Restriction and ample semigroups: constructions and Mária Szendrei's work

Victoria Gould

University of York

York Semigroup, October 10th 2018

What is this talk about?

The classes of semigroups under consideration:

Inverse, (left) ample and (left) restriction.

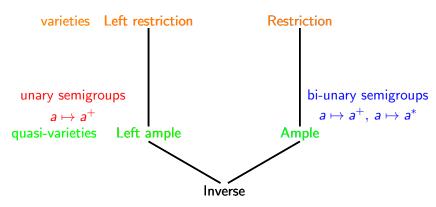
Three cameos illustrating Mária's insights

- The Szendrei expansion
- Embedding into W-products
- Term functions for restriction semigroups:

Constructions

The notion of semidirect product is key.

The semigroups we will consider Inverse, (left) restriction and (left) ample semigroups



S will always denote a semigroup/(bi-)unary semigroup

E(S) is the set of **idempotents** of S; and $E \subseteq E(S)$

Semidirect products

Let T be a monoid acting on the **left** of a semilattice Y by **morphisms**

That is, there is a map

$$T \times Y \rightarrow Y$$
, $(s, a) \mapsto s \cdot a$

such that for all $s, t \in T, a, b \in Y$:

$$1 \cdot a = a$$
, $s \cdot (t \cdot a) = (st) \cdot a$ and $s \cdot (a \wedge b) = (s \cdot a) \wedge (s \cdot b)$.

The **semidirect product** $Y \rtimes T$ on $Y \times T$

$$(a,s)(b,t)=(a\wedge s\cdot b,st).$$

A **reverse** semidirect product $T \ltimes Y$ is obtained by T acting on the **right** of Y by morphisms.

Guiding case: Inverse semigroups

S inverse

- \bullet E(S) is a semilattice
- An inverse semigroup all of whose elements are idempotent is a semilattice
- An inverse semigroup with exactly one idempotent is a group
- S is naturally partially ordered

Many approaches to inverse semigroups

Aim to describe them in terms of **groups** and **semilattices**.

Let G be a group, \overline{T} a monoid

The semidirect product $Y \rtimes G$ is inverse; $Y \rtimes T$ is left restriction;

$$Y \cong Y \rtimes \{1\} \leq Y \rtimes T$$
.

Inverse semigroups: *F*-inverse and proper

Let S be inverse: some well known facts

- **1** $\sigma = \langle E(S) \times E(S) \rangle$ is the **least group congruence** on *S*
- **2** S is F-inverse if every σ -class has a maximum element
- \odot If S is F-inverse then it is **proper**, that is,

$$aa^{-1} = bb^{-1}$$
 and $a \sigma b \Rightarrow a = b$.

Equivalently,
$$S \to E(S) \times S/\sigma$$
 given by

$$s\mapsto (ss^{-1},s\sigma)$$

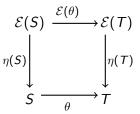
is a **SET** embedding

- **3** O'Carroll (1978) S is proper if and only if embeds into some $Y \rtimes G$
- McAlister (1974) Every inverse semigroup has a proper cover.

Cameo 1: The Szendrei expansion

Birget-Rhodes (1984)

An **expansion** is a functor $\mathcal E$ from the category of semigroups to a special subcategory, such that there is a natural tranformation η from $\mathcal E$ to the identity functor with $\eta(S)$ surjective for every S.



Cameo 1: The Szendrei expansion

Birget-Rhodes (1984): prefix expansion

 $\mathcal{E}(S)$ is given by

$$\widetilde{S}^{\mathcal{R}} := \left\{ \left(\{1, s_1, s_1 s_2, \ldots, s_1 s_2 \ldots s_n\}, s_1 \ldots s_n \right) : s_i \in S, n \geq 1 \right\}$$

with semidirect product multiplication; $\eta(S)$ is π_2 .

Szendrei (1989)

For a group G, this expansion is given by

$$\widetilde{G}^{\mathcal{R}} = \{(A,g) : A \in \mathcal{P}_1(G), g \in A\}$$

where $\mathcal{P}_1(S)$ is the set of finite subsets of S containing 1, for any monoid S.

Cameo 1: The Szendrei expansion

Birget-Rhodes (1984): prefix expansion

 $\mathcal{E}(S)$ is given by

$$\widetilde{S}^{\mathcal{R}} := \left\{ \left(\{1, s_1, s_1 s_2, \ldots, s_1 s_2 \ldots s_n\}, s_1 \ldots s_n \right) : s_i \in S, n \geq 1 \right\}$$

with semidirect product multiplication; $\eta(S)$ is π_2 .

Szendrei (1989)

For a group G, this expansion is given by

$$\mathsf{Sz}(G) = \{(A,g) : A \in \mathcal{P}_1(G), g \in A\}$$

where $\mathcal{P}_1(S)$ is the set of finite subsets of S containing 1, for any monoid S.

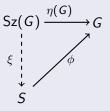
Cameo 1 The Szendrei expansion

- **9** Birget-Rhodes (1984) The free inverse semigroup on X is a subsemigroup of Sz(FG(X))
- **Szendrei (1989)** Sz(G) is F-inverse and $Ker \eta(S) = \sigma$. Further, Sz(G) has universal properties with respect to being an F-inverse expansion.
- **3** Exel (1998), Kellendonk and Lawson (2004) $G \to Sz(G)$, $g \mapsto (\{1,g\},g)$ is a premorphism. Further, Sz(G) is universal with respect to premorphisms and hence with respect to lifting partial actions to actions.

Cameo 1 The Szendrei expansion

Szendrei (1989)

For every group G, the pair $(Sz(G), \eta)$ has the property that, whenever S is an F-inverse semigroup and $\phi: S \to G$ is an onto morphism with $\operatorname{Ker} \phi = \sigma$, then there is a unique m^a -morphism $\xi: Sz(G) \to S$ such that



commutes. This property uniquely determines Sz(G).

^{*}preserving the max elements of σ -classes

Cameo 1 The Szendrei expansion

$$Sz(S) = \{(A, a) : A \in \mathcal{P}f_1(S), a \in A\}$$

Fountain, Gomes, G., Hollings (1990)-(2007)

All of the above can be extended to **left ample** and **left restriction** semigroups, replacing G with a right cancellative monoid or a monoid.

Kudryavtseva (2018), 11.00 13/07/2018

...and they can be extended to \mathbf{ample} and $\mathbf{restriction}$ semigroups, replacing G with a cancellative monoid or a monoid.

(Left) restriction and (left) ample semigroups

A unary semigroup is **left restriction** if

S satisfies the identities:

$$x^+x = x$$
, $x^+y^+ = y^+x^+$, $(x^+y)^+ = x^+y^+$, $xy^+ = (xy)^+x$.

S is $\mbox{left ample}$ if in addition S satisfies the quasi-identity

$$xy = zy \rightarrow xy^+ = zy^+.$$

If S is left restriction, then $E = \{a^+ : a \in S\}$ is the **semilattice of projections**. If S is left ample, then E = E(S).

Restriction and ample semigroups

A bi-unary semigroup is restriction (ample) if it is left and right restriction (ample) and the semilattices of projections coincide.

Restriction and ample semigroups: observations, examples

- **1** A unary semigroup S left restriction iff it embeds into \mathcal{PT}_S where α^+ is the identity map in the domain of α .
- ② A unary semigroup is S is left ample iff it embeds into \mathcal{I}_S .
- **1** Inverse semigroups are ample under $a \mapsto a^+ = aa^{-1}$, $a \mapsto a^* = a^{-1}a$.
- Any bi-unary subsemigroup of an inverse semigroup is ample.
- Free (left) restriction/ample semigroups embed into free inverse semigroups.
- (Left) restriction semigroups are (left) Ehresmann; (Left) ample semigroups are(left) adequate.
- Monoids are **reduced** restriction under $a^+ = a^* = 1$, (right) cancellative monoids are (left) ample.
- **3** A semidirect product $Y \bowtie M$ where Y is a semilattice and M is a (right cancellative) monoid is left restriction (ample).

Cameo 2 Embedding into *W*-products

W-product W(T, Y): subsemigroup of **reverse** semidirect product $T \ltimes Y$ where Y is a semilattice and T acts in a special way.

The notion was introduced by Fountain and Gomes (1992); later developed and used by Gomes, G. and Szendrei

A left restriction (restriction) semigroup is proper if

$$[a^+ = b^+ \text{ and } a \sigma b] \Rightarrow a = b$$

(and also $[a^* = b^* \text{ and } a \sigma b] \Rightarrow a = b$).

Here σ is the least congruence identifying the projections.

Fountain and Gomes (1992)

A left ample semigroup is proper if and only if it embeds into a $\it W$ -product.

Cameo 2 Embedding into *W*-products

W(T, Y) is proper restriction (Gomes, Szendrei (2007))

Further, T is left/right cancellative iff W(T, Y) is right/left ample.

G. and Szendrei (2013)

A left restriction semigroup S embeds into W-product if and only if τ_S is a congruence, where

$$\tau_S = \{(a, b) \in S \times S : a^+ = b^+ \text{ and } a \omega_S b\}$$

and where ω_S is the least right cancellative congruence on S.

Szendrei (2014)

Gave necessary and sufficient conditions such that any restriction semigroup embeds into a W-product.

- **①** An inverse monoid S is **factorisable** if $S = E(S)H_1$.
- The corresponding notion for inverse semigroups is called almost factorisable.

Lawson (1992)

Every inverse semigroup embeds into an almost factorisable inverse semigroup.

For restriction (and ample) semigroups and monoids these notions split into one- and two-sided notions of factorisability.

Gomes, Szendrei (2007)

Let S be a restriction semigroup. Then:

- S is almost left factorisable if and only if it is a morphic image of a W-product of a semilattice by a monoid.
- ② S is almost factorisable if and only if it is a morphic image of a semidirect product $Y \bowtie T$ where T acts on Y by automorphisms.

Let S be a bi-unary semigroup. An *n-ary term* function $t(x_1, \ldots, x_n) : S^n \to S$ is built from the binary operation, and both unary operations.

e.g.
$$t(x, y, z, u) = (uz^*)^+ uu^*((xz)^+ y^* xz)^*$$

S bi-unary, $H \subseteq S \times S$ and $\rho = \langle H \rangle$.

Standard universal algebra gives $a \rho b$ iff a = b or there exists a sequence

$$a = t_1(a_1), t_1(b_1) = t_2(a_2), \ldots, t_n(b_n) = b$$

where $t_i = t_i(\underline{u_i}, x)$ for some tuple $\underline{u_i} \in S^{n_i}$ where $(a_i, b_i) \in H \cup H^{-1}, 1 \le i \le n$.

Szendrei (2013)

Gave a simplification for the bi-unary term functions on a restriction semigroup, making use of the identities for restriction semigroups.

Example

$$t(x, y, z, u) = (uz^*)^+ uu^* ((xz)^+ y^* xz)^* = u(yxz)^*$$

Cameo 3
Term functions for restriction semigroups: embedding into almost factorisable

Szendrei (2013)

Every restriction semigroup is embeddable into an **almost left factorisable** restriction semigroup.

Hartmann, G., Szendrei (2017)

Every restriction semigroup is embeddable into an **almost factorisable** restriction semigroup.

Cameo 3 Term functions for restriction semigroups: embedding into almost factorisable

Take $S = F/\rho$ where F is free restriction on X; embed $F \hookrightarrow Y \rtimes X^*$ for some Y; consider $\bar{\rho} = \langle \rho \rangle$, the congruence on $Y \rtimes X^*$ generated by ρ ; show $\rho = \bar{\rho} \cap (F \times F)$.

What's behind all of this

- We are trying to understand classes of semigroups extending that of inverse semigroups
- These semigroups arise naturally
- The devil is in the detail
- The move between one- and two-sided constructions is not easy; behind some of this are various notions of partial action, used in C*-algebras
- Don't give up!!