Equations defining the polynomial closure of a lattice of languages

Mário Branco

CAUL, Univ. of Lisbon

Joint work with Jean-Éric Pin CNRS, Univ. Paris 7

Univ. of York - December 6, 2010

• Regular languages

- Regular languages
- Semigroup equations

- Regular languages
- Semigroup equations
- Varieties

- Regular languages
- Semigroup equations
- Varieties
- Topological aspects of the regular languages

- Regular languages
- Semigroup equations
- Varieties
- Topological aspects of the regular languages
- M-varieties and equations

- Regular languages
- Semigroup equations
- Varieties
- Topological aspects of the regular languages
- M-varieties and equations
- Ordered monoids and languages

- Regular languages
- Semigroup equations
- Varieties
- Topological aspects of the regular languages
- M-varieties and equations
- Ordered monoids and languages
- **OM**-varieties and equations

- Regular languages
- Semigroup equations
- Varieties
- Topological aspects of the regular languages
- M-varieties and equations
- Ordered monoids and languages
- OM-varieties and equations
- Lattices of languages closed under quotients

- Regular languages
- Semigroup equations
- Varieties
- Topological aspects of the regular languages
- M-varieties and equations
- Ordered monoids and languages
- OM-varieties and equations
- Lattices of languages closed under quotients
- Polynomial closure of a lattice of languages closed under quotients

Alphabet:

Alphabet: a (finite) set A

Alphabet: a (finite) set A

Letter:

Alphabet: a (finite) set A

Letter: an element of A

Alphabet: a (finite) set A

Letter: an element of A

Alphabet: a (finite) set A

Letter: an element of A

Word:

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

$$(a_1,a_2,\ldots,a_n)$$

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

$$(a_1, a_2, \ldots, a_n)$$
$$a_1 a_2 \ldots a_n$$

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

$$(a_1, a_2, \ldots, a_n)$$

 $a_1 a_2 \ldots a_n$

where $a_1 a_2 \dots a_n \in \mathbb{N}$ and $n \in \mathbb{N}$.

A+:

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

$$(a_1, a_2, \ldots, a_n)$$

 $a_1 a_2 \ldots a_n$

where $a_1 a_2 \dots a_n \in \mathbb{N}$ and $n \in \mathbb{N}$.

 A^+ : the set of all these sequences over A

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

$$(a_1, a_2, \ldots, a_n)$$

 $a_1 a_2 \ldots a_n$

where $a_1 a_2 \dots a_n \in \mathbb{N}$ and $n \in \mathbb{N}$.

 A^+ : the set of all these sequences over A

Free semigroup:

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

$$(a_1, a_2, \ldots, a_n)$$

 $a_1 a_2 \ldots a_n$

where $a_1 a_2 \dots a_n \in \mathbb{N}$ and $n \in \mathbb{N}$.

 A^+ : the set of all these sequences over A

Free semigroup: A^+ with the concatenation product

$$a_1a_2\ldots a_n\cdot b_1b_2\ldots b_p=a_1a_2\ldots a_nb_1b_2\ldots b_p$$

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

$$(a_1, a_2, \ldots, a_n)$$

 $a_1 a_2 \ldots a_n$

where $a_1 a_2 \dots a_n \in \mathbb{N}$ and $n \in \mathbb{N}$.

 A^+ : the set of all these sequences over A

Free semigroup: A^+ with the concatenation product

$$a_1a_2\ldots a_n\cdot b_1b_2\ldots b_p=a_1a_2\ldots a_nb_1b_2\ldots b_p$$

Free monoid:

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

$$(a_1, a_2, \ldots, a_n)$$
$$a_1 a_2 \ldots a_n$$

where $a_1 a_2 \dots a_n \in \mathbb{N}$ and $n \in \mathbb{N}$.

 A^+ : the set of all these sequences over A

Free semigroup: A^+ with the concatenation product

$$a_1a_2\ldots a_n\cdot b_1b_2\ldots b_p=a_1a_2\ldots a_nb_1b_2\ldots b_p$$

Free monoid: $A^* = A^+ \cup \{1\}$

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

$$(a_1, a_2, \ldots, a_n)$$

 $a_1 a_2 \ldots a_n$

where $a_1 a_2 \dots a_n \in \mathbb{N}$ and $n \in \mathbb{N}$.

 A^+ : the set of all these sequences over A

Free semigroup: A^+ with the concatenation product

$$a_1a_2\ldots a_n\cdot b_1b_2\ldots b_p=a_1a_2\ldots a_nb_1b_2\ldots b_p$$

Free monoid: $A^* = A^+ \cup \{1\}$

Language:

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

$$(a_1, a_2, \ldots, a_n)$$
$$a_1 a_2 \ldots a_n$$

where $a_1 a_2 \dots a_n \in \mathbb{N}$ and $n \in \mathbb{N}$.

 A^+ : the set of all these sequences over A

Free semigroup: A^+ with the concatenation product

$$a_1a_2\ldots a_n\cdot b_1b_2\ldots b_p=a_1a_2\ldots a_nb_1b_2\ldots b_p$$

Free monoid: $A^* = A^+ \cup \{1\}$

Language: a subset of A^*

Example of languages over $A = \{a, b\}$:

 $\emptyset,$

$$\emptyset, \quad \{1\},$$

$$\emptyset, \quad \{1\}, \quad \textit{A}, \quad \textit{A}^+, \quad \textit{A}^*$$

$$\emptyset$$
, $\{1\}$, A , A^+ , A^*
 $\{1, a, b, aba, a^8, aabbbab\}$

$$\emptyset$$
, $\{1\}$, A , A^+ , A^*
 $\{1, a, b, aba, a^8, aabbbab\}$
 $\{a^n b^p \mid n, p \in \mathbb{N}\}$

$$\emptyset$$
, $\{1\}$, A , A^+ , A^*
 $\{1, a, b, aba, a^8, aabbbab\}$
 $\{a^n b^p \mid n, p \in \mathbb{N}\}$
 $\{a^n b^n \mid n \in \mathbb{N}\}$

Operations on Languages

Union:

$$(K, L) \longmapsto K \cup L = \{u \mid u \in K \text{ or } u \in L\}$$

 $K + L$

Operations on Languages

Union:

$$(K, L) \longmapsto K \cup L = \{u \mid u \in K \text{ or } u \in L\}$$

 $K + L$

Intersection:

$$(K,L) \longmapsto K \cap L = \{u \mid u \in K \text{ and } u \in L\}$$

Operations on Languages

Union:

$$(K, L) \longmapsto K \cup L = \{u \mid u \in K \text{ or } u \in L\}$$

 $K + L$

Intersection:

$$(K,L) \longmapsto K \cap L = \{u \mid u \in K \text{ and } u \in L\}$$

Complementation:

$$L \longmapsto A^* \setminus L = \{u \in A^* \mid u \notin L\}$$

Operations on Languages

Union:

$$(K, L) \longmapsto K \cup L = \{u \mid u \in K \text{ or } u \in L\}$$

 $K + L$

Intersection:

$$(K,L) \longmapsto K \cap L = \{u \mid u \in K \text{ and } u \in L\}$$

Complementation:

$$L \longmapsto A^* \setminus L = \{u \in A^* \mid u \not\in L\}$$

Product:

$$(K, L) \longmapsto KL = \{uv \mid u \in K \text{ and } v \in L\}$$

Operations on Languages

Union:

$$(K, L) \longmapsto K \cup L = \{u \mid u \in K \text{ or } u \in L\}$$

 $K + L$

Intersection:

$$(K,L) \longmapsto K \cap L = \{u \mid u \in K \text{ and } u \in L\}$$

Complementation:

$$L \longmapsto A^* \setminus L = \{u \in A^* \mid u \notin L\}$$

Product:

$$(K, L) \longmapsto KL = \{uv \mid u \in K \text{ and } v \in L\}$$

Star:

$$L \longmapsto L^* = \{u_1 \cdots u_n \mid u_1, \dots, u_n \in L, \ n \in \mathbb{N}_0\}$$

the submonoid of A^* generated by L

Operations on Languages

Quotients $(a \in A)$:

$$L \longmapsto a^{-1}L = \{u \mid au \in L\}$$

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

 $\operatorname{Rat}(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

 $\operatorname{Rat}(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$:

 $\operatorname{Rat}(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$: We identify $\{a\}$ with a and write, for instance, a^* instead of $\{a\}^*$,

 $\operatorname{Rat}(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$: We identify $\{a\}$ with a and write, for instance,

 a^* instead of $\{a\}^*$,

a + b instead of $\{a, b\}$ (= $\{a\} + \{b\}$).

 $\operatorname{Rat}(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$:

We identify $\{a\}$ with a and write, for instance,

$$a+b$$
 instead of $\{a,b\}$ ($=\{a\}+\{b\}$).

$$\{1\} = \emptyset^*,$$

 $\operatorname{Rat}(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$:

We identify $\{a\}$ with a and write, for instance,

$$a+b$$
 instead of $\{a,b\}$ ($=\{a\}+\{b\}$).

$$\{1\}=\emptyset^*, \quad \textit{A},$$

 $\operatorname{Rat}(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$:

We identify $\{a\}$ with a and write, for instance,

$$a + b$$
 instead of $\{a, b\}$ (= $\{a\} + \{b\}$).

$$\{1\}=\emptyset^*,\quad A,\quad A^*,$$

 $\operatorname{Rat}(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$:

We identify $\{a\}$ with a and write, for instance,

$$a + b$$
 instead of $\{a, b\}$ (= $\{a\} + \{b\}$).

$$\{1\}=\emptyset^*,\quad A,\quad A^*,\quad A^+=AA^*$$

 $\operatorname{Rat}(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$:

We identify $\{a\}$ with a and write, for instance, a^* instead of $\{a\}^*$

$$a^*$$
 instead of $\{a\}^*$,

$$a + b$$
 instead of $\{a, b\}$ (= $\{a\} + \{b\}$).

$$\{1\} = \emptyset^*, \quad A, \quad A^*, \quad A^+ = AA^*$$

$$\{abaa\} = \{a\} \cdot \{b\} \cdot \{a\} \cdot \{a\}$$

 $\operatorname{Rat}(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$: We identify $\{a\}$ with a and write, for instance, a^* instead of $\{a\}^*$, a + b instead of $\{a, b\}$ ($= \{a\} + \{b\}$).

$$\{1\} = \emptyset^*, \quad A, \quad A^*, \quad A^+ = AA^*$$

 $\{abaa\} = \{a\} \cdot \{b\} \cdot \{a\} \cdot \{a\}$
 $\{1, a, b, aba, a^8, aabbbab\}$

 $\operatorname{Rat}(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$: We identify $\{a\}$ with a and write, for instance, a^* instead of $\{a\}^*$, a+b instead of $\{a,b\}$ ($=\{a\}+\{b\}$). $\{1\}=\emptyset^*, \quad A, \quad A^*, \quad A^+=AA^*$ $\{abaa\}=\{a\}\cdot\{b\}\cdot\{a\}\cdot\{a\}$ $\{1,a,b,aba,a^8,aabbbab\}$

 a^* .

 $\operatorname{Rat}(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$:

We identify $\{a\}$ with a and write, for instance, a^* instance of $\{a\}^*$

$$a^*$$
 instead of $\{a\}^*$,

$$a + b$$
 instead of $\{a, b\}$ (= $\{a\} + \{b\}$).

$$\{1\}=\emptyset^*,\quad A,\quad A^*,\quad A^+=AA^*$$

$$\{abaa\} = \{a\} \cdot \{b\} \cdot \{a\} \cdot \{a\}$$

$$\{1, a, b, aba, a^8, aabbbab\}$$

$$a^*$$
, $a^*b^* = \{a^nb^p \mid n, p \in \mathbb{N}_0\}$

 $\operatorname{Rat}(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$: We identify $\{a\}$ with a and write, for instance, a^* instead of $\{a\}^*$, a + b instead of $\{a, b\}$ ($= \{a\} + \{b\}$).

$$\{1\} = \emptyset^*, \quad A, \quad A^*, \quad A^+ = AA^*$$
 $\{abaa\} = \{a\} \cdot \{b\} \cdot \{a\} \cdot \{a\}$
 $\{1, a, b, aba, a^8, aabbbab\}$
 $a^*, \quad a^*b^* = \{a^nb^p \mid n, p \in \mathbb{N}_0\}$
 $(ab + ba)^*bbaabb(bba)^* + ((aaa + bbb)^* + a^5)^*b$

Automaton A:

Automaton A:

Words recognized by A:

1, a, aa, a^3 , a^4 , a^2b , a^4baba^6b , ba, $(ba)^2$, aba, $(ab)^2a$, ...

Automaton A:

Words recognized by A:

1, a, aa, a^3 , a^4 , a^2b , a^4baba^6b , ba, $(ba)^2$, aba, $(ab)^2a$, ...

$$L(A) = (a(ab)^*)^* + (ba)^* + (ab)^*a$$

Alphabet $A = \{0, 1\}$ Automaton A:

Alphabet $A = \{0, 1\}$ Automaton A:

Words recognized by \mathcal{A} are precisely the words that represent the multiples of 3 on base 2, for instance 0, 00, 11, 0011, 1001, 1000110100.

Alphabet $A = \{0, 1\}$ Automaton A:

Words recognized by \mathcal{A} are precisely the words that represent the multiples of 3 on base 2, for instance 0, 00, 11, 0011, 1001, 1000110100.

$$L(A) = (0 + 1(01*0)*1)*$$

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

Proposition

 $Rat(A^*)$ is closed under intersection, complementation and quotients.

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

Proposition

 $Rat(A^*)$ is closed under intersection, complementation and quotients.

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

Proposition

 $Rat(A^*)$ is closed under intersection, complementation and quotients.

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union,

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

Proposition

 $Rat(A^*)$ is closed under intersection, complementation and quotients.

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

Proposition

 $Rat(A^*)$ is closed under intersection, complementation and quotients.

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

Proposition

 $Rat(A^*)$ is closed under intersection, complementation and quotients.

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the boolean operations, product and star.

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

Proposition

 $Rat(A^*)$ is closed under intersection, complementation and quotients.

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the boolean operations, and product.

Recognizability

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

Proposition

 $Rat(A^*)$ is closed under intersection, complementation and quotients.

star-free

 $\widetilde{\mathsf{SF}}(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the boolean operations, and product.

Recognizability

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

Proposition

 $Rat(A^*)$ is closed under intersection, complementation and quotients.

star-free

 $\widehat{\mathsf{SF}}(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the boolean operations, and product.

Is there an algorithm to test whether a language belongs to $SF(A^*)$?

Alphabet $A = \{a, b\}$

Automaton A:

Alphabet $A = \{a, b\}$

Automaton A:

The transitions of ${\cal A}$ can be defined by the following two binary relations:

$$a \longmapsto \overline{a} = \{(1,1), (1,2), (2,3), (3,1)\}$$

 $b \longmapsto \overline{b} = \{(2,1), (3,2)\}$

Alphabet $A = \{a, b\}$

Automaton A:

The transitions of ${\cal A}$ can be defined by the following two binary relations:

$$a \longmapsto \overline{a} = \{(1,1), (1,2), (2,3), (3,1)\}$$

 $b \longmapsto \overline{b} = \{(2,1), (3,2)\}$

For words, for instance:

$$babba \ \longmapsto \ \overline{babba} = \big\{(0,1),\, (1,0),\, (2,2)\big\}$$

Alphabet $A = \{a, b\}$

Automaton A:

The transitions of ${\cal A}$ can be defined by the following two binary relations:

$$a \longmapsto \overline{a} = \{(1,1), (1,2), (2,3), (3,1)\}$$

 $b \longmapsto \overline{b} = \{(2,1), (3,2)\}$

For words, for instance:

babba
$$\longmapsto \overline{babba} = \{(0,1), (1,0), (2,2)\}$$

= $\overline{b} \circ \overline{a} \circ \overline{b} \circ \overline{b} \circ \overline{a}$

Transition monoid of \mathcal{A} : $M(\mathcal{A}) = \{\overline{u} \mid u \in A^*\}$ with composition. We have the morphism

$$\varphi \colon A^* \longrightarrow (M(\mathcal{A}), \circ)$$

$$u \longmapsto \overline{u}$$

Transition monoid of \mathcal{A} : $M(\mathcal{A}) = \{\overline{u} \mid u \in A^*\}$ with composition. We have the morphism

$$\varphi \colon A^* \longrightarrow (M(A), \circ)$$

$$u \longmapsto \overline{u}$$

and

$$u \in L(A) \iff (u)\varphi \in \underbrace{(L)\varphi}_{\text{finite set}}$$

Transition monoid of \mathcal{A} : $M(\mathcal{A}) = \{\overline{u} \mid u \in A^*\}$ with composition. We have the morphism

$$\varphi \colon A^* \longrightarrow (M(A), \circ)$$

$$u \longmapsto \overline{u}$$

and

$$u \in L(A) \iff (u)\varphi \in \underbrace{(L)\varphi}_{\text{finite set}}$$

A monoid M recognizes $L\subseteq A^*$ if there exist a morphism $\varphi\colon A^*\to M$ and $P\subseteq M$ s.t. $L=(P)\varphi^{-1}$.

Transition monoid of \mathcal{A} : $M(\mathcal{A}) = \{\overline{u} \mid u \in A^*\}$ with composition. We have the morphism

$$\varphi \colon A^* \longrightarrow (M(A), \circ)$$

$$u \longmapsto \overline{u}$$

and

$$u \in L(A) \iff (u)\varphi \in \underbrace{(L)\varphi}_{\text{finite set}}$$

A monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and $P \subseteq M$ s.t. $L = (P)\varphi^{-1}$.

$$u \in L \iff (u)\varphi \in P$$

Proposition

For $L \subseteq A^*$, TFAE:

- **1** L is recognized by a finite automaton, i.e. L is recognizable.
- 2 L is recognized by a finite monoid.

Proposition

For $L \subseteq A^*$, TFAE:

- **1** L is recognized by a finite automaton, i.e. L is recognizable.
- 2 L is recognized by a finite monoid.

Let $L \subseteq A^*$.

Proposition

For $L \subseteq A^*$, TFAE:

- L is recognized by a finite automaton, i.e. L is recognizable.
- 2 L is recognized by a finite monoid.

Let $L \subseteq A^*$.

Syntactic congruence of L, \sim_L on A^* :

 $u \sim_L v$ if and only if $\forall x, y \in A^* (xuy \in L \Leftrightarrow xvy \in L)$

Proposition

For $L \subseteq A^*$, TFAE:

- L is recognized by a finite automaton, i.e. L is recognizable.
- 2 L is recognized by a finite monoid.

Let $L \subseteq A^*$.

Syntactic congruence of L, \sim_L on A^* :

$$u \sim_L v$$
 if and only if $\forall x, y \in A^* (xuy \in L \Leftrightarrow xvy \in L)$

Syntactic monoid of *L*: $M(L) = A^*/\sim_L$

Proposition

For $L \subseteq A^*$, TFAE:

- L is recognized by a finite automaton, i.e. L is recognizable.
- 2 L is recognized by a finite monoid.

Let $L \subseteq A^*$.

Syntactic congruence of L, \sim_L on A^* :

$$u \sim_L v$$
 if and only if $\forall x, y \in A^* (xuy \in L \Leftrightarrow xvy \in L)$

Syntactic monoid of *L*: $M(L) = A^*/\sim_L$

Syntactic morphism of
$$L: \eta: A^* \longrightarrow M(L)$$

$$u \longmapsto [u]_{\sim_L}$$

Proposition

For $L \subseteq A^*$, TFAE:

- L is recognized by a finite automaton, i.e. L is recognizable.
- 2 L is recognized by a finite monoid.

Let $L \subseteq A^*$.

Syntactic congruence of L, \sim_L on A^* :

$$u \sim_L v$$
 if and only if $\forall x, y \in A^* (xuy \in L \Leftrightarrow xvy \in L)$

Syntactic monoid of *L*: $M(L) = A^*/\sim_L$

Syntactic morphism of
$$L: \eta: A^* \longrightarrow M(L)$$

$$u \longmapsto [u]_{\sim_L}$$

M(L) recognizes L, since $L = (L\eta)\eta^{-1}$.

Proposition

For $L \subseteq A^*$, TFAE:

- L is recognized by a finite automaton, i.e. L is recognizable.
- 2 L is recognized by a finite monoid.

Let $L \subseteq A^*$.

Syntactic congruence of L, \sim_L on A^* :

$$u \sim_L v$$
 if and only if $\forall x, y \in A^* (xuy \in L \Leftrightarrow xvy \in L)$

Syntactic monoid of *L*: $M(L) = A^*/\sim_L$

Syntactic morphism of
$$L: \eta: A^* \longrightarrow M(L)$$

$$u \longmapsto [u]_{\sim_L}$$

M(L) recognizes L, since $L = (L\eta)\eta^{-1}$.

M recognizes $L \iff M(L)$ is homomorphic image of a submonoid of M.

York - December 6, 2010

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $SF(A^*)$?

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $SF(A^*)$?

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $SF(A^*)$?

$$A = a + b$$
,

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $SF(A^*)$?

$$A = a + b$$
, $A^* = A^* \setminus \emptyset$,

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $SF(A^*)$?

$$A = a + b$$
, $A^* = A^* \setminus \emptyset$, $\{1\} = A^* \setminus AA^*$,

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $SF(A^*)$?

$$A = a + b$$
, $A^* = A^* \setminus \emptyset$, $\{1\} = A^* \setminus AA^*$, A^*bA^* ,

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $SF(A^*)$?

$$A = a + b$$
, $A^* = A^* \setminus \emptyset$, $\{1\} = A^* \setminus AA^*$, A^*bA^* , A^*bA^* , A^*bA^* ,

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $SF(A^*)$?

$$A = a + b, \quad A^* = A^* \setminus \emptyset, \quad \{1\} = A^* \setminus AA^*, \quad A^*bA^*,$$

 $a^* = A^* \setminus A^*bA^*,$
 $(ab)^* = A^* \setminus (bA^* + A^*a + A^*aaA^* + A^*bbA^*)$

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $SF(A^*)$?

Examples of star-free languages over $A = \{a, b\}$:

$$A = a + b, \quad A^* = A^* \setminus \emptyset, \quad \{1\} = A^* \setminus AA^*, \quad A^*bA^*,$$

 $a^* = A^* \setminus A^*bA^*,$
 $(ab)^* = A^* \setminus (bA^* + A^*a + A^*aaA^* + A^*bbA^*)$

The answer is Yes.

Theorem (Schützenberger)

For $L \subseteq A^*$. TFAE:

- 1 is star-free.
- 2 L is recognized by an aperiodic finite monoid.
- M(L) is finite and aperiodic .

its subgroups are trivial

Example:

On the alphabet $A = \{a, b\}$,

Example:

On the alphabet $A = \{a, b\}$, a^* and $(ab)^*$ are star-free,

Example:

```
On the alphabet A = \{a, b\}, a^* and (ab)^* are star-free, but (aa)^* is not star-free, since M((aa)^*) is not aperiodic.
```

Variety of languages

Variety of languages

Variety of languages \mathcal{V} :

$$A \longmapsto (A^*)\mathcal{V}$$
 alphabet subset of $Rat(A^*)$

Variety of languages \mathcal{V} :

such that

 $(A^*)\mathcal{V}$ is closed under finite union, finite intersection and complementation.

Variety of languages \mathcal{V} :

$$A \longmapsto (A^*)\mathcal{V}$$
 alphabet subset of $Rat(A^*)$

such that

- $(A^*)\mathcal{V}$ is closed under finite union, finite intersection and complementation.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.

Variety of languages \mathcal{V} :

such that

- $(A^*)\mathcal{V}$ is closed under finite union, finite intersection and complementation.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
- **③** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Variety of languages \mathcal{V} :

such that

- $(A^*)\mathcal{V}$ is closed under finite union, finite intersection and complementation.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
- **3** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Rational languages form a variety of languages.

Variety of languages \mathcal{V} :

$$A \longmapsto (A^*)\mathcal{V}$$
 alphabet subset of $Rat(A^*)$

such that

- $(A^*)\mathcal{V}$ is closed under finite union, finite intersection and complementation.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
- \bullet if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Rational languages form a variety of languages.

Star-free languages form a variety of languages.

Variety of languages \mathcal{V} :

$$A \longmapsto (A^*)\mathcal{V}$$
 alphabet subset of $Rat(A^*)$

such that

- $(A^*)\mathcal{V}$ is closed under finite union, finite intersection and complementation.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
- \bullet if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Rational languages form a variety of languages.

Star-free languages form a variety of languages.

An identity or equation over an alphabet (finite or infinite) A is a formal equality u = v, where $u, v \in A^*$.

An identity or equation over an alphabet (finite or infinite) A is a formal equality u = v, where $u, v \in A^*$.

Examples: xy = yx, $x = x^2$, xy = xyx (x and y are letters).

An identity or equation over an alphabet (finite or infinite) A is a formal equality u = v, where $u, v \in A^*$.

Examples: xy = yx, $x = x^2$, xy = xyx (x and y are letters).

A monoid M satisfies an identity u=v if $u\varphi=v\varphi$ for every morphism $\varphi\colon A^*\to M$.

An identity or equation over an alphabet (finite or infinite) A is a formal equality u = v, where $u, v \in A^*$.

Examples: xy = yx, $x = x^2$, xy = xyx (x and y are letters).

A monoid M satisfies an identity u=v if $u\varphi=v\varphi$ for every morphism $\varphi\colon A^*\to M$.

 Σ – set of identities over A.

An identity or equation over an alphabet (finite or infinite) A is a formal equality u = v, where $u, v \in A^*$.

Examples: xy = yx, $x = x^2$, xy = xyx (x and y are letters).

A monoid M satisfies an identity u=v if $u\varphi=v\varphi$ for every morphism $\varphi\colon A^*\to M$.

 Σ – set of identities over A.

 $[\Sigma]$ – class of all monoids that satisfy all identities of Σ .

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Variety of monoids

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Examples:

The class of all monoids : [x = x].

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Examples:

The class of all monoids : [x = x].

The class of all commutative monoids $(\forall s, t \in M, st = ts)$: [xy = yx].

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Examples:

The class of all monoids : [x = x].

The class of all commutative monoids $(\forall s, t \in M, st = ts)$: [xy = yx].

The class of all idempotent monoids $(\forall s \in M, s = s^2)$: $[x = x^2]$.

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Examples:

The class of all monoids : [x = x].

The class of all commutative monoids $(\forall s, t \in M, st = ts)$: [xy = yx].

The class of all idempotent monoids $(\forall s \in M, s = s^2)$: $[x = x^2]$.

The class of all idempotent and \mathcal{R} -trivial monoids $(\forall s, t \in M, (s = s^2, st = sts))$: $[x = x^2, xy = xyx]$.

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Examples:

The class of all monoids : [x = x].

The class of all commutative monoids $(\forall s, t \in M, st = ts)$: [xy = yx].

The class of all idempotent monoids $(\forall s \in M, s = s^2)$: $[x = x^2]$.

The class of all idempotent and \mathcal{R} -trivial monoids $(\forall s, t \in M, (s = s^2, st = sts))$: $[x = x^2, xy = xyx]$.

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

M - class of all finite monoids.

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

M - class of all finite monoids.

 $[\![\Sigma]\!] = [\![\Sigma]\!] \cap \textbf{M},$ for any set Σ of identities.

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

M - class of all finite monoids.

 $[\![\Sigma]\!] = [\![\Sigma]\!] \cap M$, for any set Σ of identities.

 $\mathbf{J_1}$ - class of all finite idempotent and commutative monoids.

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

M - class of all finite monoids.

 $[\![\Sigma]\!] = [\![\Sigma]\!] \cap M$, for any set Σ of identities.

 ${f J}_1$ - class of all finite idempotent and commutative monoids.

 ${\bf J}$ - class of all finite ${\cal J}$ -trivial monoids.

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

M - class of all finite monoids.

 $[\![\Sigma]\!] = [\![\Sigma]\!] \cap M$, for any set Σ of identities.

 ${f J}_1$ - class of all finite idempotent and commutative monoids.

 ${\bf J}$ - class of all finite ${\cal J}$ -trivial monoids.

 $\bf A$ - class of all finite aperiodic monoids M.

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

- M class of all finite monoids.
- $[\![\Sigma]\!] = [\![\Sigma]\!] \cap M$, for any set Σ of identities.
- ${f J}_1$ class of all finite idempotent and commutative monoids.
- ${\bf J}$ class of all finite ${\cal J}$ -trivial monoids.
- ${\bf A}$ class of all finite aperiodic monoids M.
- **LI** class of all finite locally trivial semigroups S $(\forall s \in S, e \in E(S), ese = e).$

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

- M class of all finite monoids.
- $[\![\Sigma]\!] = [\![\Sigma]\!] \cap M$, for any set Σ of identities.
- ${f J}_1$ class of all finite idempotent and commutative monoids.
- ${\bf J}$ class of all finite ${\cal J}$ -trivial monoids.
- ${\bf A}$ class of all finite aperiodic monoids M.
- **LI** class of all finite locally trivial semigroups S $(\forall s \in S, e \in E(S), ese = e).$

For each M-variety V and each finite alphabet A, let

$$(A^*)V = \{L \subseteq A^* \mid L \text{ is recognized by some monoid of } \mathbf{V}\}$$

= $\{L \subseteq A^* \mid M(L) \in \mathbf{V}\}$

Then \mathcal{V} is a variety of languages.

Theorem (Eilenberg)

The correspondence $\mathbf{V} \mapsto \mathcal{V}$ between the \mathbf{M} -varieties and the varieties of languages is bijective.

For each M-variety V and each finite alphabet A, let

$$(A^*)V = \{L \subseteq A^* \mid L \text{ is recognized by some monoid of } \mathbf{V}\}\$$

= $\{L \subseteq A^* \mid M(L) \in \mathbf{V}\}$

Then \mathcal{V} is a variety of languages.

Theorem (Eilenberg)

The correspondence $\mathbf{V} \mapsto \mathcal{V}$ between the \mathbf{M} -varieties and the varieties of languages is bijective.

Thus

Theorem (Schützenberger)

For each alphabet A, $(A^*)A = SF(A^*)$.

For each M-variety V and each finite alphabet A, let

$$(A^*)V = \{L \subseteq A^* \mid L \text{ is recognized by some monoid of } \mathbf{V}\}$$

= $\{L \subseteq A^* \mid M(L) \in \mathbf{V}\}$

Then \mathcal{V} is a variety of languages.

Theorem (Eilenberg)

The correspondence $\mathbf{V} \mapsto \mathcal{V}$ between the \mathbf{M} -varieties and the varieties of languages is bijective.

Thus

Theorem (Schützenberger)

For each alphabet A, $(A^*)A = SF(A^*)$.

How to caracterize the M-varieties by identities?

Free profinite monoid

Free profinite monoid

Alphabet A; $u, v \in A^*$.

A finite monoid M separates u and v if there exists a morphism $\varphi \colon A^* \to M$ such that $u\varphi \neq v\varphi$.

Free profinite monoid

Alphabet A; $u, v \in A^*$.

A finite monoid M separates u and v if there exists a morphism $\varphi\colon A^*\to M$ such that $u\varphi\neq v\varphi$.

Example: The words ab and a^2b are separated by any non-trivial group, but there is no idempotent monoid that separates them.

Alphabet A; $u, v \in A^*$.

A finite monoid M separates u and v if there exists a morphism $\varphi \colon A^* \to M$ such that $u\varphi \neq v\varphi$.

Example: The words ab and a^2b are separated by any non-trivial group, but there is no idempotent monoid that separates them.

Let

$$r(u, v) = \min\{|M|: M \text{ separates } u \text{ and } v\}$$

Alphabet A; $u, v \in A^*$.

A finite monoid M separates u and v if there exists a morphism $\varphi \colon A^* \to M$ such that $u\varphi \neq v\varphi$.

Example: The words ab and a^2b are separated by any non-trivial group, but there is no idempotent monoid that separates them.

Let

$$r(u, v) = \min\{|M|: M \text{ separates } u \text{ and } v\}$$

 $d(u, v) = 2^{-r(u,v)}$

with the conventions $\min \emptyset = -\infty$ and $2^{-\infty} = 0$.

Alphabet A; $u, v \in A^*$.

A finite monoid M separates u and v if there exists a morphism $\varphi \colon A^* \to M$ such that $u\varphi \neq v\varphi$.

Example: The words ab and a^2b are separated by any non-trivial group, but there is no idempotent monoid that separates them.

Let

$$r(u, v) = \min\{|M|: M \text{ separates } u \text{ and } v\}$$

 $d(u, v) = 2^{-r(u, v)}$

with the conventions $\min \emptyset = -\infty$ and $2^{-\infty} = 0$.

- d(u, v) = 0 if and only if u = v.
- d(u, v) = d(v, u).
- $d(u, w) \leq \max\{d(u, v), d(v, w)\}.$
- $d(uu', vv') \le \max\{d(u, v), d(u', v')\}.$

Two words are "closed" if it is needed a "big" monoid to separate them.

Two words are "closed" if it is needed a "big" monoid to separate them.

Proposition

 (A^*,d) is a metric space and the multiplication $A^* \times A^* \to A^*$ is uniformly continuous.

 $\widehat{A^*}$ – topological completion of A^* .

Two words are "closed" if it is needed a "big" monoid to separate them.

Proposition

 (A^*,d) is a metric space and the multiplication $A^* \times A^* \to A^*$ is uniformly continuous.

 $\widehat{A^*}$ – topological completion of A^* .

Proposition

- $\widehat{A^*}$ is a compact and totally disconnected metric space.
- A^* is dense in $\widehat{A^*}$.
- Each morphism $\varphi \colon A^* \to M$ (M finite) can be extended in a unique way to a continuous morphism $\hat{\varphi} \colon \widehat{A^*} \to M$.

Two words are "closed" if it is needed a "big" monoid to separate them.

Proposition

 (A^*,d) is a metric space and the multiplication $A^* \times A^* \to A^*$ is uniformly continuous.

 $\widehat{A^*}$ – topological completion of A^* .

Proposition

- $\widehat{A^*}$ is a compact and totally disconnected metric space.
- A^* is dense in $\widehat{A^*}$.
- Each morphism $\varphi \colon A^* \to M$ (M finite) can be extended in a unique way to a continuous morphism $\widehat{\varphi} \colon \widehat{A^*} \to M$.

The multiplication on A^* induces, in a natural way, an associative multiplication on $\widehat{A^*}$, which is continuous.

Proposition

Let $u \in A^*$. The sequence $(u^{n!})_n$ is a Cauchy sequence in A^* .

Proposition

Let $u \in A^*$. The sequence $(u^{n!})_n$ is a Cauchy sequence in A^* .

 $u^{\omega} = \lim u^{n!} \text{ in } \widehat{A^*}.$

Proposition

Let $u \in A^*$. The sequence $(u^{n!})_n$ is a Cauchy sequence in A^* .

 $u^{\omega} = \lim u^{n!} \text{ in } \widehat{A^*}.$

Let M be a finite monoid.

Proposition

Let $u \in A^*$. The sequence $(u^{n!})_n$ is a Cauchy sequence in A^* .

 $u^{\omega} = \lim u^{n!} \text{ in } \widehat{A^*}.$

Let M be a finite monoid.

Let $\varphi\colon A^*\to M$ be a morphism and $\hat{\varphi}\colon \widehat{A^*}\to M$ be its continous morphism extension.

Proposition

Let $u \in A^*$. The sequence $(u^{n!})_n$ is a Cauchy sequence in A^* .

 $u^{\omega} = \lim u^{n!} \text{ in } \widehat{A^*}.$

Let M be a finite monoid.

Let $\varphi \colon A^* \to M$ be a morphism and $\hat{\varphi} \colon \widehat{A^*} \to M$ be its continous morphism extension.

 $((u\hat{\varphi})^{n!})_n$ converges in M (with the discrete topology).

Proposition

Let $u \in A^*$. The sequence $(u^{n!})_n$ is a Cauchy sequence in A^* .

 $u^{\omega} = \lim u^{n!} \text{ in } \widehat{A^*}.$

Let M be a finite monoid.

Let $\varphi \colon A^* \to M$ be a morphism and $\hat{\varphi} \colon \widehat{A^*} \to M$ be its continous morphism extension.

 $((u\hat{\varphi})^{n!})_n$ converges in M (with the discrete topology).

Since M is finite, there exists k s.t. $(u\hat{\varphi})^k = e$, an idempotent.

It follows that if $n \ge k$, then $(u\hat{\varphi})^{n!} = e$, and so $\lim (u\hat{\varphi})^{n!} = e$, the idempotent power of $u\hat{\varphi}$.

An identity or equation over an alphabet (finite) A is a formal equality u = v, where $u, v \in A$.

An identity or equation over an alphabet (finite) A is a formal equality u = v, where $u, v \in A$.

An identity or equation over an alphabet (finite) A is a formal equality u = v, where $u, v \in \widehat{A}^*$.

Examples: xy = yx, $x^{\omega} = 1$, $x^{\omega}yx^{\omega} = x^{\omega}$ (x and y are letters).

An identity or equation over an alphabet (finite) A is a formal equality u = v, where $u, v \in \widehat{A}^*$.

Examples: xy = yx, $x^{\omega} = 1$, $x^{\omega}yx^{\omega} = x^{\omega}$ (x and y are letters).

A finite monoid M satisfies an identity u=v if $u\psi=v\psi$ for every continuous morphism $\psi\colon \widehat{A^*}\to M$,

An identity or equation over an alphabet (finite) A is a formal equality u = v, where $u, v \in \widehat{A}^*$.

Examples: xy = yx, $x^{\omega} = 1$, $x^{\omega}yx^{\omega} = x^{\omega}$ (x and y are letters).

A finite monoid M satisfies an identity u=v if $u\psi=v\psi$ for every continuous morphism $\psi\colon \widehat{A^*}\to M$, i.e. $u\hat{\varphi}=v\hat{\varphi}$ for every morphism $\varphi\colon A^*\to M$.

Examples:

M satisfies xy = yx if and only if $\forall s, t \in M$, st = ts.

A finite semigroup S satisfies $x^{\omega}yx^{\omega}=x^{\omega}$ if and only if $\forall s \in S, e \in E(S), ese=e$.

 Σ – set of identities.

 Σ – set of identities.

 $[\![\Sigma]\!]$ – class of all finite monoids that satisfy all identities of Σ .

 Σ – set of identities.

 $[\![\Sigma]\!]$ – class of all finite monoids that satisfy all identities of Σ .

Theorem (Reiterman)

The **M**-varieties are precisely the classes of monoids of the form $[\![\Sigma]\!]$.

 Σ – set of identities.

 $[\![\Sigma]\!]$ – class of all finite monoids that satisfy all identities of Σ .

Theorem (Reiterman)

The **M**-varieties are precisely the classes of monoids of the form $[\![\Sigma]\!]$.

Examples:

 $\mathbf{J_1} = [x = x^2, xy = yx]$ – finite idempotent and commutative monoids.

 $\mathbf{A} = \llbracket x^{\omega} = x^{\omega+1}
rbracket$ – finite aperiodic monoids.

 $\mathbf{LI} = [\![x^{\omega} y x^{\omega} = x^{\omega}]\!]$ – finite locally trivial *semigroups*.

Variety of languages \mathcal{V} :

$$A \longmapsto (A^*)\mathcal{V}$$
 alphabet subset of $Rat(A^*)$

- $(A^*)\mathcal{V}$ is closed under finite union, finite intersection and complementation.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
- **3** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Variety of languages \mathcal{V} :

$$A \longmapsto (A^*)\mathcal{V}$$
 alphabet subset of $Rat(A^*)$

- $(A^*)\mathcal{V}$ is closed under finite union, finite intersection and complementation.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
- **3** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Variety of languages \mathcal{V} :

$$A \longmapsto (A^*)\mathcal{V}$$
 alphabet subset of $Rat(A^*)$

- **1** $(A^*)\mathcal{V}$ is closed under finite union, and finite intersection.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
- **③** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Positive variety of languages \mathcal{V} :

$$A \longmapsto (A^*)\mathcal{V}$$
 alphabet subset of $Rat(A^*)$

- **1** $(A^*)\mathcal{V}$ is closed under finite union, and finite intersection.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
- **③** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Positive variety of languages \mathcal{V} :

$$A \longmapsto (A^*)\mathcal{V}$$
 alphabet subset of $Rat(A^*)$

such that

- **①** $(A^*)\mathcal{V}$ is closed under finite union, and finite intersection.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
- **3** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

How to characterize these classes algebraically?

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \le t \implies rs \le rt \text{ and } sr \le tr$$

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \le t \implies rs \le rt \text{ and } sr \le tr$$

A monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and $P \subseteq M$ s.t. $L = (P)\varphi^{-1}$.

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \le t \implies rs \le rt \text{ and } sr \le tr$$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and $P \subseteq M$ s.t. $L = (P)\varphi^{-1}$.

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \le t \implies rs \le rt \text{ and } sr \le tr$$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and an ordered ideal P of M s.t. $L = (P)\varphi^{-1}$.

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \le t \implies rs \le rt \text{ and } sr \le tr$$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and an ordered ideal P of M s.t. $L = (P)\varphi^{-1}$.

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \le t \implies rs \le rt \text{ and } sr \le tr$$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and an ordered ideal P of M s.t. $L = (P)\varphi^{-1}$.

Syntactic congruence of L, \sim_L on A^* :

$$u \sim_{\mathcal{L}} v$$
 if and only if $\forall x, y \in A^* (xvy \in L \Leftrightarrow xuy \in L)$

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \le t \implies rs \le rt \text{ and } sr \le tr$$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and an ordered ideal P of M s.t. $L = (P)\varphi^{-1}$.

Syntactic congruence of L, \sim_L on A^* :

$$u \sim_{\mathcal{L}} v$$
 if and only if $\forall x, y \in A^* (xvy \in L \Leftrightarrow xuy \in L)$

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \le t \implies rs \le rt \text{ and } sr \le tr$$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and an ordered ideal P of M s.t. $L = (P)\varphi^{-1}$.

Syntactic congruence of L, \sim_L on A^* :

$$u \sim_{L} v$$
 if and only if $\forall x, y \in A^{*} (xvy \in L \Rightarrow xuy \in L)$

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \le t \implies rs \le rt \text{ and } sr \le tr$$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and an ordered ideal P of M s.t. $L = (P)\varphi^{-1}$.

Syntactic congruence of L, \leq_L on A^* :

$$u \leq_L v$$
 if and only if $\forall x, y \in A^* (xvy \in L \Rightarrow xuy \in L)$

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \le t \implies rs \le rt \text{ and } sr \le tr$$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and an ordered ideal P of M s.t. $L = (P)\varphi^{-1}$.

Syntactic preorder of L, \leq_L on A^* :

$$u \leq_L v$$
 if and only if $\forall x, y \in A^* (xvy \in L \Rightarrow xuy \in L)$

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \le t \implies rs \le rt \text{ and } sr \le tr$$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and an ordered ideal P of M s.t. $L = (P)\varphi^{-1}$.

Syntactic preorder of L, \leq_L on A^* :

$$u \leq_L v$$
 if and only if $\forall x, y \in A^* (xvy \in L \Rightarrow xuy \in L)$

 $(M(L), \leq)$ is an ordered monoid, with

$$[u]_{\sim_L} \leq [v]_{\sim_L}$$
 if and only if $u \leq_L v$

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \le t \implies rs \le rt \text{ and } sr \le tr$$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and an ordered ideal P of M s.t. $L = (P)\varphi^{-1}$.

Syntactic preorder of L, \leq_L on A^* :

$$u \leq_L v$$
 if and only if $\forall x, y \in A^* (xvy \in L \Rightarrow xuy \in L)$

 $(M(L), \leq)$ is an ordered monoid, with

$$[u]_{\sim_L} \leq [v]_{\sim_L}$$
 if and only if $u \leq_L v$

$$(M(L), \leq)$$
 recognizes L .

Morphism of ordered monoids $\varphi \colon (M, \leq) \to (S, \leq)$: monoid morphism s.t.

$$s \le t \implies s\varphi \le t\varphi$$

OM-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Morphism of ordered monoids $\varphi \colon (M, \leq) \to (S, \leq)$: monoid morphism s.t.

$$s \le t \implies s\varphi \le t\varphi$$

OM-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

OM – class of all finite ordered monoids.

Morphism of ordered monoids $\varphi \colon (M, \leq) \to (S, \leq)$: monoid morphism s.t.

$$s \le t \implies s\varphi \le t\varphi$$

OM-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

OM – class of all finite ordered monoids.

 ${f J}_1^+$ – class of all finite idempotent and commutative monoids with the natural order.

Morphism of ordered monoids $\varphi \colon (M, \leq) \to (S, \leq)$: monoid morphism s.t.

$$s \le t \implies s\varphi \le t\varphi$$

OM-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

OM – class of all finite ordered monoids.

 ${f J}_1^+$ – class of all finite idempotent and commutative monoids with the natural order.

For each M-variety V and each finite alphabet A, let

$$(A^*)V = \{L \subseteq A^* \mid L \text{ is recognized by some monoid of } \mathbf{V}\}\$$

= $\{L \subseteq A^* \mid M(L) \in \mathbf{V}\}$

For each M-variety V and each finite alphabet A, let

$$(A^*)V = \{L \subseteq A^* \mid L \text{ is recognized by some monoid of } \mathbf{V}\}\$$

= $\{L \subseteq A^* \mid M(L) \in \mathbf{V}\}$

For each **OM**-variety V and each finite alphabet A, let

$$(A^*)V = \{L \subseteq A^* \mid L \text{ is recognized by some monoid of } \mathbf{V}\}\$$

= $\{L \subseteq A^* \mid M(L) \in \mathbf{V}\}$

For each OM-variety V and each finite alphabet A, let

$$(A^*)V = \{L \subseteq A^* \mid L \text{ is recognized by some ordered monoid of } \mathbf{V}\}$$

= $\{L \subseteq A^* \mid M(L) \in \mathbf{V}\}$

For each OM-variety V and each finite alphabet A, let

$$(A^*)\mathcal{V} = \{L \subseteq A^* \mid L \text{ is recognized by some ordered monoid of } \mathbf{V}\}$$

= $\{L \subseteq A^* \mid (M(L), \leq) \in \mathbf{V}\}$

For each \mathbf{OM} -variety \mathbf{V} and each finite alphabet A, let

$$(A^*)\mathcal{V} = \{L \subseteq A^* \mid L \text{ is recognized by some ordered monoid of } \mathbf{V}\}$$

= $\{L \subseteq A^* \mid (M(L), \leq) \in \mathbf{V}\}$

Then $\mathcal V$ is a positive variety of languages.

Theorem (Pin)

The correspondence $\mathbf{V} \mapsto \mathcal{V}$ between the \mathbf{OM} -varieties and the positive varieties of languages is bijective.

For each \mathbf{OM} -variety \mathbf{V} and each finite alphabet A, let

$$(A^*)\mathcal{V} = \{L \subseteq A^* \mid L \text{ is recognized by some ordered monoid of } \mathbf{V}\}$$

= $\{L \subseteq A^* \mid (M(L), \leq) \in \mathbf{V}\}$

Then $\mathcal V$ is a positive variety of languages.

Theorem (Pin)

The correspondence $\mathbf{V} \mapsto \mathcal{V}$ between the \mathbf{OM} -varieties and the positive varieties of languages is bijective.

An identity or equation over an alphabet (finite) A is a formal expression u = v or $u \le v$, where $u, v \in \widehat{A}^*$.

An identity or equation over an alphabet (finite) A is a formal expression u = v or $u \le v$, where $u, v \in \widehat{A}^*$.

A finite monoid M satisfies an identity u=v if $u\psi=v\psi$ for every continuous morphism $\psi\colon \widehat{A^*}\to M$, i.e. $u\hat{\varphi}=v\hat{\varphi}$ for every morphism $\varphi\colon A^*\to M$.

An identity or equation over an alphabet (finite) A is a formal expression u = v or $u \le v$, where $u, v \in \widehat{A}^*$.

A finite ordered monoid M satisfies an identity u=v if $u\psi=v\psi$ for every continuous morphism $\psi\colon \widehat{A^*}\to M$, i.e. $u\hat{\varphi}=v\hat{\varphi}$ for every morphism $\varphi\colon A^*\to M$.

An identity or equation over an alphabet (finite) A is a formal expression u = v or $u \le v$, where $u, v \in \widehat{A}^*$.

A finite ordered monoid M satisfies an identity $u \leq v$ if $u\psi = v\psi$ for every continuous morphism $\psi \colon \widehat{A^*} \to M$, i.e. $u\hat{\varphi} = v\hat{\varphi}$ for every morphism $\varphi \colon A^* \to M$.

An identity or equation over an alphabet (finite) A is a formal expression u = v or $u \le v$, where $u, v \in \widehat{A}^*$.

A finite ordered monoid M satisfies an identity $u \leq v$ if $u\psi \leq v\psi$ for every continuous morphism $\psi \colon \widehat{A^*} \to M$, i.e. $u\hat{\varphi} \leq v\hat{\varphi}$ for every morphism $\varphi \colon A^* \to M$.

An identity or equation over an alphabet (finite) A is a formal expression u = v or $u \le v$, where $u, v \in \widehat{A}^*$.

A finite ordered monoid M satisfies an identity $u \leq v$ if $u\psi \leq v\psi$ for every continuous morphism $\psi \colon \widehat{A^*} \to M$, i.e. $u\hat{\varphi} \leq v\hat{\varphi}$ for every morphism $\varphi \colon A^* \to M$.

An identity or equation over an alphabet (finite) A is a formal expression u = v or $u \le v$, where $u, v \in \widehat{A}^*$.

A finite ordered monoid M satisfies an identity $u \leq v$ if $u\psi \leq v\psi$ for every continuous morphism $\psi \colon \widehat{A^*} \to M$, i.e. $u\hat{\varphi} \leq v\hat{\varphi}$ for every morphism $\varphi \colon A^* \to M$.

Theorem (Pin and Weil)

The **OM**-varieties are precisely the classes of ordered monoids of the form $[\![\Sigma]\!]$.

An identity or equation over an alphabet (finite) A is a formal expression u = v or $u \le v$, where $u, v \in \widehat{A}^*$.

A finite ordered monoid M satisfies an identity $u \leq v$ if $u\psi \leq v\psi$ for every continuous morphism $\psi \colon \widehat{A^*} \to M$, i.e. $u\hat{\varphi} \leq v\hat{\varphi}$ for every morphism $\varphi \colon A^* \to M$.

Theorem (Pin and Weil)

The **OM**-varieties are precisely the classes of ordered monoids of the form $\|\Sigma\|$.

Examples:

 $\mathbf{J}_{\mathbf{1}}^{+} = [\![x = x^2, \, xy = yx, \, x \leq 1]\!]$ – class of all finite idempotent and commutative monoids with the natural order.

$$\mathbf{LJ}^+ = [x^\omega y x^\omega \le x^\omega]$$
 (semigroups).

Variety of languages V:

$$A \longmapsto (A^*)\mathcal{V}$$
 alphabet subset of $Rat(A^*)$

- $(A^*)\mathcal{V}$ is closed under finite union, finite intersection and complementation.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
- **3** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Variety of languages \mathcal{V} :

$$A \longmapsto (A^*)\mathcal{V}$$
 alphabet subset of $Rat(A^*)$

- $(A^*)\mathcal{V}$ is closed under finite union, finite intersection and complementation.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
- **③** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Variety of languages \mathcal{V} :

$$A \longmapsto (A^*)\mathcal{V}$$
 alphabet subset of $Rat(A^*)$

- **①** $(A^*)\mathcal{V}$ is closed under finite union, and finite intersection.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
- **3** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Positive variety of languages \mathcal{V} :

$$A \longmapsto (A^*)\mathcal{V}$$
 alphabet subset of $Rat(A^*)$

- **①** $(A^*)\mathcal{V}$ is closed under finite union, and finite intersection.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
- **1** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Other classes of languages

Positive variety of languages \mathcal{V} :

$$A \longmapsto (A^*)\mathcal{V}$$
 alphabet subset of $Rat(A^*)$

such that

- **①** $(A^*)\mathcal{V}$ is closed under finite union, and finite intersection.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.
- **3** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

How to characterize algebraically the classes ${\mathcal V}$ satisfying the following?

- **①** $(A^*)\mathcal{V}$ is closed under finite union and finite intersection.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.

Proposition

Let $L \subseteq A^*$.

Proposition

Let $L \subseteq A^*$.

L is regular if and only if \overline{L} is open.

Proposition

Let $L \subseteq A^*$.

L is regular if and only if \overline{L} is open.

Proposition (Gehrke, Grigorieff, Pin)

Let $L \subseteq A^*$ regular and $u \in \widehat{A^*}$. TFAE:

- $u \in \overline{L}$.
- ② $\hat{\varphi}(u) \in \varphi(L)$, for every morphism $\varphi \colon A^* \to M$, where M is a finite monoid.
- **3** $\hat{\eta}(u) \in \eta(L)$, where $\eta: A^* \to M(L)$ is the syntactic morphism of L.

 $L \subseteq A^*$ regular.

 $\boldsymbol{V} = [\![\boldsymbol{\Sigma}]\!]$ $\boldsymbol{OM}\text{-variety}.$

 $L \subseteq A^*$ regular.

 $\boldsymbol{V} = [\![\boldsymbol{\Sigma}]\!]$ $\boldsymbol{OM}\text{-variety}.$

$$L \in A^* \mathcal{V} \iff M(L) \in \mathbf{V}$$
 $\iff M(L)$ satisfies the equations of Σ

 $L \subseteq A^*$ regular.

 $\mathbf{V} = \llbracket \mathbf{\Sigma} \rrbracket$ **OM**-variety.

$$L \in A^* \mathcal{V} \iff M(L) \in \mathbf{V}$$
 $\iff M(L)$ satisfies the equations of Σ

 $L \subseteq A^*$ regular, $u, v \in \widehat{A^*}$.

L satisfies $u \le v$ if $\hat{\eta}(u) \le \hat{\eta}(v)$, where $\eta: A^* \to M(L)$ is the syntactic morphism of *L*.

 $L \subseteq A^*$ regular.

 $\mathbf{V} = \llbracket \boldsymbol{\Sigma} \rrbracket$ **OM**-variety.

$$L \in A^* \mathcal{V} \iff M(L) \in \mathbf{V}$$
 $\iff M(L)$ satisfies the equations of Σ

 $L \subseteq A^*$ regular, $u, v \in \widehat{A^*}$.

L satisfies $u \le v$ if $\hat{\eta}(u) \le \hat{\eta}(v)$, where $\eta: A^* \to M(L)$ is the syntactic morphism of *L*.

 $L \subseteq A^*$ regular.

 $\mathbf{V} = \llbracket \mathbf{\Sigma} \rrbracket$ **OM**-variety.

$$L \in A^* \mathcal{V} \iff M(L) \in \mathbf{V}$$
 $\iff M(L)$ satisfies the equations of Σ

 $L \subseteq A^*$ regular, $u, v \in \widehat{A^*}$.

L satisfies $u \le v$ if $\hat{\eta}(u) \le \hat{\eta}(v)$, where $\eta: A^* \to M(L)$ is the syntactic morphism of *L*.

Notice that, by the previous proposition,

$$\hat{\eta}(u) \leq \hat{\eta}(v) \iff \forall s, t \in M(L) \left(s \hat{\eta}(v) t \in \eta(L) \Rightarrow s \hat{\eta}(u) t \in \eta(L) \right) \\
\iff \forall x, y \in A^* \left(\hat{\eta}(xvy) \in \eta(L) \Rightarrow \hat{\eta}(xuy) \in \eta(L) \right)$$

How to characterize algebraically the classes ${\cal V}$ satisfying the following?

- \bullet $(A^*)\mathcal{V}$ is closed under finite union and finite intersection.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.

How to characterize algebraically the classes ${\cal V}$ satisfying the following?

- **1** $(A^*)V$ is closed under finite union and finite intersection.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.

Lattice of languages of A^* : set of languages of A^* closed under finite union and finite intersection.

How to characterize algebraically the classes ${\cal V}$ satisfying the following?

- \bigcirc $(A^*)\mathcal{V}$ is closed under finite union and finite intersection.
- ② $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}$.

Lattice of languages of A^* : set of languages of A^* closed under finite union and finite intersection.

Theorem (Gehrke, Grigorieff, Pin)

A set $\mathcal L$ of languages of A^* is a lattice of languages closed under quotients if and only if, for some set Σ of equations of the form $u \leq v$, with $u,v \in \widehat{A^*}$, $\mathcal L$ is the set of the languages of A^* that satisfy all equations of Σ .

Let \mathcal{L} be a set of languages of A^* .

 $Pol(\mathcal{L})$:

Let \mathcal{L} be a set of languages of A^* .

 $Pol(\mathcal{L})$: the set of languages that are finite union of $L_0 a_1 L_1 \cdots a_n L_n$, with $n \in \mathbb{N}_0$, $L_i \in \mathcal{L}$, $a_i \in A$.

Let \mathcal{L} be a set of languages of A^* .

 $Pol(\mathcal{L})$: the set of languages that are finite union of $L_0 a_1 L_1 \cdots a_n L_n$, with $n \in \mathbb{N}_0$, $L_i \in \mathcal{L}$, $a_i \in A$.

 $\Sigma(\mathcal{L})$: the set of equations of the form $x^{\omega}yx^{\omega} \leq x^{\omega}$, where $x,y \in \widehat{A^*}$ are such that the equations $x=x^2$ and $y \leq x$ are satisfied by \mathcal{L} .

Let \mathcal{L} be a set of languages of A^* .

 $Pol(\mathcal{L})$: the set of languages that are finite union of $L_0 a_1 L_1 \cdots a_n L_n$, with $n \in \mathbb{N}_0$, $L_i \in \mathcal{L}$, $a_i \in A$.

 $\Sigma(\mathcal{L})$: the set of equations of the form $x^{\omega}yx^{\omega} \leq x^{\omega}$, where $x,y \in \widehat{A^*}$ are such that the equations $x=x^2$ and $y \leq x$ are satisfied by \mathcal{L} .

Theorem (BP)

If \mathcal{L} is a lattice closed under quotients, then $Pol(\mathcal{L})$ is defined by $\Sigma(\mathcal{L})$.

Let \mathcal{L} be a set of languages of A^* .

 $Pol(\mathcal{L})$: the set of languages that are finite union of $L_0 a_1 L_1 \cdots a_n L_n$, with $n \in \mathbb{N}_0$, $L_i \in \mathcal{L}$, $a_i \in A$.

 $\Sigma(\mathcal{L})$: the set of equations of the form $x^{\omega}yx^{\omega} \leq x^{\omega}$, where $x,y \in \widehat{A^*}$ are such that the equations $x=x^2$ and $y \leq x$ are satisfied by \mathcal{L} .

Theorem (BP)

If \mathcal{L} is a lattice closed under quotients, then $Pol(\mathcal{L})$ is defined by $\Sigma(\mathcal{L})$.

How to prove it?

Proposition

If $\mathcal L$ is a lattice of languages, then $Pol(\mathcal L)$ satisfies $\Sigma(\mathcal L)$.

Proposition

If $\mathcal L$ is a lattice of languages, then $Pol(\mathcal L)$ satisfies $\Sigma(\mathcal L)$.

Proposition

If \mathcal{L} is a lattice of languages, then $Pol(\mathcal{L})$ satisfies $\Sigma(\mathcal{L})$.

 $L \subseteq A^*$ regular.

Define

$$E_{L} = \left\{ (x, y) \in \widehat{A}^{*} \times \widehat{A}^{*} \mid L \text{ satisfies } x = x^{2} \text{ and } y \leq x \right\}$$

$$F_{L} = \left\{ (x, y) \in \widehat{A}^{*} \times \widehat{A}^{*} \mid L \text{ satisfies } x^{\omega} y x^{\omega} \leq x^{\omega} \right\}$$

Proposition

If \mathcal{L} is a lattice of languages, then $Pol(\mathcal{L})$ satisfies $\Sigma(\mathcal{L})$.

 $L \subseteq A^*$ regular.

Define

$$E_{L} = \left\{ (x, y) \in \widehat{A}^{*} \times \widehat{A}^{*} \mid L \text{ satisfies } x = x^{2} \text{ and } y \leq x \right\}$$

$$F_{L} = \left\{ (x, y) \in \widehat{A}^{*} \times \widehat{A}^{*} \mid L \text{ satisfies } x^{\omega} y x^{\omega} \leq x^{\omega} \right\}$$

Proposition

 E_L and F_L are clopen in $\widehat{A^*} \times \widehat{A^*}$.

Proposition

Let \mathcal{L} be a set of languages of A^* and K be a regular language of A^* . TFAF:

1 K satisfies $\Sigma(\mathcal{L})$.

Proposition

Let \mathcal{L} be a set of languages of A^* and K be a regular language of A^* . TFAE:

- **1** K satisfies $\Sigma(\mathcal{L})$.
- ② The set $\{F_K\} \cup \{E_L \mid L \in \mathcal{L}\}$ is an open cover of $\widehat{A^*} \times \widehat{A^*}$.

Proposition

Let \mathcal{L} be a set of languages of A^* and K be a regular language of A^* . TFAE:

- **1** K satisfies $\Sigma(\mathcal{L})$.
- ② The set $\{F_K\} \cup \{E_L \mid L \in \mathcal{L}\}$ is an open cover of $\widehat{A}^* \times \widehat{A}^*$.

Proposition

Let $\mathcal L$ be a set of languages of A^* and K be a regular language of A^* . If K satisfies $\Sigma(\mathcal L)$, there exists a <u>finite</u> subset $\mathcal F$ of $\mathcal L$ such that K satisfies $\Sigma(\mathcal F)$.

Proposition

Let \mathcal{L} be a set of languages of A^* and K be a regular language of A^* . TFAE:

- **1** K satisfies $\Sigma(\mathcal{L})$.
- ② The set $\{F_K\} \cup \{E_L \mid L \in \mathcal{L}\}$ is an open cover of $\widehat{A}^* \times \widehat{A}^*$.

Proposition

Let $\mathcal L$ be a set of languages of A^* and K be a regular language of A^* . If K satisfies $\Sigma(\mathcal L)$, there exists a <u>finite</u> subset $\mathcal F$ of $\mathcal L$ such that K satisfies $\Sigma(\mathcal F)$.

Black board