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What is this talk about?

The classes of semigroups under consideration:

Inverse, (left) ample and (left) restriction.

Three cameos illustrating Mária’s insights

1 The Szendrei expansion

2 Embedding into W -products

3 Term functions for restriction semigroups:

Constructions

The notion of semidirect product is key.



The semigroups we will consider

Inverse, (left) restriction and (left) ample semigroups

Inverse

Left ample

Left restriction

Ample

Restriction

unary semigroups

a 7→ a+
bi-unary semigroups

a 7→ a+, a 7→ a∗

Inverse

Left ample

Left restriction

Ample

Restriction

quasi-varieties

varieties

Inverse

Left ample

Left restriction

Ample

Restriction

quasi-varieties

varieties

S will always denote a semigroup/(bi-)unary semigroup

E (S) is the set of idempotents of S ; and E ⊆ E (S)



Semidirect products

Let T be a monoid acting on the left of a semilattice Y by morphisms

That is, there is a map

T × Y → Y , (s, a) 7→ s · a

such that for all s, t ∈ T , a, b ∈ Y :

1 · a = a, s · (t · a) = (st) · a and s · (a ∧ b) = (s · a) ∧ (s · b).

The semidirect product Y ⋊ T on Y × T

(a, s)(b, t) = (a ∧ s · b, st).

A reverse semidirect product T ⋉ Y is obtained by T acting on the right
of Y by morphisms.



Guiding case: Inverse semigroups

S inverse
1 E (S) is a semilattice

2 An inverse semigroup all of whose elements are idempotent is a
semilattice

3 An inverse semigroup with exactly one idempotent is a group

4 S is naturally partially ordered

Many approaches to inverse semigroups

Aim to describe them in terms of groups and semilattices.

Let G be a group, T a monoid

The semidirect product Y ⋊ G is inverse; Y ⋊ T is left restriction;

Y ∼= Y ⋊ {1} ≤ Y ⋊ T .



Inverse semigroups: F -inverse and proper

Let S be inverse: some well known facts

1 σ = 〈E (S)× E (S)〉 is the least group congruence on S

2 S is F -inverse if every σ-class has a maximum element

3 If S is F -inverse then it is proper, that is,

aa−1 = bb−1 and a σ b ⇒ a = b.

Equivalently, S → E (S)× S/σ given by

s 7→ (ss−1, sσ)

is a SET embedding

4 O’Carroll (1978) S is proper if and only if embeds into some Y ⋊ G

5 McAlister (1974) Every inverse semigroup has a proper cover.



Cameo 1: The Szendrei expansion

Birget-Rhodes (1984)

An expansion is a functor E from the category of semigroups to a special
subcategory, such that there is a natural tranformation η from E to the
identity functor with η(S) surjective for every S .

E(S)

S

E(T )

T

η(S) η(T )

E(θ)

θ



Cameo 1: The Szendrei expansion

Birget-Rhodes (1984): prefix expansion

E(S) is given by

S̃R :=

{(
{1, s1, s1s2, . . . , s1s2 . . . sn}, s1 . . . sn

)
: si ∈ S , n ≥ 1

}

with semidirect product multiplication; η(S) is π2.

Szendrei (1989)

For a group G , this expansion is given by

G̃R = {(A, g) : A ∈ P1(G ), g ∈ A}

where P1(S) is the set of finite subsets of S containing 1, for any monoid
S .
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Cameo 1

The Szendrei expansion

1 Birget-Rhodes (1984) The free inverse semigroup on X is a
subsemigroup of Sz(FG(X ))

2 Szendrei (1989) Sz(G ) is F -inverse and Ker η(S) = σ. Further,
Sz(G ) has universal properties with respect to being an F -inverse
expansion.

3 Exel (1998), Kellendonk and Lawson (2004) G → Sz(G ),
g 7→ ({1, g}, g) is a premorphism. Further, Sz(G ) is universal with
respect to premorphisms and hence with respect to lifting partial
actions to actions.



Cameo 1

The Szendrei expansion

Szendrei (1989)

For every group G , the pair (Sz(G ), η) has the property that, whenever S
is an F -inverse semigroup and φ : S → G is an onto morphism with
Ker φ = σ, then there is a unique ma-morphism ξ : Sz(G ) → S such that

Sz(G )

S

G

ξ

η(G)

φ

commutes. This property uniquely determines Sz(G ).

apreserving the max elements of σ-classes



Cameo 1

The Szendrei expansion

Sz(S) =
{
(A, a) : A ∈ Pf1(S), a ∈ A}

Fountain, Gomes, G., Hollings (1990)-(2007)

All of the above can be extended to left ample and left restriction
semigroups, replacing G with a right cancellative monoid or a monoid.

Kudryavtseva (2018), 11.00 13/07/2018

...and they can be extended to ample and restriction semigroups,
replacing G with a cancellative monoid or a monoid.



(Left) restriction and (left) ample semigroups

A unary semigroup is left restriction if

S satisfies the identities:

x+x = x , x+y+ = y+x+, (x+y)+ = x+y+, xy+ = (xy)+x .

S is left ample if in addition S satisfies the quasi-identity

xy = zy → xy+ = zy+.

If S is left restriction, then E = {a+ : a ∈ S} is the semilattice of
projections. If S is left ample, then E = E (S).

Restriction and ample semigroups

A bi-unary semigroup is restriction (ample) if it is left and right restriction
(ample) and the semilattices of projections coincide.



Restriction and ample semigroups: observations, examples

1 A unary semigroup S left restriction iff it embeds into PT S where α+

is the identity map in the domain of α.

2 A unary semigroup is S is left ample iff it embeds into IS .

3 Inverse semigroups are ample under a 7→ a+ = aa−1, a 7→ a∗ = a−1a.

4 Any bi-unary subsemigroup of an inverse semigroup is ample.

5 Free (left) restriction/ample semigroups embed into free inverse
semigroups.

6 (Left) restriction semigroups are (left) Ehresmann; (Left) ample
semigroups are(left) adequate.

7 Monoids are reduced restriction under a+ = a∗ = 1, (right)
cancellative monoids are (left) ample.

8 A semidirect product Y ⋊M where Y is a semilattice and M is a
(right cancellative) monoid is left restriction (ample).



Cameo 2

Embedding into W -products

W -product W (T ,Y ): subsemigroup of reverse semidirect product
T ⋉ Y where Y is a semilattice and T acts in a special way.

The notion was introduced by Fountain and Gomes (1992); later
developed and used by Gomes, G. and Szendrei

A left restriction (restriction) semigroup is proper if

[a+ = b+ and a σ b] ⇒ a = b

(and also [a∗ = b∗ and a σ b] ⇒ a = b).

Here σ is the least congruence identifying the projections.

Fountain and Gomes (1992)

A left ample semigroup is proper if and only if it embeds into a W -product.



Cameo 2

Embedding into W -products

W (T ,Y ) is proper restriction (Gomes, Szendrei (2007))
Further, T is left/right cancellative iff W (T ,Y ) is right/left ample.

G. and Szendrei (2013)

A left restriction semigroup S embeds into W -product if and only if τS is a
congruence, where

τS = {(a, b) ∈ S × S : a+ = b+ and aωS b}

and where ωS is the least right cancellative congruence on S .

Szendrei (2014)

Gave necessary and sufficient conditions such that any restriction
semigroup embeds into a W -product.



Cameo 3

Term functions for restriction semigroups

1 An inverse monoid S is factorisable if S = E (S)H1.

2 The corresponding notion for inverse semigroups is called almost
factorisable.

Lawson (1992)

Every inverse semigroup embeds into an almost factorisable inverse
semigroup.



Cameo 3

Term functions for restriction semigroups

For restriction (and ample) semigroups and monoids these notions split
into one- and two-sided notions of factorisability.

Gomes, Szendrei (2007)

Let S be a restriction semigroup. Then:

1 S is almost left factorisable if and only if it is a morphic image of a
W -product of a semilattice by a monoid.

2 S is almost factorisable if and only if it is a morphic image of a
semidirect product Y ⋊ T where T acts on Y by automorphisms.



Cameo 3

Term functions for restriction semigroups

Let S be a bi-unary semigroup. An n-ary term function
t(x1, . . . , xn) : S

n → S is built from the binary operation, and both unary
operations.

e.g. t(x , y , z , u) = (uz∗)+uu∗((xz)+y∗xz)∗

S bi-unary, H ⊆ S × S and ρ = 〈H〉.

Standard universal algebra gives a ρ b iff a = b or there exists a sequence

a = t1(a1), t1(b1) = t2(a2), . . . , tn(bn) = b

where ti = ti(ui , x) for some tuple ui ∈ Sni where
(ai , bi ) ∈ H ∪ H−1, 1 ≤ i ≤ n.



Cameo 3

Term functions for restriction semigroups

Szendrei (2013)

Gave a simplification for the bi-unary term functions on a restriction
semigroup, making use of the identities for restriction semigroups.

Example

t(x , y , z , u) = (uz∗)+uu∗((xz)+y∗xz)∗ = u(yxz)∗



Cameo 3

Term functions for restriction semigroups: embedding into
almost factorisable

Szendrei (2013)

Every restriction semigroup is embeddable into an almost left
factorisable restriction semigroup.

Hartmann, G., Szendrei (2017)

Every restriction semigroup is embeddable into an almost factorisable
restriction semigroup.



Cameo 3

Term functions for restriction semigroups: embedding into
almost factorisable

Take S = F/ρ where F is free restriction on X ;
embed F →֒ Y ⋊ X ∗ for some Y ;
consider ρ̄ = 〈ρ〉, the congruence on Y ⋊ X ∗ generated by ρ;
show ρ = ρ̄ ∩ (F × F ).



What’s behind all of this

• We are trying to understand classes of semigroups extending that of
inverse semigroups

• These semigroups arise naturally

• The devil is in the detail

• The move between one- and two-sided constructions is not easy;
behind some of this are various notions of partial action, used in
C ∗-algebras

• Don’t give up!!


