i, e, i), for e ∈ E(S), together
with 0. In [14, Example 2.7.3], it is shown that M is weakly left E -ample with 0+ = 0
and (i, s, j)+ = (i, s+, i), where

E = {(i, e, i) ∈ E(M) : e ∈ E} ∪ {0}.

We define a partial action of M on I by:

@a · 0 for any a ∈ I,

and

∃a · (i, s, j)⇐⇒ a = i and s ∈ E in which case, a · (i, s, j)= j.

We verify that this is a weak partial action:
(PA2′) Suppose that ∃a · (i, s, j) and ∃(a · (i, s, j)) · (k, t, l), so that a = i , j = k

and s, t ∈ E . Then (i, s, j)(k, t, l)= (i, st, l) and st ∈ E , so ∃a · (i, s, j)(k, t, l) and
a · (i, s, j)(k, t, l)= (a · (i, s, j)) · (k, t, l).
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(PA3) If ∃a · (i, s, j), then a = i and s = s+ ∈ E , so that ∃a · (i, s, j)+ and
a · (i, s, j)+ = a · (i, s+, i)= i = a.

We now show that the full condition (PA2) does not hold. Suppose that ∃a · (i, s, j)
and that ∃a · (i, st, l). Then a = i and s, st ∈ E . However, in general, there is no
guarantee that we will have t ∈ E : we can choose S to be a weakly left E-ample
semigroup in which E does not form a unitary subset. Indeed, it is easy to see that EX
is not right unitary in P T X for any X with |X | ≥ 2. Therefore, in general, we cannot
deduce that ∃(a · (i, s, j)) · (k, t, l). We have shown that this is a weak partial action
which is not strong.

EXAMPLE 2. Let S be a weakly left E-ample semigroup with subset T . We define a
strong partial action of S on T via the formula

∃x · s⇐⇒ x ∈ T s+ and xs ∈ T in which case x · s = xs.

We verify that this is indeed a strong partial action:
(PA2) Suppose that ∃x · s and ∃(x · s) · t . We therefore have x ∈ T s+ and xs ∈

T t+. Consequently, xs+ = x and xst+ = xs. Then

x = xs+ = (xs+)+x by the left ample identity,

= (xs)+x by Lemma 2.3,

= (xst+)+x = (xst)+x since xs = xst+

= (x(st)+)+x = x(st)+ ∈ T (st)+.

Also, xst ∈ T , so ∃x · st and x · st = (x · s) · t .
Conversely, suppose that ∃x · s and ∃x · st . We have x = x(st)+ and therefore

xs = x(st)+s = x(st+)+s = xst+ ∈ T t+,

since xs ∈ T . Hence ∃(x · s) · t .
(PA3) If ∃x · s, then x ∈ T s+ = T (s+)+. Also, x = xs+, as before, so xs+ ∈ T .

Therefore, ∃x · s+, with x · s+ = x .
Note that this is an example of a strong partial action which is not, in general, an

incomplete action. To see this, let S be the semigroup of [11, Example 2.6]:

S = {α, β, α+, τ, τ+} ⊆ I{1,2,3,4,5},

where

α =

(
1 2 3 4 5
2 × × 5 4

)
, β =

(
1 2 3 4 5
3 × × 5 4

)
,

and

τ =

(
1 2 3 4 5
× × × 5 4

)
,

and I{1,2,3,4,5} is the symmetric inverse monoid on {1, 2, 3, 4, 5}. Then S is a (weakly)
left ample semigroup with multiplication table
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α+ α β τ+ τ

α+ α+ α β τ+ τ

α τ τ+ τ+ τ τ+

β τ τ+ τ+ τ τ+

τ+ τ+ τ τ τ+ τ

τ τ τ+ τ+ τ τ+

The R̃-classes of S are {α+, α, β} and {τ+, τ }.
We put T = S \ E(S)= {α, β, τ }. Observe that ∃τ · τ+, since τ = ατ+ ∈ T τ+ and

ττ+ = τ ∈ T . We see from the multiplication table that α2
= τ+, so ∃τ · α2. However,

the action τ · α is not defined, since τα = τ+ 6∈ T . Therefore this is not an incomplete
action.

The global action of a semigroup S on a set X is, of course, equivalent to a
morphism ϕ : S→ T X , where T X is the full transformation monoid on X ; for each
s ∈ S, sϕ is the mapping x 7→ x · s. Similarly, the incomplete action of S is equivalent
to a morphism ψ : S→ P T X ; in this case, x ∈ dom sψ if, and only if, ∃x · s. The
mapping to which a partial action is equivalent is a premorphism; a weak partial
monoid action (in the original sense of [13]) is equivalent to a (weak) premorphism,
whilst a strong partial monoid action is equivalent to a strong premorphism. Each
of these concepts was adapted (in [13, Section 2]) from the ‘∧-prehomomorphism’
of McAlister and Reilly [21] and the ‘unital group premorphism’ of Kellendonk and
Lawson [17]. As with partial actions, every strong premorphism is weak, but not every
weak premorphism is strong.

We have already adapted our concept of partial action to take account of the +

operation, so we must now adapt our concept of premorphism. We naturally do this by
adding an extra axiom to reflect the presence of +. Again, we move to the semigroup
case by deleting the ‘identity axiom’ of [13]: 1θ = 1.

DEFINITION 3.6 (Weak premorphism). Let S and T be semigroups, with S weakly
left E-ample and T weakly left F-ample, for some E ⊆ E(S) and F ⊆ E(T ). Then
θ : S→ T is a weak premorphism if:

(PM2′) (sθ)(tθ)≤ (st)θ ;
(PM3) (sθ)+ ≤ s+θ ,

where ≤ is the natural partial order in T , as defined by (2.3).

DEFINITION 3.7 (Strong premorphism). Let S and T be as in Definition 3.6. Then
θ : S→ T is a strong premorphism if:

(PM2) (sθ)(tθ)= (sθ)+(st)θ ;
(PM3) (sθ)+ ≤ s+θ .

In Section 6, we will find it necessary to reinstate the identity axiom 1θ = 1 for
strong premorphisms. In the interests of clarity, we will then refer to strong
unitary premorphisms.
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Observe that if S is an arbitrary monoid, again regarded as being weakly left
{1}-ample, then condition (PM3) becomes (sθ)+ ≤ 1, by (PM1). This condition
holds automatically, by definition of ≤. Definitions 3.6 and 3.7 therefore reduce to
[13, Definitions 2.7 and 2.9], respectively. In what follows, ‘weak premorphism’ and
‘strong premorphism’ will mean the mappings of Definitions 3.6 and 3.7 of the present
paper, respectively.

Returning once more to the general case, we make the easy observation that, thanks
to axiom (PA3∗), the incomplete action of a weakly left E-ample semigroup S on a
set X is equivalent to a (2,1)-morphism ϕ : S→ P T X . We also extend the results of
[13, Section 2].

PROPOSITION 3.8. A weak partial action of a weakly left E-ample semigroup S on a
set X is equivalent to a weak premorphism θ : S→ P T X .

PROOF. As for incomplete actions, if S acts (weakly and) partially on X , then we
define θ : S→ P T X by the rule that for any s ∈ S, x ∈ dom sθ if, and only if, ∃x · s,
and for x ∈ dom sθ, x(sθ)= x · s. On the other hand, if θ : S→ P T X is a weak
premorphism, we can define a partial map X × S→ X, (x, s)→ x · s = x(sθ).

From [13, Proposition 2.8], each of conditions (PA2′) and (PM2′) implies the other.
It only remains to show that each of (PA3) and (PM3) implies the other.

First, suppose that the weak partial action satisfies (PA3) and let x ∈ dom sθ . Then
x ∈ dom(sθ)+ and x(sθ)+ = x , since (sθ)+ = Idom sθ . Now, since x ∈ dom sθ , we
have ∃x · s, hence ∃x · s+ with x · s+ = x , by (PA3). In terms of θ , this becomes
x ∈ dom s+θ and x(s+θ)= x . Thus (sθ)+ ≤ s+θ .

Conversely, let θ : S→ P T X be a weak premorphism which satisfies (PM3).
Suppose that ∃x · s, that is, x ∈ dom sθ . Then x ∈ dom(sθ)+ and x(sθ)+ = x . Now,
x ∈ dom s+θ and x(s+θ)= x , by (PM3), so ∃x · s+ and x · s+ = x . 2

PROPOSITION 3.9. A strong partial action is equivalent to a strong premorphism.

PROOF. This follows by combining the proof of Proposition 3.8 with parts of that
of [13, Proposition 2.10]. 2

Note that in the monoid case a strong unitary premorphism is equivalent to a strong
unitary partial action.

EXAMPLE 3. Let S be a weakly left ample semigroup and let X be an R̃-class of S.
We define a mapping θ : S→ P T X by:

dom sθ = {x ∈ X : xs = x} and x(sθ)= xs.

We show that θ is a strong premorphism by switching to the equivalent partial action:
∃x · s if, and only if, xs = x , in which case, x · s = xs = x .

(PA2) Suppose that ∃x · s and ∃(x · s) · t , that is, xs = x and xst = xs. Clearly,
xst = x , so ∃x · st and (x · s) · t = x · st . The converse is similar.
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(PA3) Suppose that ∃x · s. Then xs = x . By Lemma 2.3, (xs+)+ = x+, so
x = x+x = (xs+)+x = xs+, hence ∃x · s+ and x · s+ = xs+ = x .

Note that this is another example of a strong partial action which is not an
incomplete action (alternatively, θ is a strong premorphism which is not a morphism).
To see this, let us reuse the semigroup of Example 2 with X = {τ+, τ }. We see
that ττ+ = τ , so ∃τ · τ+. From the multiplication table for S, we have τ+ = α2, so
∃τ · α2. However, τα 6= τ , so the action τ · α is not defined. Therefore this is not an
incomplete action.

We note some useful properties of strong premorphisms.

LEMMA 3.10. Let θ : S→ T be a strong premorphism between the weakly left E-
and F-ample semigroups S and T . Then θ has the following properties:

(1) e ∈ E(S)⇒ eθ ∈ E(T );
(2) e ∈ E⇒ eθ ∈ F;
(3) e, f ∈ E, e ≤ f ⇒ eθ ≤ f θ ;
(4) u, v ∈ S, u ≤ v⇒ uθ ≤ vθ .

PROOF. (1) Suppose that e ∈ E(S). Then (eθ)(eθ)= (eθ)+(ee)θ = eθ , so eθ ∈
E(T ).

(2) Suppose that e ∈ E . By (1), we know that eθ ∈ E(T ). Since e ∈ E , then
(eθ)+ ≤ e+θ = eθ . By definition of ≤, (eθ)+ = (eθ)+(eθ)= eθ , so eθ ∈ F .

(3) Let e, f ∈ E be such that e ≤ f . Then e = e f , so eθ = (e f )θ = (eθ)(e f )θ
= (eθ)+(e f )θ = (eθ)( f θ). Thus eθ ≤ f θ .

(4) Let u, v ∈ S be such that u ≤ v. Then u = ev, for some e ∈ E . Therefore,
uθ = (ev)θ ⇒ (eθ)(uθ)= (eθ)(ev)θ = (eθ)+(ev)θ = (eθ)(vθ). But u+ ≤ e, by
Lemma 2.5. Then (uθ)+ ≤ u+θ ≤ eθ , by (3). We can therefore multiply (eθ)(uθ)
= (eθ)(vθ) on the left by (uθ)+ to obtain uθ = (uθ)+(vθ). Hence, uθ ≤ vθ . 2

It is worth emphasizing that a strong premorphism is perforce order-preserving, so
this does not need to be given as a dedicated condition.

Suppose that θ : S→ T is a strong premorphism of weakly left E-ample
semigroups S and T . We adjoin identities to both S and T and define a new mapping
θ ′ : S1

→ T 1 as follows:

1θ ′ = 1 and sθ ′ = sθ for all s ∈ S.

The following result is easy to verify.

LEMMA 3.11. The mapping θ ′ is a strong unitary premorphism.

In particular, if θ : S→ P T X is a strong premorphism, then θ ′ : S1
→ P T X is a strong

unitary premorphism with 1θ ′ = IX .
We end this section with a consideration of the inverse case. Recall from [19]

that a mapping θ : S→ T between inverse semigroups S and T is called a dual
prehomomorphism if (sθ)(tθ)≤ (st)θ and (sθ)−1

= s−1θ , for all s, t ∈ S. In order to
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bring this into line with our terminology, we will refer to such a mapping as an inverse
semigroup premorphism. In [19], the partial action of an inverse semigroup S on a
set X is defined to be an order-preserving inverse semigroup premorphism S→ I X ,
where I X is the symmetric inverse monoid on X .

LEMMA 3.12. Let θ : S→ T be a mapping between inverse semigroups S and T .
Then θ is an order-preserving inverse semigroup premorphism if, and only if, it is a
strong premorphism of weakly left ample semigroups.

PROOF. Suppose first that θ is an order-preserving inverse semigroup premorphism.
Then for any s, t ∈ S,

(sθ)+(st)θ = (sθ)(sθ)−1(st)θ

= (sθ)(s−1θ)(st)θ

≤ (sθ)(s−1st)θ

≤ (sθ)(tθ),

since s−1st ≤ t and θ is order-preserving. It follows that (sθ)(tθ)= (sθ)+(st)θ .
Further,

(sθ)+ = (sθ)(sθ)−1
= (sθ)(s−1θ)≤ (ss−1)θ = s+θ,

so that θ is a strong premorphism of weakly left ample semigroups.
Conversely, suppose that θ is a strong premorphism. By Lemma 3.10, θ is order-

preserving. For any s ∈ S, we have that

(sθ)(s−1θ)(sθ)= (sθ)+(ss−1)θ(sθ)= (sθ)+(s+θ)(sθ)= (sθ)+(sθ)= sθ,

whence it follows that (sθ)−1
= s−1θ , as required. 2

A partial action of an inverse semigroup is defined to be one–one, in the sense that
the image of the equivalent strong premorphism contains only one–one maps. In fact,
this does not need to be specified, as we now show.

LEMMA 3.13. Let S be an inverse semigroup and let θ : S→ P T X be a strong
premorphism. Then im θ ⊆ I X .

PROOF. Let s ∈ S and x, y ∈ dom sθ , and suppose that x(sθ)= y(sθ). Then x, y ∈
dom sθ = dom(sθ)+. Now,

(sθ)(s−1θ)= (sθ)+(ss−1)θ = (sθ)+(s+θ)= (sθ)+.

Therefore, x, y ∈ dom(sθ)(s−1θ) and x(sθ), y(sθ) ∈ dom s−1θ . Hence,

x(sθ)= y(sθ)⇒ x(sθ)(s−1θ)= y(sθ)(s−1θ)

⇒ x(sθ)+ = y(sθ)+,

whence x = y, as required. 2

Thus, the strong partial actions of an inverse semigroup S (in the sense of
Definition 3.4) are precisely its partial actions in the sense of [19].



368 V. Gould and C. Hollings [14]

4. The Szendrei expansion of a weakly left E-ample semigroup

Our aim is to obtain analogues of results from [13] concerning both the ‘expansion’
and ‘globalization’ of partial actions of weakly left E-ample semigroups. We begin
with the ‘expansion’ method. Given the partial action of a weakly left E-ample
semigroup S on a set X , our goal is to construct the incomplete action of some new
weakly left E ′-ample semigroup S′ on X . We do this in much the same way as in [13]:
by taking an expansion of S.

Semigroup expansions were first introduced by Birget and Rhodes [3] and are
formally defined as follows.

DEFINITION 4.1 [3, p. 241]. An expansion is a functor F from one category of
semigroups to a larger one such that there exists a natural transformation ν from F
to the identity functor, with each arrow νS surjective.

Since an expansion is a functor, we should not only specify its effect on the objects
of a category but also its effect on the arrows. However, the ‘objects’ part is the only
aspect of an expansion that we will need in connection with actions and partial actions.
We will therefore omit all reference to an expansion’s effect on arrows.

In [13] (as well as in [17] for partial group actions), the Szendrei expansion of [30]
and [7] was the expansion of choice. However, in the case of a weakly left E-ample
monoid, we cannot use this expansion, since it does not respect the + operation. The
original Szendrei expansion of [7, 30] has already been generalized to the weakly
left ample case by Gomes [10]. We make the further generalization to the weakly
left E-ample case. Note that these generalized Szendrei expansions can be applied to
semigroups; the original Szendrei expansion could only be applied to monoids.

DEFINITION 4.2. Let S be a weakly left E-ample semigroup. We define the Szendrei
expansion of S to be the set

Sz(S)= {(A, a) ∈ P f (S)× S : a, a+ ∈ A and A ⊆ (R̃E )a}, (4.1)

together with the operation

(A, a)(B, b)= ((ab)+A ∪ aB, ab), (4.2)

where P f (S) denotes the collection of all finite subsets of S and (R̃E )a is the R̃ E -class
of a.

Note that Sz(S) has the following idempotents:

E(Sz(S))= {(F, f ) ∈ Sz(S) : f ∈ E(S) and f F ⊆ F}.

PROPOSITION 4.3. If S is a weakly left E-ample semigroup, then Sz(S) is a weakly
left Sz(E)-ample semigroup with (A, a)+ = (A, a+), where

Sz(E)= {(F, f ) ∈ Sz(S) : f ∈ E and f F ⊆ F}.

PROOF. The proof is easily adapted from that of [10, Proposition 3]. 2
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COROLLARY 4.4 [10, Proposition 3]. If S is a weakly left ample semigroup, then
Sz(S) is a weakly left ample semigroup with (A, a)+ = (A, a+).

Observe that if S is an arbitrary monoid, then the above expansion reduces to that
of [7, 30]: we regard S as being weakly left {1}-ample, so that any A ∈ P f (S) is
contained in the R̃{1}-class of 1. Also, if (A, a) ∈ Sz(S), then a+ = 1 ∈ A. We can
therefore rewrite (4.1) as:

Sz(S)= {(A, a) ∈ P f (S)× S : 1, a ∈ A}.

As for multiplication, it is easy to see that we can replace (ab)+ in (4.2) by 1, to obtain

(A, a)(B, b)= (A ∪ aB, ab),

so Sz(S) becomes precisely the expansion of [7, 30].
The expansion of Definition 4.2 also generalizes that of [19] for inverse semigroups:

if S is inverse, then Sz(S) is precisely the expansion of [19, Proposition 6.16].
We define a mapping ηS : Sz(S)→ S by (A, a)ηS = a and note that this is a (2,1)-

morphism onto S. Moreover, by results of [10], the mapping η∗S : S→ Sz(S), given by
sη∗S = ({s

+, s}, s), is a strong premorphism, so that ηS is an FA-morphism (as defined
in the Introduction). For consistency with [13], we will denote η∗S by ι.

PROPOSITION 4.5. The Szendrei expansion Sz(S) of a weakly left E-ample
semigroup S is generated as a (2,1)-algebra by elements of the form sι.

PROOF. We take a general element of Sz(S) and note that

({s+, s1, . . . , sn = s}, s) = ({s+, s1}, s+) . . . ({s+, sn}, s+)({s+, s}, s)

= ({s+1 , s1}, s+1 ) . . . ({s
+
n , sn}, s+n )({s

+, s}, s),

since si R̃ E s, for each i = 1, . . . , n, so

({s+, s1, . . . , sn = s}, s) = ({s+1 , s1}, s1)
+ . . . ({s+n , sn}, sn)

+({s+, s}, s)

= (s1ι)
+ . . . (snι)

+(sι),

as required. 2

5. ‘Expansion’ of partial actions of weakly left E-ample semigroups

At the beginning of the previous section, we stated our desire to find a semigroup
S′ such that if a weakly left E-ample semigroup S acts partially on a set X , then S′ is a
larger weakly left E ′-ample semigroup for which there is an incomplete action on the
same set. It will perhaps come as no surprise that we can take S′ to be Sz(S).

We first demonstrate that any strong premorphism between weakly left E- and
F-ample semigroups may be associated with an FA-morphism.
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PROPOSITION 5.1. Let S and T be weakly left E- and F-ample semigroups, and
let θ : S→ T be a strong premorphism. Then there exists a weakly left G-ample
semigroup A, an onto FA-morphism φ : A→ S and a (2,1)-morphism ρ : A→ T such
that the following diagram commutes:

S

φ∗

��

θ // T

A

ρ

??�������

PROOF. It is straightforward to show that S × T is a weakly left E × F-ample
semigroup with (s, t)+ = (s+, t+), for any (s, t) ∈ S × T . Put A = {(s, t) : t ≤ sθ}.
Now if (s, t), (s′, t ′) ∈ A, then as ≤ is compatible with multiplication and θ is a
premorphism,

t t ′ ≤ sθ s′θ ≤ (ss′)θ,

so that (s, t)(s′, t ′) ∈ A. Further, (s, t)+ = (s+, t+); since t ≤ sθ ,

t+ ≤ (sθ)+ ≤ s+θ,

so that (s+, t+) ∈ A. Thus A is a (2,1)-subalgebra of S × T and so, by [12,
Remark 3.3], A is weakly left G-ample, where G = (E × F) ∩ A.

Let φ : A→ S and ρ : A→ T be projections; clearly φ and ρ are (2,1)-morphisms
with φ onto. To see that φ is an FA-morphism, observe that (s, sθ) is the maximum
element of sφ−1. Now with sφ∗ = (s, sθ),

(sφ∗)(uφ∗) = (s, sθ)(u, uθ)
= (su, sθuθ)
= (s+su, (sθ)+(su)θ)
= (s, sθ)+(su, (su)θ)
= (sφ∗)+(su)φ∗,

for any s, u ∈ S. 2

We can now state our ‘expansion’ result, which we prove using Proposition 5.1; a
direct proof appears in the PhD thesis [14] of the second author.

THEOREM 5.2. Let S and T be semigroups, with S weakly left E-ample and T
weakly left F-ample, for some E ⊆ E(S) and F ⊆ E(T ). If θ : S→ T is a strong
premorphism, then there exists a unique (2,1)-morphism θ : Sz(S)→ T such that
ιθ = θ , that is, such that the following diagram commutes:

S

ι

��

θ // T

Sz(S)
θ

<<yyyyyyyy
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Conversely, if θ : Sz(S)→ T is a (2,1)-morphism, then θ = ιθ is a strong premor-
phism.

PROOF. Let θ : S→ T be a strong premorphism of the weakly left E- and F-ample
semigroups S and T . By Proposition 5.1 we have a weakly left G-ample semigroup
A, an FA-morphism φ : A→ S and a (2,1)-morphism ρ : A→ T such that θ = φ∗ρ.

We call upon [10, Theorem 11], adapted to the weakly left E-ample case, to
guarantee the existence of a (2,1)-morphism ψ : Sz(S)→ A such that ψφ = ηS .
Moreover, ψ preserves maxima, in the sense that, for any s ∈ S, sιψ = sφ∗. Consider
now the (2,1)-morphism ψρ : Sz(S)→ T ; clearly

ιψρ = φ∗ρ = θ,

so ψρ is our required θ .
Suppose now that there is another (2,1)-morphism σ : Sz(S)→ T such that ισ = θ .

Then, for all s ∈ S, sιθ = sισ , so θ is uniquely defined on elements of the form sι. By
Proposition 4.5, we deduce that θ is unique.

Conversely, let θ : Sz(S)→ T be a (2,1)-morphism and let θ = ιθ . As argued in
[10, proof of Theorem 11], ι is a strong premorphism. Since θ is a (2,1)-morphism, it
follows easily that θ is a strong premorphism as required. 2

If S is an arbitrary monoid (weakly left {1}-ample), then, by the observations
following Definition 3.7 and Corollary 4.4, this theorem reduces to [13, Theorem 4.1].

We will modify the terminology of [13] and refer to this procedure for replacing a
partial action by an incomplete action as the expansion of the partial action.

We end this section by specializing to the inverse case, previously considered
in [19]. Note that from Lemma 3.12, a map between inverse semigroups is an order-
preserving premorphism if, and only if, it is a strong premorphism. Moreover, any
morphism between inverse semigroups preserves +.

COROLLARY 5.3 [19, Proposition 6.20]. Let S and T be inverse semigroups. Then
all order-preserving inverse semigroup premorphisms are of the form ιϕ, where
ϕ : Sz(S)→ T is a morphism. Consequently, all partial actions of inverse semigroups
on a set X are of the form ιϕ, where ϕ : Sz(S)→ I X is a morphism.

6. Augmented actions

We turn now to an analogue of the notion of ‘globalization’ for the partial actions
of weakly left E-ample semigroups. The globalization method of [13, 22] does not,
in general, respect the + operation. If + is to be preserved, then we must construct an
incomplete action, rather than a global action. We do this via the following definition,
a modification of the notion of a ‘globalization’.

DEFINITION 6.1. Let S be a weakly left E-ample semigroup and let θ : S→ P T X be
a strong premorphism.
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An augmented action for θ is a pair (ι, ϕ) consisting of an injection ι : X→ Y , for
some Y ⊇ X , and a (2,1)-morphism ϕ : S→ P T Y such that sθ = ι(sϕ)ι−1, for each
s ∈ S. The strong partial action of S on X , as defined by θ , is said to be a restriction of
the incomplete action of S on Y , as defined by ϕ (we are here resisting the temptation
to call (ι, ϕ) the ‘incompletion’ of θ !).

Note that in moving from [13, Definition 5.1] to Definition 6.1, we have dropped
all reference to the generating set, in the interests of simplicity.

For the rest of this section, S will be a weakly left E-ample semigroup and
θ : S→ P T X will be a strong premorphism. By Lemma 3.10(2), Eθ ⊆ EX .

Our first step in the construction of an augmented action for θ is to adjoin an identity
1 to S to obtain a weakly left E1-ample monoid S1. By Lemma 3.11, we have a strong
unitary premorphism θ ′ : S1

→ P T X , defined by 1θ ′ = IX and sθ ′ = sθ , for all s ∈ S.
Switching now to the partial action associated with θ ′, we define the subset U of

X × S1 by

U = {(x, t) : ∃x · t+}.

Observe that (x, 1) ∈U for all x ∈ X .
We define the relation ∼ on U by

(x, vu)∼ (x · v, u)⇔∃x · v and ∀e ∈ E1
[∃x · (vue)+⇔∃(x · v) · (ue)+].

Let' be the equivalence relation generated by∼, and, following Megrelishvili and
Schröder [22], let ρ be the equivalence relation on X × S1 given by

(x, m)ρ(y, n)⇔ x · m ≡ y · n,

where the symbol ≡ denotes ‘strong equality’, that is, each side is defined only if
the other is, in which case they are equal. Suppose that (x, vu), (x · v, u) ∈U with
(x, vu)∼ (x · v, u). Since ∃x · v, then

∃x · vu⇐⇒∃(x · v) · u,

by (PA2). Hence, (x, vu)ρ(x · v, u), so ∼⊆ ρ. Since ' is defined to be the smallest
equivalence relation containing ∼, then '⊆ ρ.

LEMMA 6.2. If ∃x · v, then (x, v)∼ (x · v, 1).

PROOF. We know that (x · v, 1) ∈U . Also, if ∃x · v, then ∃x · v+, so (x, v) ∈U .
Suppose that ∃(x · v) · (1e)+, for any e ∈ E . Then ∃x · ve, by (PA2), hence

∃x · (ve)+.
Conversely, we suppose that ∃x · (ve)+. Then ∃[x · (ve)+] · v, since ∃x · v and

x · (ve)+ = x . Hence, ∃x · (ve)+v by (PA2). By the left ample identity, this is equal
to x · ve. Then, again by (PA2), ∃(x · v) · e, or ∃(x · v) · (1e)+, as required. 2
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We put Y =U/' and denote the '-class of (x, s) ∈U by [x, s]. We define the
mapping ι : X→ Y by xι= [x, 1].

LEMMA 6.3. The mapping ι is an injection.

PROOF. Suppose that xι= yι. Then

xι= yι⇒ (x, 1)' (y, 1)⇒ (x, 1)ρ (y, 1)⇒ x · 1≡ y · 1⇒ x = y,

so ι is one–one. 2

We now define ϕ′ : S1
→ P T Y to be the mapping which assigns to each s ∈ S1 a

partial transformation sϕ′ such that

dom sϕ′ = {[x, m] : ∃x · m+, ∃x · (ms)+} and [x, m]sϕ′ = [x, ms].

LEMMA 6.4. Let (x, vu), (x · v, u), (x, m), (y, n) ∈U and let s ∈ S. Then:

(i) if (x, vu)∼ (x · v, u), then

∃x · (vus)+⇐⇒∃(x · v) · (us)+,

and if ∃x · (vus)+, then (x, vus)∼ (x · v, us);
(ii) if (x, m)' (y, n) and ∃x · (ms)+, then (x, ms)' (y, ns);
(iii) the partial mapping sϕ′ is well defined.

PROOF. (i) Let s be any element of S. Then

∃x · (vus)+ ⇐⇒ ∃x · (vus+)+

⇐⇒ ∃(x · v) · (us+)+, by definition of ∼,

⇐⇒ ∃(x · v) · (us)+.

If ∃x · (vus)+, then for any e ∈ E ,

∃x · (vuse)+⇔∃x · [vu(se)+]+⇔∃(x · v) · [u(se)+]+⇔ (x · v) · (use)+.

Therefore (x, vus)∼ (x · v, us).
(ii) This follows from (i) by definition of '.
(iii) Suppose that (x, m)' (y, n) and that [x, m] = [y, n] ∈ dom sϕ′. Then

(x, ms)' (y, ns) by (ii), that is, [x, ms] = [y, ns], or [x, m]sϕ′ = [y, n]sϕ′.
Therefore sϕ′ is well defined. 2

LEMMA 6.5. The mapping ϕ′ is a (2,1,0)-morphism.

PROOF. Since

dom 1ϕ′ = {[x, m] : ∃x · m+} = Y and [x, m](1ϕ′)= [x, m],

then 1ϕ′ = 1.
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Notice that

dom sϕ′ = {[x, m] : ∃x · m+ and ∃x · (ms)+}

= {[x, m] : ∃x · m+ and ∃x · (ms+)+} = dom s+ϕ′.

If [x, m] ∈ dom sϕ′ = dom s+ϕ′, then ∃x · (ms)+, so (x, (ms)+)∼ (x · (ms)+, 1), by
Lemma 6.2. Equivalently, (x, (ms)+)∼ (x, 1), since x · (ms)+ = x because Eθ ⊆
EX . Then [x, 1] ∈ dom mϕ′ since ∃x · m+, so (x, (ms)+m)∼ (x, m) by Lemma 6.4.
By the left ample identity, (x, ms+)∼ (x, m), so [x, ms+] = [x, m], hence
s+ϕ′ = Idom sϕ′ .

Now suppose that [x, m] ∈ dom(sϕ′)(tϕ′). Then ∃x · (ms)+ and ∃x · (mst)+, so
[x, m] ∈ dom(st)ϕ′.

Conversely, if [x, m] ∈ dom(st)ϕ′, then ∃x · (mst)+. But (mst)+ ≤ (ms)+, so
(mst)+θ ′ ≤ (ms)+θ ′, that is, dom(mst)+θ ′ ⊆ dom(ms)+θ ′, so it follows from ∃x ·
(mst)+ that ∃x · (ms)+. Hence, [x, m] ∈ dom sϕ′. Then [x, ms] ∈ dom tϕ′, since
∃x · (mst)+, so [x, m] ∈ dom(sϕ′)(tϕ′). Therefore, ϕ′ is a (2,1,0)-morphism. 2

LEMMA 6.6. For each s ∈ S1, sθ ′ = ι(sϕ′)ι−1.

PROOF. Let x ∈ dom sθ ′. Then ∃x · s, hence ∃x · s+. Now, xι= [x, 1] ∈
dom sϕ′, since ∃x · s+, and xι(sϕ′)= [x, s] = [x · s, 1]. So x ∈ dom ι(sϕ′)ι−1 and
xι(sϕ′)ι−1

= x · s = x(sθ ′).
Conversely, if x ∈ dom ι(sϕ′)ι−1, then [x, 1] ∈ dom sϕ′ and [x, s] ∈ dom ι−1,

where dom ι−1
= X ι, so (x, s)' (y, 1), for some y ∈ X . Then, since '⊆ ρ and

∃y · 1, we conclude that ∃x · s. Therefore x ∈ dom sθ ′. 2

We now restrict ϕ′ to S to obtain a new mapping ϕ : S→ P T Y . It is clear
that ϕ is a (2,1)-morphism with sθ = ι(sϕ)ι−1, for all s ∈ S. We have shown the
following theorem.

THEOREM 6.7. Let S, X, θ , Y , ι and ϕ be as previously defined. Then the pair (ι, ϕ)
is an augmented action for θ .

Suppose that we now let S be an arbitrary monoid, regarded as being weakly left
{1}-ample. In this case, S = S1, so θ = θ ′ and ϕ = ϕ′. We have ∃x · t+ = x · 1, for all
(x, t) ∈ X × S, hence U = X × S. Similarly, our ∼ becomes the relation

(x, vu)∼ (x · v, u)⇐⇒∃x · v,

which is precisely the∼ (=∼S) of [13, Section 5]. Observe, finally, that dom sϕ = Y ,
for all s ∈ S. We see then that in this case the augmented action constructed above
becomes precisely the globalization of [13, Section 5] in the case where N = S that is,
that of [22, Section 2].

Returning to the general case, we see from Theorem 6.7 that if θ : S→ P T X is a
strong premorphism, then an augmented action exists for θ . We now seek a converse
to this. Suppose that a mapping θ : S→ P T X is the restriction of some incomplete
action, in the sense of Definition 6.1. In other words, there exists a set Y ⊇ X , an
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injection ι : X→ Y and a (2,1)-morphism ϕ : S→ P T Y such that sθ = ι(sϕ)ι−1, for
all s ∈ S. Note that

x ∈ dom sθ ⇐⇒ x ∈ X ∩ dom sϕ and x(sϕ) ∈ X. (6.1)

PROPOSITION 6.8. The mapping θ is a strong premorphism.

PROOF. Let s ∈ S and suppose that x ∈ dom(sθ)+ = dom sθ , that is, x ∈ X ∩ dom sϕ
and x(sϕ) ∈ X . But dom sϕ = dom(sϕ)+ = dom s+ϕ, since ϕ is a (2,1)-morphism,
so x ∈ X ∩ dom s+ϕ. Note that s+ϕ = (sϕ)+ = Idom sϕ = Idom s+ϕ , so x(s+ϕ)= x ∈
X ∩ dom s+ϕ. We have shown that dom(sθ)+ ⊆ dom s+θ . For x ∈ dom(sθ)+,

x(s+θ)= xι(s+ϕ)ι−1
= xι(sϕ)+ι−1

= x = x(sθ)+,

hence (sθ)+ ≤ s+θ .
Let s, t ∈ S. Suppose that x ∈ dom(sθ)(tθ). Then

x ∈ dom sθ, (6.2)

x(sθ) ∈ dom(tθ). (6.3)

From (6.2), we deduce that

x ∈ X ∩ dom sϕ and x(sϕ) ∈ X,

by (6.1). From (6.3), we further deduce that

x(sθ) ∈ X ∩ dom(tϕ) and x(sθ)(tϕ) ∈ X.

Now, since x(sϕ) ∈ X , then x(sθ)= x(sϕ), so x(sθ)(tϕ)= x(sϕ)(tϕ) ∈ X . But ϕ is
a (2,1)-morphism, so x(st)ϕ ∈ X .

Since x ∈ X ∩ dom(st)ϕ and x(st)ϕ ∈ X , then x(sθ)+ = x ∈ dom(st)θ , so that
x ∈ dom(sθ)+(st)θ . Therefore, dom(sθ)(tθ)⊆ dom(sθ)+(st)θ .

Conversely, let y ∈ dom(sθ)+(st)θ . Then y ∈ dom sθ and y(sθ)+ = y ∈ dom(st)θ ,
so

y ∈ X ∩ dom(st)ϕ = X ∩ dom(sϕ)(tϕ) and y(st)ϕ ∈ X.

Thus y(sϕ)(tϕ) is defined, and, since y ∈ X , y(sθ)(tϕ)= y(sϕ)(tϕ)= y(st)ϕ ∈ X .
This, together with the fact that y(sθ) ∈ dom tϕ, gives us y(sθ) ∈ dom tθ , hence
y ∈ dom(sθ)(tθ). Therefore, dom(sθ)+(st)θ ⊆ dom(sθ)(tθ), so dom(sθ)+(st)θ =
dom(sθ)(tθ).

For y in this domain,

y(sθ)(tθ)= y(sϕ)(tϕ)= y(st)ϕ = y(st)θ = y(sθ)+(st)θ.

Hence, (sθ)(tθ)= (sθ)+(st)θ . 2

We have arrived at the following analogue of [13, Theorem 5.7].
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THEOREM 6.9. An augmented action exists for a premorphism θ : S→ P T X if, and
only if, θ is strong.

Thus, all strong partial actions of weakly left E-ample monoids arise as restrictions of
incomplete actions.

EXAMPLE 4. Consider the (2,1)-morphism of Theorem 2.2. This gives us an
incomplete action of a weakly left E-ample semigroup S on itself. We ‘restrict’ this
incomplete action to a subset T ⊆ S, in accordance with the results of this section: let
θ : S→ P T T be the mapping defined by

x ∈ dom sθ ⇐⇒ x ∈ T ∩ dom sφ and x(sφ) ∈ T

⇐⇒ x ∈ T ∩ Ss+ = T s+ and xs ∈ T,

with x(sθ)= xι(sφ)ι−1, for all x ∈ dom sθ , where ι : T → S is inclusion. By
Proposition 6.8, θ is a strong premorphism. In fact, θ is equivalent to the strong partial
action of Example 2.

Finally, we specialize Theorem 6.7 to the inverse case. The reader should compare
our result with [9, Theorem 4.9] and the relevant remark in [19, Section 6.5].

THEOREM 6.10. Let S be an inverse semigroup and let S act partially on a set X via
an order-preserving inverse semigroup premorphism θ : S→ I X . Then there exists a
set Y ⊇ X and a morphism ϕ : S→ IY such that sθ = ι(sϕ)ι−1, for all s ∈ S.

PROOF. We know from Lemma 3.12 that θ is a strong premorphism; from
Theorem 6.7, Y and ϕ : S→ P T Y exist as required. Lemma 3.13 tells us
that im ϕ ⊆ IY . 2
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