Equations defining
 the polynomial closure of a lattice of languages

Mário Branco
CAUL, Univ. of Lisbon
Joint work with
Jean-Éric Pin
CNRS, Univ. Paris 7
Univ. of York - December 6, 2010

Topics

- Regular languages

Topics

- Regular languages
- Semigroup equations

Topics

- Regular languages
- Semigroup equations
- Varieties

Topics

- Regular languages
- Semigroup equations
- Varieties
- Topological aspects of the regular languages

Topics

- Regular languages
- Semigroup equations
- Varieties
- Topological aspects of the regular languages
- M-varieties and equations

Topics

- Regular languages
- Semigroup equations
- Varieties
- Topological aspects of the regular languages
- M-varieties and equations
- Ordered monoids and languages

Topics

- Regular languages
- Semigroup equations
- Varieties
- Topological aspects of the regular languages
- M-varieties and equations
- Ordered monoids and languages
- OM-varieties and equations

Topics

- Regular languages
- Semigroup equations
- Varieties
- Topological aspects of the regular languages
- M-varieties and equations
- Ordered monoids and languages
- OM-varieties and equations
- Lattices of languages closed under quotients

Topics

- Regular languages
- Semigroup equations
- Varieties
- Topological aspects of the regular languages
- M-varieties and equations
- Ordered monoids and languages
- OM-varieties and equations
- Lattices of languages closed under quotients
- Polynomial closure of a lattice of languages closed under quotients

Languages

Alphabet:

Languages

Alphabet: a (finite) set A

Languages

Alphabet: a (finite) set A
Letter:

Languages

Alphabet: a (finite) set A
Letter: an element of A

Languages

Alphabet: a (finite) set A
Letter: an element of A

Languages

Alphabet: a (finite) set A
Letter: an element of A
Word:

Languages

Alphabet: a (finite) set A
Letter: an element of A
Word: finite sequence of elements of A

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

Languages

Alphabet: a (finite) set A
Letter: an element of A
Word: finite sequence of elements of A

$$
\begin{gathered}
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
a_{1} a_{2} \ldots a_{n}
\end{gathered}
$$

Languages

Alphabet: a (finite) set A
Letter: an element of A
Word: finite sequence of elements of A

$$
\begin{gathered}
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
a_{1} a_{2} \ldots a_{n}
\end{gathered}
$$

where $a_{1} a_{2} \ldots a_{n} \in \mathbb{N}$ and $n \in \mathbb{N}$.
A^{+}:

Languages

Alphabet: a (finite) set A
Letter: an element of A
Word: finite sequence of elements of A

$$
\begin{gathered}
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
a_{1} a_{2} \ldots a_{n}
\end{gathered}
$$

where $a_{1} a_{2} \ldots a_{n} \in \mathbb{N}$ and $n \in \mathbb{N}$.
A^{+}: the set of all these sequences over A

Languages

Alphabet: a (finite) set A
Letter: an element of A
Word: finite sequence of elements of A

$$
\begin{gathered}
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
a_{1} a_{2} \ldots a_{n}
\end{gathered}
$$

where $a_{1} a_{2} \ldots a_{n} \in \mathbb{N}$ and $n \in \mathbb{N}$.
A^{+}: the set of all these sequences over A
Free semigroup:

Languages

Alphabet: a (finite) set A
Letter: an element of A
Word: finite sequence of elements of A

$$
\begin{gathered}
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
a_{1} a_{2} \ldots a_{n}
\end{gathered}
$$

where $a_{1} a_{2} \ldots a_{n} \in \mathbb{N}$ and $n \in \mathbb{N}$.
A^{+}: the set of all these sequences over A
Free semigroup: A^{+}with the concatenation product

$$
a_{1} a_{2} \ldots a_{n} \cdot b_{1} b_{2} \ldots b_{p}=a_{1} a_{2} \ldots a_{n} b_{1} b_{2} \ldots b_{p}
$$

Languages

Alphabet: a (finite) set A
Letter: an element of A
Word: finite sequence of elements of A

$$
\begin{gathered}
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
a_{1} a_{2} \ldots a_{n}
\end{gathered}
$$

where $a_{1} a_{2} \ldots a_{n} \in \mathbb{N}$ and $n \in \mathbb{N}$.
A^{+}: the set of all these sequences over A
Free semigroup: A^{+}with the concatenation product

$$
a_{1} a_{2} \ldots a_{n} \cdot b_{1} b_{2} \ldots b_{p}=a_{1} a_{2} \ldots a_{n} b_{1} b_{2} \ldots b_{p}
$$

Free monoid:

Languages

Alphabet: a (finite) set A
Letter: an element of A
Word: finite sequence of elements of A

$$
\begin{gathered}
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
a_{1} a_{2} \ldots a_{n}
\end{gathered}
$$

where $a_{1} a_{2} \ldots a_{n} \in \mathbb{N}$ and $n \in \mathbb{N}$.
A^{+}: the set of all these sequences over A
Free semigroup: A^{+}with the concatenation product

$$
a_{1} a_{2} \ldots a_{n} \cdot b_{1} b_{2} \ldots b_{p}=a_{1} a_{2} \ldots a_{n} b_{1} b_{2} \ldots b_{p}
$$

Free monoid: $A^{*}=A^{+} \cup\{1\}$

Languages

Alphabet: a (finite) set A
Letter: an element of A
Word: finite sequence of elements of A

$$
\begin{gathered}
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
a_{1} a_{2} \ldots a_{n}
\end{gathered}
$$

where $a_{1} a_{2} \ldots a_{n} \in \mathbb{N}$ and $n \in \mathbb{N}$.
A^{+}: the set of all these sequences over A
Free semigroup: A^{+}with the concatenation product

$$
a_{1} a_{2} \ldots a_{n} \cdot b_{1} b_{2} \ldots b_{p}=a_{1} a_{2} \ldots a_{n} b_{1} b_{2} \ldots b_{p}
$$

Free monoid: $A^{*}=A^{+} \cup\{1\}$
Language:

Languages

Alphabet: a (finite) set A
Letter: an element of A
Word: finite sequence of elements of A

$$
\begin{gathered}
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
a_{1} a_{2} \ldots a_{n}
\end{gathered}
$$

where $a_{1} a_{2} \ldots a_{n} \in \mathbb{N}$ and $n \in \mathbb{N}$.
A^{+}: the set of all these sequences over A
Free semigroup: A^{+}with the concatenation product

$$
a_{1} a_{2} \ldots a_{n} \cdot b_{1} b_{2} \ldots b_{p}=a_{1} a_{2} \ldots a_{n} b_{1} b_{2} \ldots b_{p}
$$

Free monoid: $A^{*}=A^{+} \cup\{1\}$
Language: a subset of A^{*}

Languages

Example of languages over $A=\{a, b\}$:

Languages

Example of languages over $A=\{a, b\}$:

\emptyset,

Languages

Example of languages over $A=\{a, b\}$:

$$
\emptyset, \quad\{1\},
$$

Languages

Example of languages over $A=\{a, b\}$:

$$
\emptyset, \quad\{1\}, \quad A, \quad A^{+}, \quad A^{*}
$$

Languages

Example of languages over $A=\{a, b\}$:

$$
\begin{aligned}
& \emptyset, \quad\{1\}, \quad A, \quad A^{+}, \quad A^{*} \\
& \left\{1, a, b, a b a, a^{8}, a a b b b a b\right\}
\end{aligned}
$$

Languages

Example of languages over $A=\{a, b\}$:

$$
\begin{aligned}
& \emptyset, \quad\{1\}, \quad A, \quad A^{+}, \quad A^{*} \\
& \left\{1, a, b, a b a, a^{8}, a a b b b a b\right\} \\
& \left\{a^{n} b^{p} \mid n, p \in \mathbb{N}\right\}
\end{aligned}
$$

Languages

Example of languages over $A=\{a, b\}$:

$$
\begin{aligned}
& \emptyset, \quad\{1\}, \quad A, \quad A^{+}, \quad A^{*} \\
& \left\{1, a, b, a b a, a^{8}, a a b b b a b\right\} \\
& \left\{a^{n} b^{p} \mid n, p \in \mathbb{N}\right\} \\
& \left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}
\end{aligned}
$$

Operations on Languages

Union:

$$
\begin{aligned}
(K, L) \longmapsto & K \cup L=\{u \mid u \in K \text { or } u \in L\} \\
& K+L
\end{aligned}
$$

Operations on Languages

Union:

$$
\begin{aligned}
(K, L) \longmapsto & K \cup L=\{u \mid u \in K \text { or } u \in L\} \\
& K+L
\end{aligned}
$$

Intersection:

$$
(K, L) \longmapsto K \cap L=\{u \mid u \in K \text { and } u \in L\}
$$

Operations on Languages

Union:

$$
\begin{aligned}
(K, L) \longmapsto & K \cup L=\{u \mid u \in K \text { or } u \in L\} \\
& K+L
\end{aligned}
$$

Intersection:

$$
(K, L) \longmapsto K \cap L=\{u \mid u \in K \text { and } u \in L\}
$$

Complementation:

$$
L \longmapsto A^{*} \backslash L=\left\{u \in A^{*} \mid u \notin L\right\}
$$

Operations on Languages

Union:

$$
\begin{aligned}
(K, L) \longmapsto & K \cup L=\{u \mid u \in K \text { or } u \in L\} \\
& K+L
\end{aligned}
$$

Intersection:

$$
(K, L) \longmapsto K \cap L=\{u \mid u \in K \text { and } u \in L\}
$$

Complementation:

$$
L \longmapsto A^{*} \backslash L=\left\{u \in A^{*} \mid u \notin L\right\}
$$

Product:

$$
(K, L) \longmapsto K L=\{u v \mid u \in K \text { and } v \in L\}
$$

Operations on Languages

Union:

$$
\begin{aligned}
(K, L) \longmapsto & K \cup L=\{u \mid u \in K \text { or } u \in L\} \\
& K+L
\end{aligned}
$$

Intersection:

$$
(K, L) \longmapsto K \cap L=\{u \mid u \in K \text { and } u \in L\}
$$

Complementation:

$$
L \longmapsto A^{*} \backslash L=\left\{u \in A^{*} \mid u \notin L\right\}
$$

Product:

$$
(K, L) \longmapsto K L=\{u v \mid u \in K \text { and } v \in L\}
$$

Star:

$$
\begin{aligned}
L \longmapsto L^{*}= & \left\{u_{1} \cdots u_{n} \mid u_{1}, \ldots, u_{n} \in L, n \in \mathbb{N}_{0}\right\} \\
& \text { the submonoid of } A^{*} \text { generated by } L
\end{aligned}
$$

Operations on Languages

Quotients $(a \in A)$:

$$
\begin{aligned}
L \longmapsto a^{-1} L & =\{u \mid a u \in L\} \\
L \longmapsto L a^{-1} & =\{u \mid u a \in L\}
\end{aligned}
$$

Regular Languages

Regular Languages

$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Regular Languages

$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.
Rational, or regular, language: element of $\operatorname{Rat}\left(A^{*}\right)$.

Regular Languages

$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.
Rational, or regular, language: element of $\operatorname{Rat}\left(A^{*}\right)$.
Example of rational languages over $A=\{a, b\}$:

Regular Languages

$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.
Rational, or regular, language: element of $\operatorname{Rat}\left(A^{*}\right)$.
Example of rational languages over $A=\{a, b\}$:
We identify $\{a\}$ with a and write, for instance, a^{*} instead of $\{a\}^{*}$,

Regular Languages

$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.
Rational, or regular, language: element of $\operatorname{Rat}\left(A^{*}\right)$.
Example of rational languages over $A=\{a, b\}$:
We identify $\{a\}$ with a and write, for instance,
a^{*} instead of $\{a\}^{*}$,
$a+b$ instead of $\{a, b\}(=\{a\}+\{b\})$.

Regular Languages

$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.
Rational, or regular, language: element of $\operatorname{Rat}\left(A^{*}\right)$.
Example of rational languages over $A=\{a, b\}$:
We identify $\{a\}$ with a and write, for instance,
a^{*} instead of $\{a\}^{*}$,
$a+b$ instead of $\{a, b\}(=\{a\}+\{b\})$.

$$
\{1\}=\emptyset^{*},
$$

Regular Languages

$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.
Rational, or regular, language: element of $\operatorname{Rat}\left(A^{*}\right)$.
Example of rational languages over $A=\{a, b\}$:
We identify $\{a\}$ with a and write, for instance, a^{*} instead of $\{a\}^{*}$,
$a+b$ instead of $\{a, b\}(=\{a\}+\{b\})$.

$$
\{1\}=\emptyset^{*}, \quad A,
$$

Regular Languages

$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.
Rational, or regular, language: element of $\operatorname{Rat}\left(A^{*}\right)$.
Example of rational languages over $A=\{a, b\}$:
We identify $\{a\}$ with a and write, for instance, a^{*} instead of $\{a\}^{*}$,
$a+b$ instead of $\{a, b\}(=\{a\}+\{b\})$.

$$
\{1\}=\emptyset^{*}, \quad A, \quad A^{*}
$$

Regular Languages

$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.
Rational, or regular, language: element of $\operatorname{Rat}\left(A^{*}\right)$.
Example of rational languages over $A=\{a, b\}$:
We identify $\{a\}$ with a and write, for instance, a^{*} instead of $\{a\}^{*}$,
$a+b$ instead of $\{a, b\}(=\{a\}+\{b\})$.

$$
\{1\}=\emptyset^{*}, \quad A, \quad A^{*}, \quad A^{+}=A A^{*}
$$

Regular Languages

$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.
Rational, or regular, language: element of $\operatorname{Rat}\left(A^{*}\right)$.
Example of rational languages over $A=\{a, b\}$:
We identify $\{a\}$ with a and write, for instance, a^{*} instead of $\{a\}^{*}$,
$a+b$ instead of $\{a, b\}(=\{a\}+\{b\})$.

$$
\begin{aligned}
& \{1\}=\emptyset^{*}, \quad A, \quad A^{*}, \quad A^{+}=A A^{*} \\
& \{a b a a\}=\{a\} \cdot\{b\} \cdot\{a\} \cdot\{a\}
\end{aligned}
$$

Regular Languages

$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.
Rational, or regular, language: element of $\operatorname{Rat}\left(A^{*}\right)$.
Example of rational languages over $A=\{a, b\}$:
We identify $\{a\}$ with a and write, for instance, a^{*} instead of $\{a\}^{*}$,
$a+b$ instead of $\{a, b\}(=\{a\}+\{b\})$.

$$
\begin{aligned}
& \{1\}=\emptyset^{*}, \quad A, \quad A^{*}, \quad A^{+}=A A^{*} \\
& \{a b a a\}=\{a\} \cdot\{b\} \cdot\{a\} \cdot\{a\} \\
& \left\{1, a, b, a b a, a^{8}, a a b b b a b\right\}
\end{aligned}
$$

Regular Languages

$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.
Rational, or regular, language: element of $\operatorname{Rat}\left(A^{*}\right)$.
Example of rational languages over $A=\{a, b\}$:
We identify $\{a\}$ with a and write, for instance, a^{*} instead of $\{a\}^{*}$,
$a+b$ instead of $\{a, b\}(=\{a\}+\{b\})$.

$$
\begin{aligned}
& \{1\}=\emptyset^{*}, \quad A, \quad A^{*}, \quad A^{+}=A A^{*} \\
& \{a b a a\}=\{a\} \cdot\{b\} \cdot\{a\} \cdot\{a\} \\
& \left\{1, a, b, a b a, a^{8}, a a b b b a b\right\} \\
& a^{*},
\end{aligned}
$$

Regular Languages

$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.
Rational, or regular, language: element of $\operatorname{Rat}\left(A^{*}\right)$.
Example of rational languages over $A=\{a, b\}$:
We identify $\{a\}$ with a and write, for instance, a^{*} instead of $\{a\}^{*}$,
$a+b$ instead of $\{a, b\}(=\{a\}+\{b\})$.

$$
\begin{aligned}
& \{1\}=\emptyset^{*}, \quad A, \quad A^{*}, \quad A^{+}=A A^{*} \\
& \{a b a a\}=\{a\} \cdot\{b\} \cdot\{a\} \cdot\{a\} \\
& \left\{1, a, b, a b a, a^{8}, a a b b b a b\right\} \\
& a^{*}, \quad a^{*} b^{*}=\left\{a^{n} b^{p} \mid n, p \in \mathbb{N}_{0}\right\}
\end{aligned}
$$

Regular Languages

$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.
Rational, or regular, language: element of $\operatorname{Rat}\left(A^{*}\right)$.
Example of rational languages over $A=\{a, b\}$:
We identify $\{a\}$ with a and write, for instance, a^{*} instead of $\{a\}^{*}$, $a+b$ instead of $\{a, b\}(=\{a\}+\{b\})$.

$$
\begin{aligned}
& \{1\}=\emptyset^{*}, \quad A, \quad A^{*}, \quad A^{+}=A A^{*} \\
& \{a b a a\}=\{a\} \cdot\{b\} \cdot\{a\} \cdot\{a\} \\
& \left\{1, a, b, a b a, a^{8}, a a b b b a b\right\} \\
& a^{*}, \quad a^{*} b^{*}=\left\{a^{n} b^{p} \mid n, p \in \mathbb{N}_{0}\right\} \\
& (a b+b a)^{*} b b a a b b(b b a)^{*}+\left((a a a+b b b)^{*}+a^{5}\right)^{*} b
\end{aligned}
$$

Finite automaton

Finite automaton

Automaton \mathcal{A} :

Finite automaton

Automaton \mathcal{A} :

Words recognized by \mathcal{A} :

$$
1, a, a a, a^{3}, a^{4}, a^{2} b, a^{4} b a b a^{6} b, b a,(b a)^{2}, a b a,(a b)^{2} a, \ldots
$$

Finite automaton

Automaton \mathcal{A} :

Words recognized by \mathcal{A} :

$$
1, a, a a, a^{3}, a^{4}, a^{2} b, a^{4} b a b a^{6} b, b a,(b a)^{2}, a b a,(a b)^{2} a, \ldots
$$

$L(\mathcal{A})=\left(a(a b)^{*}\right)^{*}+(b a)^{*}+(a b)^{*} a$

Finite automaton

Finite automaton

Alphabet $A=\{0,1\}$
Automaton \mathcal{A} :

Finite automaton

Alphabet $A=\{0,1\}$
Automaton \mathcal{A} :

Words recognized by \mathcal{A} are precisely the words that represent the multiples of 3 on base 2, for instance 0, 00, 11, 0011, 1001, 1000110100.

Finite automaton

Alphabet $A=\{0,1\}$
Automaton \mathcal{A} :

Words recognized by \mathcal{A} are precisely the words that represent the multiples of 3 on base 2, for instance $0,00,11,0011,1001,1000110100$.
$L(\mathcal{A})=\left(0+1\left(01^{*} 0\right)^{*} 1\right)^{*}$

Recognizability

Recognizability

A language $L \subseteq A^{*}$ is recognizable if it $L=L(\mathcal{A})$ for some finite automaton.

Recognizability

A language $L \subseteq A^{*}$ is recognizable if it $L=L(\mathcal{A})$ for some finite automaton.

Theorem (Kleene)
$L \subseteq A^{*}$ is recognizable if and only if it is rational.

Recognizability

A language $L \subseteq A^{*}$ is recognizable if it $L=L(\mathcal{A})$ for some finite automaton.

Theorem (Kleene)
$L \subseteq A^{*}$ is recognizable if and only if it is rational.

Proposition

$\operatorname{Rat}\left(A^{*}\right)$ is closed under intersection, complementation and quotients.

Recognizability

A language $L \subseteq A^{*}$ is recognizable if it $L=L(\mathcal{A})$ for some finite automaton.

Theorem (Kleene)
$L \subseteq A^{*}$ is recognizable if and only if it is rational.

Proposition

$\operatorname{Rat}\left(A^{*}\right)$ is closed under intersection, complementation and quotients.
$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the

Recognizability

A language $L \subseteq A^{*}$ is recognizable if it $L=L(\mathcal{A})$ for some finite automaton.

Theorem (Kleene)
$L \subseteq A^{*}$ is recognizable if and only if it is rational.

Proposition

$\operatorname{Rat}\left(A^{*}\right)$ is closed under intersection, complementation and quotients.
$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union,

Recognizability

A language $L \subseteq A^{*}$ is recognizable if it $L=L(\mathcal{A})$ for some finite automaton.

Theorem (Kleene)
$L \subseteq A^{*}$ is recognizable if and only if it is rational.

Proposition

$\operatorname{Rat}\left(A^{*}\right)$ is closed under intersection, complementation and quotients.
$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product

Recognizability

A language $L \subseteq A^{*}$ is recognizable if it $L=L(\mathcal{A})$ for some finite automaton.

Theorem (Kleene)
$L \subseteq A^{*}$ is recognizable if and only if it is rational.

Proposition

$\operatorname{Rat}\left(A^{*}\right)$ is closed under intersection, complementation and quotients.
$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Recognizability

A language $L \subseteq A^{*}$ is recognizable if it $L=L(\mathcal{A})$ for some finite automaton.

Theorem (Kleene)
$L \subseteq A^{*}$ is recognizable if and only if it is rational.

Proposition

$\operatorname{Rat}\left(A^{*}\right)$ is closed under intersection, complementation and quotients.
$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the boolean operations, product and star.

Recognizability

A language $L \subseteq A^{*}$ is recognizable if it $L=L(\mathcal{A})$ for some finite automaton.

Theorem (Kleene)
$L \subseteq A^{*}$ is recognizable if and only if it is rational.

Proposition

$\operatorname{Rat}\left(A^{*}\right)$ is closed under intersection, complementation and quotients.
$\operatorname{Rat}\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the boolean operations, and product.

Recognizability

A language $L \subseteq A^{*}$ is recognizable if it $L=L(\mathcal{A})$ for some finite automaton.

Theorem (Kleene)
$L \subseteq A^{*}$ is recognizable if and only if it is rational.

Proposition

$\operatorname{Rat}\left(A^{*}\right)$ is closed under intersection, complementation and quotients.

star-free

SF $\left(A^{*}\right)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the boolean operations, and product.

Recognizability

A language $L \subseteq A^{*}$ is recognizable if it $L=L(\mathcal{A})$ for some finite automaton.

Theorem (Kleene)
$L \subseteq A^{*}$ is recognizable if and only if it is rational.

Proposition

$\operatorname{Rat}\left(A^{*}\right)$ is closed under intersection, complementation and quotients.

```
star-free
\(\operatorname{SF}\left(A^{*}\right)\) is the smallest set of languages over \(A\) that has the emptyset and the languages \(\{a\}\), with \(a \in A\), and is closed under the boolean operations, and product.
Is there an algorithm to test whether a language belongs to \(\operatorname{SF}\left(A^{*}\right)\) ?
```


Transition monoid

Transition monoid

Alphabet $A=\{a, b\}$
Automaton \mathcal{A} :

Transition monoid

Alphabet $A=\{a, b\}$
Automaton \mathcal{A} :

The transitions of \mathcal{A} can be defined by the following two binary relations:

$$
\begin{aligned}
& a \longmapsto \bar{a}=\{(1,1),(1,2),(2,3),(3,1)\} \\
& b \longmapsto \bar{b}=\{(2,1),(3,2)\}
\end{aligned}
$$

Transition monoid

Alphabet $A=\{a, b\}$
Automaton \mathcal{A} :

The transitions of \mathcal{A} can be defined by the following two binary relations:

$$
\begin{aligned}
a & \longmapsto \bar{a}=\{(1,1),(1,2),(2,3),(3,1)\} \\
b & \longmapsto \bar{b}=\{(2,1),(3,2)\}
\end{aligned}
$$

For words, for instance:

$$
b a b b a \longmapsto \overline{b a b b a}=\{(0,1),(1,0),(2,2)\}
$$

Transition monoid

Alphabet $A=\{a, b\}$
Automaton \mathcal{A} :

The transitions of \mathcal{A} can be defined by the following two binary relations:

$$
\begin{aligned}
a & \longmapsto \bar{a}=\{(1,1),(1,2),(2,3),(3,1)\} \\
b & \longmapsto \bar{b}=\{(2,1),(3,2)\}
\end{aligned}
$$

For words, for instance:

$$
\begin{aligned}
b a b b a \longmapsto \overline{b a b b a} & =\{(0,1),(1,0),(2,2)\} \\
& =\bar{b} \circ \bar{a} \circ \bar{b} \circ \bar{b} \circ \bar{a}
\end{aligned}
$$

Transition monoid

Transition monoid

Transition monoid of $\mathcal{A}: M(\mathcal{A})=\left\{\bar{u} \mid u \in A^{*}\right\}$ with composition. We have the morphism

$$
\begin{aligned}
\varphi: \quad A^{*} & \longrightarrow(M(\mathcal{A}), \circ) \\
u & \longmapsto \bar{u}
\end{aligned}
$$

Transition monoid

Transition monoid of $\mathcal{A}: M(\mathcal{A})=\left\{\bar{u} \mid u \in A^{*}\right\}$ with composition.
We have the morphism

$$
\begin{aligned}
\varphi: \quad A^{*} & \longrightarrow(M(\mathcal{A}), \circ) \\
u & \longmapsto \bar{u}
\end{aligned}
$$

and

$$
u \in L(\mathcal{A}) \Longleftrightarrow(u) \varphi \in \underbrace{(L) \varphi}_{\text {finite set }}
$$

Transition monoid

Transition monoid of $\mathcal{A}: M(\mathcal{A})=\left\{\bar{u} \mid u \in A^{*}\right\}$ with composition.
We have the morphism

$$
\begin{aligned}
\varphi: \quad A^{*} & \longrightarrow(M(\mathcal{A}), \circ) \\
u & \longmapsto \bar{u}
\end{aligned}
$$

and

$$
u \in L(\mathcal{A}) \Longleftrightarrow(u) \varphi \in \underbrace{(L) \varphi}_{\text {finite set }}
$$

A monoid M recognizes $L \subseteq A^{*}$ if there exist a morphism $\varphi: A^{*} \rightarrow M$ and $P \subseteq M$ s.t. $L=(P) \varphi^{-1}$.

Transition monoid

Transition monoid of $\mathcal{A}: M(\mathcal{A})=\left\{\bar{u} \mid u \in A^{*}\right\}$ with composition.
We have the morphism

$$
\begin{aligned}
\varphi: \quad A^{*} & \longrightarrow(M(\mathcal{A}), \circ) \\
u & \longmapsto \bar{u}
\end{aligned}
$$

and

$$
u \in L(\mathcal{A}) \Longleftrightarrow(u) \varphi \in \underbrace{(L) \varphi}_{\text {finite set }}
$$

A monoid M recognizes $L \subseteq A^{*}$ if there exist a morphism $\varphi: A^{*} \rightarrow M$ and $P \subseteq M$ s.t. $L=(P) \varphi^{-1}$.

$$
u \in L \Longleftrightarrow(u) \varphi \in P
$$

Syntactic monoid

Syntactic monoid

Proposition

For $L \subseteq A^{*}$, TFAE:
(1) L is recognized by a finite automaton, i.e. L is recognizable.
(2) L is recognized by a finite monoid.

Syntactic monoid

Proposition

For $L \subseteq A^{*}$, TFAE:
(1) Lis recognized by a finite automaton, i.e. L is recognizable.
(2) L is recognized by a finite monoid.

Let $L \subseteq A^{*}$.

Syntactic monoid

Proposition

For $L \subseteq A^{*}$, TFAE:
(1) L is recognized by a finite automaton, i.e. L is recognizable.
(2) L is recognized by a finite monoid.

Let $L \subseteq A^{*}$.
Syntactic congruence of L, \sim_{L} on A^{*} :

$$
u \sim_{L} v \text { if and only if } \forall x, y \in A^{*}(x u y \in L \Leftrightarrow x v y \in L)
$$

Syntactic monoid

Proposition

For $L \subseteq A^{*}$, TFAE:
(1) L is recognized by a finite automaton, i.e. L is recognizable.
(2) L is recognized by a finite monoid.

Let $L \subseteq A^{*}$.
Syntactic congruence of L, \sim_{L} on A^{*} :

$$
u \sim_{L} v \text { if and only if } \forall x, y \in A^{*}(x u y \in L \Leftrightarrow x v y \in L)
$$

Syntactic monoid of $L: M(L)=A^{*} / \sim_{L}$

Syntactic monoid

Proposition

For $L \subseteq A^{*}$, TFAE:
(1) L is recognized by a finite automaton, i.e. L is recognizable.
(2) L is recognized by a finite monoid.

Let $L \subseteq A^{*}$.
Syntactic congruence of L, \sim_{L} on A^{*} :

$$
u \sim_{L} v \text { if and only if } \forall x, y \in A^{*}(x u y \in L \Leftrightarrow x v y \in L)
$$

Syntactic monoid of $L: M(L)=A^{*} / \sim_{L}$
Syntactic morphism of $L: \eta: A^{*} \longrightarrow M(L)$
$u \longmapsto[u]_{\sim_{L}}$

Syntactic monoid

Proposition

For $L \subseteq A^{*}, T F A E$:
(1) L is recognized by a finite automaton, i.e. L is recognizable.
(2) L is recognized by a finite monoid.

Let $L \subseteq A^{*}$.
Syntactic congruence of L, \sim_{L} on A^{*} :

$$
u \sim_{L} v \text { if and only if } \forall x, y \in A^{*}(x u y \in L \Leftrightarrow x v y \in L)
$$

Syntactic monoid of $L: M(L)=A^{*} / \sim_{L}$
Syntactic morphism of $L: \eta: A^{*} \longrightarrow M(L)$
$u \longmapsto[u]_{\sim_{L}}$
$M(L)$ recognizes L, since $L=(L \eta) \eta^{-1}$.

Syntactic monoid

Proposition

For $L \subseteq A^{*}$, TFAE:
(1) L is recognized by a finite automaton, i.e. L is recognizable.
(2) L is recognized by a finite monoid.

Let $L \subseteq A^{*}$.
Syntactic congruence of L, \sim_{L} on A^{*} :

$$
u \sim_{L} v \text { if and only if } \forall x, y \in A^{*}(x u y \in L \Leftrightarrow x v y \in L)
$$

Syntactic monoid of $L: M(L)=A^{*} / \sim_{L}$
Syntactic morphism of $L: \eta: A^{*} \longrightarrow M(L)$
$u \longmapsto[u]_{\sim_{L}}$
$M(L)$ recognizes L, since $L=(L \eta) \eta^{-1}$.
M recognizes $L \Longleftrightarrow M(L)$ is homomorphic image of a submonoid of M.

Star-free languages

Star-free languages

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $\operatorname{SF}\left(A^{*}\right)$?

Star-free languages

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $\operatorname{SF}\left(A^{*}\right)$?

Examples of star-free languages over $A=\{a, b\}$:

Star-free languages

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $\operatorname{SF}\left(A^{*}\right)$?

Examples of star-free languages over $A=\{a, b\}$:

$$
A=a+b,
$$

Star-free languages

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $\operatorname{SF}\left(A^{*}\right)$?

Examples of star-free languages over $A=\{a, b\}$:

$$
A=a+b, \quad A^{*}=A^{*} \backslash \emptyset,
$$

Star-free languages

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $\operatorname{SF}\left(A^{*}\right)$?

Examples of star-free languages over $A=\{a, b\}$:

$$
A=a+b, \quad A^{*}=A^{*} \backslash \emptyset, \quad\{1\}=A^{*} \backslash A A^{*},
$$

Star-free languages

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $\operatorname{SF}\left(A^{*}\right)$?

Examples of star-free languages over $A=\{a, b\}$:

$$
A=a+b, \quad A^{*}=A^{*} \backslash \emptyset, \quad\{1\}=A^{*} \backslash A A^{*}, \quad A^{*} b A^{*},
$$

Star-free languages

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $\operatorname{SF}\left(A^{*}\right)$?

Examples of star-free languages over $A=\{a, b\}$:

$$
\begin{aligned}
& A=a+b, \quad A^{*}=A^{*} \backslash \emptyset, \quad\{1\}=A^{*} \backslash A A^{*}, \quad A^{*} b A^{*}, \\
& a^{*}=A^{*} \backslash A^{*} b A^{*},
\end{aligned}
$$

Star-free languages

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $\operatorname{SF}\left(A^{*}\right)$?

Examples of star-free languages over $A=\{a, b\}$:

$$
\begin{aligned}
& A=a+b, \quad A^{*}=A^{*} \backslash \emptyset, \quad\{1\}=A^{*} \backslash A A^{*}, \quad A^{*} b A^{*}, \\
& a^{*}=A^{*} \backslash A^{*} b A^{*}, \\
& (a b)^{*}=A^{*} \backslash\left(b A^{*}+A^{*} a+A^{*} a a A^{*}+A^{*} b b A^{*}\right)
\end{aligned}
$$

Star-free languages

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $\operatorname{SF}\left(A^{*}\right)$?

Examples of star-free languages over $A=\{a, b\}$:

$$
\begin{aligned}
& A=a+b, \quad A^{*}=A^{*} \backslash \emptyset, \quad\{1\}=A^{*} \backslash A A^{*}, \quad A^{*} b A^{*}, \\
& a^{*}=A^{*} \backslash A^{*} b A^{*}, \\
& (a b)^{*}=A^{*} \backslash\left(b A^{*}+A^{*} a+A^{*} a a A^{*}+A^{*} b b A^{*}\right)
\end{aligned}
$$

The answer is Yes.
Theorem (Schützenberger)
For $L \subseteq A^{*}, T F A E$:
(1) L is star-free.
(2) L is recognized by an aperiodic finite monoid.
(3) $M(L)$ is finite and $\underbrace{\text { aperiodic }}$.

Star-free languages

Star-free languages

Example:

On the alphabet $A=\{a, b\}$,

Star-free languages

Example:

On the alphabet $A=\{a, b\}$, a^{*} and $(a b)^{*}$ are star-free,

Star-free languages

Example:

On the alphabet $A=\{a, b\}$,
a^{*} and $(a b)^{*}$ are star-free,
but
$(a a)^{*}$ is not star-free, since $M\left((a a)^{*}\right)$ is not aperiodic.

Variety of languages

Variety of languages

Variety of languages \mathcal{V} :
A
alphabet

Variety of languages

Variety of languages \mathcal{V} :

$$
\begin{array}{clc}
A & \longmapsto & \left(A^{*}\right) \mathcal{V} \\
\text { alphabet }
\end{array}
$$

such that
(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union, finite intersection and complementation.

Variety of languages

Variety of languages \mathcal{V} :

$$
\begin{array}{clc}
A & \longmapsto & \left(A^{*}\right) \mathcal{V} \\
\text { alphabet }
\end{array}
$$

such that
(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union, finite intersection and complementation.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.

Variety of languages

Variety of languages \mathcal{V} :

$$
\begin{array}{clc}
A & \longmapsto & \left(A^{*}\right) \mathcal{V} \\
\text { alphabet }
\end{array}
$$

such that
(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union, finite intersection and complementation.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.
(3) if $\varphi: A^{*} \rightarrow B^{*}$ is a morphism and $L \in\left(B^{*}\right) \mathcal{V}$, then $L \varphi^{-1} \in\left(A^{*}\right) \mathcal{V}$

Variety of languages

Variety of languages \mathcal{V} :

$$
\begin{array}{ccc}
A & \longmapsto & \left(A^{*}\right) \mathcal{V} \\
\text { alphabet } & & \text { subset of } \operatorname{Rat}\left(A^{*}\right)
\end{array}
$$

such that
(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union, finite intersection and complementation.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.
(3) if $\varphi: A^{*} \rightarrow B^{*}$ is a morphism and $L \in\left(B^{*}\right) \mathcal{V}$, then $L \varphi^{-1} \in\left(A^{*}\right) \mathcal{V}$

Rational languages form a variety of languages.

Variety of languages

Variety of languages \mathcal{V} :

$$
\begin{array}{clc}
A & \longmapsto & \left(A^{*}\right) \mathcal{V} \\
\text { alphabet }
\end{array}
$$

such that

(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union, finite intersection and complementation.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.
(3) if $\varphi: A^{*} \rightarrow B^{*}$ is a morphism and $L \in\left(B^{*}\right) \mathcal{V}$, then $L \varphi^{-1} \in\left(A^{*}\right) \mathcal{V}$

Rational languages form a variety of languages.
Star-free languages form a variety of languages.

Variety of languages

Variety of languages \mathcal{V} :

$$
\begin{array}{clc}
A & \longmapsto & \left(A^{*}\right) \mathcal{V} \\
\text { alphabet }
\end{array}
$$

such that

(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union, finite intersection and complementation.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.
(3) if $\varphi: A^{*} \rightarrow B^{*}$ is a morphism and $L \in\left(B^{*}\right) \mathcal{V}$, then $L \varphi^{-1} \in\left(A^{*}\right) \mathcal{V}$

Rational languages form a variety of languages.
Star-free languages form a variety of languages.

Identity

Identity

An identity or equation over an alphabet (finite or infinite) A is a formal equality $u=v$, where $u, v \in A^{*}$.

Identity

An identity or equation over an alphabet (finite or infinite) A is a formal equality $u=v$, where $u, v \in A^{*}$.

Examples: $x y=y x, x=x^{2}, x y=x y x$ (x and y are letters).

Identity

An identity or equation over an alphabet (finite or infinite) A is a formal equality $u=v$, where $u, v \in A^{*}$.
Examples: $x y=y x, x=x^{2}, x y=x y x$ (x and y are letters).
A monoid M satisfies an identity $u=v$ if $u \varphi=v \varphi$ for every morphism $\varphi: A^{*} \rightarrow M$.

Identity

An identity or equation over an alphabet (finite or infinite) A is a formal equality $u=v$, where $u, v \in A^{*}$.
Examples: $x y=y x, x=x^{2}, x y=x y x$ (x and y are letters).
A monoid M satisfies an identity $u=v$ if $u \varphi=v \varphi$ for every morphism $\varphi: A^{*} \rightarrow M$.
Σ - set of identities over A.

Identity

An identity or equation over an alphabet (finite or infinite) A is a formal equality $u=v$, where $u, v \in A^{*}$.
Examples: $x y=y x, x=x^{2}, x y=x y x$ (x and y are letters).
A monoid M satisfies an identity $u=v$ if $u \varphi=v \varphi$ for every morphism $\varphi: A^{*} \rightarrow M$.
Σ - set of identities over A.
[Σ] - class of all monoids that satisfy all identities of Σ.

Variety of monoids

Variety of monoids

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Variety of monoids

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Variety of monoids

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Examples:

The class of all monoids: $[x=x]$.

Variety of monoids

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Examples:

The class of all monoids: $[x=x]$.
The class of all commutative monoids $(\forall s, t \in M, s t=t s):[x y=y x]$.

Variety of monoids

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Examples:

The class of all monoids: $[x=x]$.
The class of all commutative monoids $(\forall s, t \in M, s t=t s):[x y=y x]$.
The class of all idempotent monoids $\left(\forall s \in M, s=s^{2}\right)$: $\left[x=x^{2}\right]$.

Variety of monoids

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Examples:

The class of all monoids: $[x=x]$.
The class of all commutative monoids $(\forall s, t \in M$, st $=t s)$: $[x y=y x]$.
The class of all idempotent monoids $\left(\forall s \in M, s=s^{2}\right)$: $\left[x=x^{2}\right]$.
The class of all idempotent and \mathcal{R}-trivial monoids $\left(\forall s, t \in M,\left(s=s^{2}, s t=s t s\right)\right):\left[x=x^{2}, x y=x y x\right]$.

Variety of monoids

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Examples:

The class of all monoids: $[x=x]$.
The class of all commutative monoids $(\forall s, t \in M$, st $=t s)$: $[x y=y x]$.
The class of all idempotent monoids $\left(\forall s \in M, s=s^{2}\right)$: $\left[x=x^{2}\right]$.
The class of all idempotent and \mathcal{R}-trivial monoids $\left(\forall s, t \in M,\left(s=s^{2}, s t=s t s\right)\right):\left[x=x^{2}, x y=x y x\right]$.

M-variety

M-variety

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

M-variety

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

M - class of all finite monoids.

M-variety

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

M - class of all finite monoids.
$\llbracket \Sigma \rrbracket=[\Sigma] \cap \mathbf{M}$, for any set Σ of identities.

M-variety

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

M - class of all finite monoids.
$\llbracket \Sigma \rrbracket=[\Sigma] \cap \mathbf{M}$, for any set Σ of identities.
$\mathbf{J}_{\mathbf{1}}$ - class of all finite idempotent and commutative monoids.

M-variety

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

M - class of all finite monoids.
$\llbracket \Sigma \rrbracket=[\Sigma] \cap \mathbf{M}$, for any set Σ of identities.
$\mathbf{J}_{\mathbf{1}}$ - class of all finite idempotent and commutative monoids.
\mathbf{J} - class of all finite \mathcal{J}-trivial monoids.

M-variety

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

M - class of all finite monoids.
$\llbracket \Sigma \rrbracket=[\Sigma] \cap \mathbf{M}$, for any set Σ of identities.
$\mathbf{J}_{\mathbf{1}}$ - class of all finite idempotent and commutative monoids.
J - class of all finite \mathcal{J}-trivial monoids.
A - class of all finite aperiodic monoids M.

M-variety

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

\mathbf{M} - class of all finite monoids.
$\llbracket \Sigma \rrbracket=[\Sigma] \cap \mathbf{M}$, for any set Σ of identities.
$\mathbf{J}_{\mathbf{1}}$ - class of all finite idempotent and commutative monoids.
J - class of all finite \mathcal{J}-trivial monoids.
A - class of all finite aperiodic monoids M.
LI - class of all finite locally trivial semigroups S $(\forall s \in S, e \in E(S)$, ese $=e)$.

M-variety

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

\mathbf{M} - class of all finite monoids.
$\llbracket \Sigma \rrbracket=[\Sigma] \cap \mathbf{M}$, for any set Σ of identities.
$\mathbf{J}_{\mathbf{1}}$ - class of all finite idempotent and commutative monoids.
J - class of all finite \mathcal{J}-trivial monoids.
A - class of all finite aperiodic monoids M.
LI - class of all finite locally trivial semigroups S $(\forall s \in S, e \in E(S)$, ese $=e)$.

Th. of Eilenberg

Th. of Eilenberg

For each \mathbf{M}-variety \mathbf{V} and each finite alphabet A, let

$$
\begin{aligned}
\left(A^{*}\right) \mathcal{V} & =\left\{L \subseteq A^{*} \mid L \text { is recognized by some monoid of } \mathbf{V}\right\} \\
& =\left\{L \subseteq A^{*} \mid M(L) \in \mathbf{V}\right\}
\end{aligned}
$$

Then \mathcal{V} is a variety of languages.
Theorem (Eilenberg)
The correspondence $\mathbf{V} \mapsto \mathcal{V}$ between the \mathbf{M}-varieties and the varieties of languages is bijective.

Th. of Eilenberg

For each \mathbf{M}-variety \mathbf{V} and each finite alphabet A, let

$$
\begin{aligned}
\left(A^{*}\right) \mathcal{V} & =\left\{L \subseteq A^{*} \mid L \text { is recognized by some monoid of } \mathbf{V}\right\} \\
& =\left\{L \subseteq A^{*} \mid M(L) \in \mathbf{V}\right\}
\end{aligned}
$$

Then \mathcal{V} is a variety of languages.

Theorem (Eilenberg)

The correspondence $\mathbf{V} \mapsto \mathcal{V}$ between the \mathbf{M}-varieties and the varieties of languages is bijective.

Thus
Theorem (Schützenberger)
For each alphabet $A,\left(A^{*}\right) \mathcal{A}=\operatorname{SF}\left(A^{*}\right)$.

Th. of Eilenberg

For each \mathbf{M}-variety \mathbf{V} and each finite alphabet A, let

$$
\begin{aligned}
\left(A^{*}\right) \mathcal{V} & =\left\{L \subseteq A^{*} \mid L \text { is recognized by some monoid of } \mathbf{V}\right\} \\
& =\left\{L \subseteq A^{*} \mid M(L) \in \mathbf{V}\right\}
\end{aligned}
$$

Then \mathcal{V} is a variety of languages.

Theorem (Eilenberg)

The correspondence $\mathbf{V} \mapsto \mathcal{V}$ between the \mathbf{M}-varieties and the varieties of languages is bijective.

Thus
Theorem (Schützenberger)
For each alphabet $A,\left(A^{*}\right) \mathcal{A}=\operatorname{SF}\left(A^{*}\right)$.
How to caracterize the \mathbf{M}-varieties by identities?

Free profinite monoid

Free profinite monoid

Alphabet $A ; u, v \in A^{*}$.
A finite monoid M separates u and v if there exists a morphism $\varphi: A^{*} \rightarrow M$ such that $u \varphi \neq v \varphi$.

Free profinite monoid

Alphabet $A ; u, v \in A^{*}$.
A finite monoid M separates u and v if there exists a morphism $\varphi: A^{*} \rightarrow M$ such that $u \varphi \neq v \varphi$.
Example: The words $a b$ and $a^{2} b$ are separated by any non-trivial group, but there is no idempotent monoid that separates them.

Free profinite monoid

Alphabet $A ; u, v \in A^{*}$.
A finite monoid M separates u and v if there exists a morphism $\varphi: A^{*} \rightarrow M$ such that $u \varphi \neq v \varphi$.
Example: The words $a b$ and $a^{2} b$ are separated by any non-trivial group, but there is no idempotent monoid that separates them.

Let

$$
r(u, v)=\min \{|M|: M \text { separates } u \text { and } v\}
$$

Free profinite monoid

Alphabet $A ; u, v \in A^{*}$.
A finite monoid M separates u and v if there exists a morphism $\varphi: A^{*} \rightarrow M$ such that $u \varphi \neq v \varphi$.
Example: The words $a b$ and $a^{2} b$ are separated by any non-trivial group, but there is no idempotent monoid that separates them.

Let

$$
\begin{aligned}
& r(u, v)=\min \{|M|: M \text { separates } u \text { and } v\} \\
& d(u, v)=2^{-r(u, v)}
\end{aligned}
$$

with the conventions $\min \emptyset=-\infty$ and $2^{-\infty}=0$.

Free profinite monoid

Alphabet $A ; u, v \in A^{*}$.
A finite monoid M separates u and v if there exists a morphism $\varphi: A^{*} \rightarrow M$ such that $u \varphi \neq v \varphi$.
Example: The words $a b$ and $a^{2} b$ are separated by any non-trivial group, but there is no idempotent monoid that separates them.

Let

$$
\begin{aligned}
& r(u, v)=\min \{|M|: M \text { separates } u \text { and } v\} \\
& d(u, v)=2^{-r(u, v)}
\end{aligned}
$$

with the conventions $\min \emptyset=-\infty$ and $2^{-\infty}=0$.

- $d(u, v)=0$ if and only if $u=v$.
- $d(u, v)=d(v, u)$.
- $d(u, w) \leq \max \{d(u, v), d(v, w)\}$.
- $d\left(u u^{\prime}, v v^{\prime}\right) \leq \max \left\{d(u, v), d\left(u^{\prime}, v^{\prime}\right)\right\}$.

Free profinite monoid

Free profinite monoid

Two words are "closed" if it is needed a "big" monoid to separate them.

Free profinite monoid

Two words are "closed" if it is needed a "big" monoid to separate them.

Proposition

$\left(A^{*}, d\right)$ is a metric space and the multiplication $A^{*} \times A^{*} \rightarrow A^{*}$ is uniformly continuous.
$\widehat{A^{*}}$ - topological completion of A^{*}.

Free profinite monoid

Two words are "closed" if it is needed a "big" monoid to separate them.

Proposition

$\left(A^{*}, d\right)$ is a metric space and the multiplication $A^{*} \times A^{*} \rightarrow A^{*}$ is uniformly continuous.
$\widehat{A^{*}}$ - topological completion of A^{*}.

Proposition

- $\widehat{A^{*}}$ is a compact and totally disconnected metric space.
- A^{*} is dense in $\widehat{A^{*}}$.
- Each morphism $\varphi: A^{*} \rightarrow M$ (M finite) can be extended in a unique way to a continuous morphism $\hat{\varphi}: \widehat{A^{*}} \rightarrow M$.

Free profinite monoid

Two words are "closed" if it is needed a "big" monoid to separate them.

Proposition

$\left(A^{*}, d\right)$ is a metric space and the multiplication $A^{*} \times A^{*} \rightarrow A^{*}$ is uniformly continuous.
$\widehat{A^{*}}$ - topological completion of A^{*}.

Proposition

- $\widehat{A^{*}}$ is a compact and totally disconnected metric space.
- A^{*} is dense in $\widehat{A^{*}}$.
- Each morphism $\varphi: A^{*} \rightarrow M$ (M finite) can be extended in a unique way to a continuous morphism $\hat{\varphi}: \widehat{A^{*}} \rightarrow M$.

The multiplication on A^{*} induces, in a natural way, an associative multiplication on $\widehat{A^{*}}$, which is continuous.

Free profinite monoid

Free profinite monoid

Proposition

Let $u \in A^{*}$. The sequence $\left(u^{n!}\right)_{n}$ is a Cauchy sequence in A^{*}.

Free profinite monoid

Proposition

Let $u \in A^{*}$. The sequence $\left(u^{n!}\right)_{n}$ is a Cauchy sequence in A^{*}.
$u^{\omega}=\lim u^{n!}$ in $\widehat{A^{*}}$.

Free profinite monoid

Proposition

Let $u \in A^{*}$. The sequence $\left(u^{n!}\right)_{n}$ is a Cauchy sequence in A^{*}.
$u^{\omega}=\lim u^{n!}$ in $\widehat{A^{*}}$.
Let M be a finite monoid.

Free profinite monoid

Proposition

Let $u \in A^{*}$. The sequence $\left(u^{n!}\right)_{n}$ is a Cauchy sequence in A^{*}.
$u^{\omega}=\lim u^{n!}$ in $\widehat{A^{*}}$.
Let M be a finite monoid.
Let $\varphi: A^{*} \rightarrow M$ be a morphism and $\hat{\varphi}: \widehat{A^{*}} \rightarrow M$ be its continous morphism extension.

Free profinite monoid

Proposition

Let $u \in A^{*}$. The sequence $\left(u^{n!}\right)_{n}$ is a Cauchy sequence in A^{*}.
$u^{\omega}=\lim u^{n!}$ in $\widehat{A^{*}}$.
Let M be a finite monoid.
Let $\varphi: A^{*} \rightarrow M$ be a morphism and $\hat{\varphi}: \widehat{A^{*}} \rightarrow M$ be its continous morphism extension.
$\left((u \hat{\varphi})^{n!}\right)_{n}$ converges in M (with the discrete topology).

Free profinite monoid

Proposition

Let $u \in A^{*}$. The sequence $\left(u^{n!}\right)_{n}$ is a Cauchy sequence in A^{*}.
$u^{\omega}=\lim u^{n!}$ in $\widehat{A^{*}}$.
Let M be a finite monoid.
Let $\varphi: A^{*} \rightarrow M$ be a morphism and $\hat{\varphi}: \widehat{A^{*}} \rightarrow M$ be its continous morphism extension.
$\left((u \hat{\varphi})^{n!}\right)_{n}$ converges in M (with the discrete topology). Since M is finite, there exists k s.t. $(u \hat{\varphi})^{k}=e$, an idempotent. It follows that if $n \geq k$, then $(u \hat{\varphi})^{n!}=e$, and so $\lim (u \hat{\varphi})^{n!}=e$, the idempotent power of $u \hat{\varphi}$.

Extension of identity

Extension of identity

An identity or equation over an alphabet (finite) A is a formal equality $u=v$, where $u, v \in A$.

Extension of identity

An identity or equation over an alphabet (finite) A is a formal equality $u=v$, where $u, v \in A$.

Extension of identity

An identity or equation over an alphabet (finite) A is a formal equality $u=v$, where $u, v \in \widehat{A^{*}}$.

Examples: $x y=y x, x^{\omega}=1, x^{\omega} y x^{\omega}=x^{\omega}$ (x and y are letters).

Extension of identity

An identity or equation over an alphabet (finite) A is a formal equality $u=v$, where $u, v \in \widehat{A^{*}}$.

Examples: $x y=y x, x^{\omega}=1, x^{\omega} y x^{\omega}=x^{\omega}$ (x and y are letters).
A finite monoid M satisfies an identity $u=v$ if $u \psi=v \psi$ for every continuous morphism $\psi: \widehat{A^{*}} \rightarrow M$,

Extension of identity

An identity or equation over an alphabet (finite) A is a formal equality $u=v$, where $u, v \in \widehat{A^{*}}$.
Examples: $x y=y x, x^{\omega}=1, x^{\omega} y x^{\omega}=x^{\omega}$ (x and y are letters).
A finite monoid M satisfies an identity $u=v$ if $u \psi=v \psi$ for every continuous morphism $\psi: \widehat{A^{*}} \rightarrow M$, i.e. $u \hat{\varphi}=v \hat{\varphi}$ for every morphism $\varphi: A^{*} \rightarrow M$.

Examples:

M satisfies $x y=y x$ if and only if $\forall s, t \in M$, st $=t s$.
A finite semigroup S satisfies $x^{\omega} y x^{\omega}=x^{\omega}$ if and only if $\forall s \in S, e \in E(S)$, ese $=e$.

Th. of Reiterman

Th. of Reiterman

Σ - set of identities.

Th. of Reiterman

Σ - set of identities.
$\llbracket \Sigma \rrbracket$ - class of all finite monoids that satisfy all identities of Σ.

Th. of Reiterman

Σ - set of identities.
$\llbracket \Sigma \rrbracket$ - class of all finite monoids that satisfy all identities of Σ.
Theorem (Reiterman)
The M-varieties are precisely the classes of monoids of the form 【 $\Sigma \rrbracket$.

Th. of Reiterman

Σ - set of identities.
$\llbracket \Sigma \rrbracket$ - class of all finite monoids that satisfy all identities of Σ.
Theorem (Reiterman)
The M-varieties are precisely the classes of monoids of the form 【 $\Sigma \rrbracket$.

Examples:

$\mathbf{J}_{\mathbf{1}}=\llbracket x=x^{2}, x y=y x \rrbracket$ - finite idempotent and commutative monoids.
$\mathbf{A}=\llbracket x^{\omega}=x^{\omega+1} \rrbracket$ - finite aperiodic monoids.
$\mathbf{L I}=\llbracket x^{\omega} y x^{\omega}=x^{\omega} \rrbracket-$ finite locally trivial semigroups.

Positive variety of languages

Positive variety of languages

Variety of languages \mathcal{V} :

such that
(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union, finite intersection and complementation.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.
(3) if $\varphi: A^{*} \rightarrow B^{*}$ is a morphism and $L \in\left(B^{*}\right) \mathcal{V}$, then $L \varphi^{-1} \in\left(A^{*}\right) \mathcal{V}$

Positive variety of languages

Variety of languages \mathcal{V} :

such that
(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union, finite intersection and complementation.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.
(3) if $\varphi: A^{*} \rightarrow B^{*}$ is a morphism and $L \in\left(B^{*}\right) \mathcal{V}$, then $L \varphi^{-1} \in\left(A^{*}\right) \mathcal{V}$

Positive variety of languages

Variety of languages \mathcal{V} :

$$
\begin{array}{clc}
A & \longmapsto & \left(A^{*}\right) \mathcal{V} \\
\text { alphabet }
\end{array}
$$

such that
(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union, and finite intersection.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.
(3) if $\varphi: A^{*} \rightarrow B^{*}$ is a morphism and $L \in\left(B^{*}\right) \mathcal{V}$, then $L \varphi^{-1} \in\left(A^{*}\right) \mathcal{V}$

Positive variety of languages

Positive variety of languages \mathcal{V} :

$$
\begin{array}{clc}
A & \longmapsto & \left(A^{*}\right) \mathcal{V} \\
\text { alphabet }
\end{array}
$$

such that
(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union, and finite intersection.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.
(3) if $\varphi: A^{*} \rightarrow B^{*}$ is a morphism and $L \in\left(B^{*}\right) \mathcal{V}$, then $L \varphi^{-1} \in\left(A^{*}\right) \mathcal{V}$

Positive variety of languages

Positive variety of languages \mathcal{V} :

A	\longmapsto	$\left(A^{*}\right) \mathcal{V}$		
alphabet			\longmapsto	subset of $\operatorname{Rat}\left(A^{*}\right)$
:---				

such that
(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union, and finite intersection.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.
(3) if $\varphi: A^{*} \rightarrow B^{*}$ is a morphism and $L \in\left(B^{*}\right) \mathcal{V}$, then $L \varphi^{-1} \in\left(A^{*}\right) \mathcal{V}$

How to characterize these classes algebraically?

Ordered monoid

Ordered monoid

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$
s \leq t \Longrightarrow r s \leq r t \text { and } s r \leq t r
$$

Ordered monoid

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$
s \leq t \Longrightarrow r s \leq r t \text { and } s r \leq t r
$$

A monoid M recognizes $L \subseteq A^{*}$ if there exist a morphism $\varphi: A^{*} \rightarrow M$ and $P \subseteq M$ s.t. $L=(P) \varphi^{-1}$.

Ordered monoid

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$
s \leq t \Longrightarrow r s \leq r t \text { and } s r \leq t r
$$

An ordered monoid M recognizes $L \subseteq A^{*}$ if there exist a morphism $\varphi: A^{*} \rightarrow M$ and $P \subseteq M$ s.t. $L=(P) \varphi^{-1}$.

Ordered monoid

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$
s \leq t \Longrightarrow r s \leq r t \text { and } s r \leq t r
$$

An ordered monoid M recognizes $L \subseteq A^{*}$ if there exist a morphism $\varphi: A^{*} \rightarrow M$ and an ordered ideal P of M s.t. $L=(P) \varphi^{-1}$.

Ordered monoid

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$
s \leq t \Longrightarrow r s \leq r t \text { and } s r \leq t r
$$

An ordered monoid M recognizes $L \subseteq A^{*}$ if there exist a morphism $\varphi: A^{*} \rightarrow M$ and an ordered ideal P of M s.t. $L=(P) \varphi^{-1}$.

Ordered monoid

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$
s \leq t \Longrightarrow r s \leq r t \text { and } s r \leq t r
$$

An ordered monoid M recognizes $L \subseteq A^{*}$ if there exist a morphism $\varphi: A^{*} \rightarrow M$ and an ordered ideal P of M s.t. $L=(P) \varphi^{-1}$.

Syntactic congruence of L, \sim_{L} on A^{*} :

$$
u \sim_{L} v \text { if and only if } \forall x, y \in A^{*}(x v y \in L \Leftrightarrow x u y \in L)
$$

Ordered monoid

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$
s \leq t \Longrightarrow r s \leq r t \text { and } s r \leq t r
$$

An ordered monoid M recognizes $L \subseteq A^{*}$ if there exist a morphism $\varphi: A^{*} \rightarrow M$ and an ordered ideal P of M s.t. $L=(P) \varphi^{-1}$.

Syntactic congruence of L, \sim_{L} on A^{*} :

$$
u \sim_{L} v \text { if and only if } \forall x, y \in A^{*}(x v y \in L \Leftrightarrow x u y \in L)
$$

Ordered monoid

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$
s \leq t \Longrightarrow r s \leq r t \text { and } s r \leq t r
$$

An ordered monoid M recognizes $L \subseteq A^{*}$ if there exist a morphism $\varphi: A^{*} \rightarrow M$ and an ordered ideal P of M s.t. $L=(P) \varphi^{-1}$.

Syntactic congruence of L, \sim_{L} on A^{*} :

$$
u \sim_{L} v \text { if and only if } \forall x, y \in A^{*}(x v y \in L \Rightarrow x u y \in L)
$$

Ordered monoid

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$
s \leq t \Longrightarrow r s \leq r t \text { and } s r \leq t r
$$

An ordered monoid M recognizes $L \subseteq A^{*}$ if there exist a morphism $\varphi: A^{*} \rightarrow M$ and an ordered ideal P of M s.t. $L=(P) \varphi^{-1}$.

Syntactic congruence of $L, \preceq\left\llcorner\right.$ on A^{*} :

$$
u \preceq_{L} v \text { if and only if } \forall x, y \in A^{*}(x v y \in L \Rightarrow x u y \in L)
$$

Ordered monoid

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$
s \leq t \Longrightarrow r s \leq r t \text { and } s r \leq t r
$$

An ordered monoid M recognizes $L \subseteq A^{*}$ if there exist a morphism $\varphi: A^{*} \rightarrow M$ and an ordered ideal P of M s.t. $L=(P) \varphi^{-1}$.

Syntactic preorder of $L, \preceq\left\llcorner\right.$ on A^{*} :

$$
u \preceq_{L} v \text { if and only if } \forall x, y \in A^{*}(x v y \in L \Rightarrow x u y \in L)
$$

Ordered monoid

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$
s \leq t \Longrightarrow r s \leq r t \text { and } s r \leq t r
$$

An ordered monoid M recognizes $L \subseteq A^{*}$ if there exist a morphism $\varphi: A^{*} \rightarrow M$ and an ordered ideal P of M s.t. $L=(P) \varphi^{-1}$.

Syntactic preorder of $L, \preceq\left\llcorner\right.$ on A^{*} :

$$
u \preceq_{L} v \text { if and only if } \forall x, y \in A^{*}(x v y \in L \Rightarrow x u y \in L)
$$

$(M(L), \leq)$ is an ordered monoid, with

$$
[u]_{\sim_{L}} \leq[v]_{\sim_{L}} \text { if and only if } u \preceq \preceq_{L} v
$$

Ordered monoid

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$
s \leq t \Longrightarrow r s \leq r t \text { and } s r \leq t r
$$

An ordered monoid M recognizes $L \subseteq A^{*}$ if there exist a morphism $\varphi: A^{*} \rightarrow M$ and an ordered ideal P of M s.t. $L=(P) \varphi^{-1}$.

Syntactic preorder of $L, \preceq\left\llcorner\right.$ on A^{*} :

$$
u \preceq_{L} v \text { if and only if } \forall x, y \in A^{*}(x v y \in L \Rightarrow x u y \in L)
$$

$(M(L), \leq)$ is an ordered monoid, with

$$
[u]_{\sim_{L}} \leq[v]_{\sim_{L}} \text { if and only if } u \preceq_{L} v
$$

$(M(L), \leq)$ recognizes L.

OM-variety

OM-variety

Morphism of ordered monoids $\varphi:(M, \leq) \rightarrow(S, \leq)$: monoid morphism s.t.

$$
s \leq t \Longrightarrow s \varphi \leq t \varphi
$$

OM-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

OM-variety

Morphism of ordered monoids $\varphi:(M, \leq) \rightarrow(S, \leq)$: monoid morphism s.t.

$$
s \leq t \Longrightarrow s \varphi \leq t \varphi
$$

OM-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

OM - class of all finite ordered monoids.

OM-variety

Morphism of ordered monoids $\varphi:(M, \leq) \rightarrow(S, \leq)$: monoid morphism s.t.

$$
s \leq t \Longrightarrow s \varphi \leq t \varphi
$$

OM-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

OM - class of all finite ordered monoids.
\mathbf{J}_{1}^{+}- class of all finite idempotent and commutative monoids with the natural order.

OM-variety

Morphism of ordered monoids $\varphi:(M, \leq) \rightarrow(S, \leq)$: monoid morphism s.t.

$$
s \leq t \Longrightarrow s \varphi \leq t \varphi
$$

OM-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

OM - class of all finite ordered monoids.
\mathbf{J}_{1}^{+}- class of all finite idempotent and commutative monoids with the natural order.

OM-varieties and languages

OM-varieties and languages

For each \mathbf{M}-variety \mathbf{V} and each finite alphabet A, let

$$
\begin{aligned}
\left(A^{*}\right) \mathcal{V} & =\left\{L \subseteq A^{*} \mid L \text { is recognized by some monoid of } \mathbf{V}\right\} \\
& =\left\{L \subseteq A^{*} \mid M(L) \in \mathbf{V}\right\}
\end{aligned}
$$

OM-varieties and languages

For each \mathbf{M}-variety \mathbf{V} and each finite alphabet A, let

$$
\begin{aligned}
\left(A^{*}\right) \mathcal{V} & =\left\{L \subseteq A^{*} \mid L \text { is recognized by some monoid of } \mathbf{V}\right\} \\
& =\left\{L \subseteq A^{*} \mid M(L) \in \mathbf{V}\right\}
\end{aligned}
$$

OM-varieties and languages

For each $\mathbf{O M}$-variety \mathbf{V} and each finite alphabet A, let

$$
\begin{aligned}
\left(A^{*}\right) \mathcal{V} & =\left\{L \subseteq A^{*} \mid L \text { is recognized by some monoid of } \mathbf{V}\right\} \\
& =\left\{L \subseteq A^{*} \mid M(L) \in \mathbf{V}\right\}
\end{aligned}
$$

OM-varieties and languages

For each $\mathbf{O M}$-variety \mathbf{V} and each finite alphabet A, let
$\left(A^{*}\right) \mathcal{V}=\left\{L \subseteq A^{*} \mid L\right.$ is recognized by some ordered monoid of $\left.\mathbf{V}\right\}$

$$
=\left\{L \subseteq A^{*} \mid M(L) \in \mathbf{V}\right\}
$$

OM-varieties and languages

For each $\mathbf{O M}$-variety \mathbf{V} and each finite alphabet A, let
$\left(A^{*}\right) \mathcal{V}=\left\{L \subseteq A^{*} \mid L\right.$ is recognized by some ordered monoid of $\left.\mathbf{V}\right\}$

$$
=\left\{L \subseteq A^{*} \mid(M(L), \leq) \in \mathbf{V}\right\}
$$

OM-varieties and languages

For each $\mathbf{O M}$-variety \mathbf{V} and each finite alphabet A, let

$$
\begin{aligned}
\left(A^{*}\right) \mathcal{V} & =\left\{L \subseteq A^{*} \mid L \text { is recognized by some ordered monoid of } \mathbf{V}\right\} \\
& =\left\{L \subseteq A^{*} \mid(M(L), \leq) \in \mathbf{V}\right\}
\end{aligned}
$$

Then \mathcal{V} is a positive variety of languages.

Theorem (Pin)

The correspondence $\mathbf{V} \mapsto \mathcal{V}$ between the $\mathbf{O M}$-varieties and the positive varieties of languages is bijective.

OM-varieties and languages

For each $\mathbf{O M}$-variety \mathbf{V} and each finite alphabet A, let

$$
\begin{aligned}
\left(A^{*}\right) \mathcal{V} & =\left\{L \subseteq A^{*} \mid L \text { is recognized by some ordered monoid of } \mathbf{V}\right\} \\
& =\left\{L \subseteq A^{*} \mid(M(L), \leq) \in \mathbf{V}\right\}
\end{aligned}
$$

Then \mathcal{V} is a positive variety of languages.

Theorem (Pin)

The correspondence $\mathbf{V} \mapsto \mathcal{V}$ between the $\mathbf{O M}$-varieties and the positive varieties of languages is bijective.

Another extension of identity

Another extension of identity

An identity or equation over an alphabet (finite) A is a formal expression $u=v$ or $u \leq v$, where $u, v \in \widehat{A^{*}}$.

Another extension of identity

An identity or equation over an alphabet (finite) A is a formal expression $u=v$ or $u \leq v$, where $u, v \in \widehat{A^{*}}$.

A finite monoid M satisfies an identity $u=v$ if $u \psi=v \psi$ for every continuous morphism $\psi: \widehat{A^{*}} \rightarrow M$, i.e. $u \hat{\varphi}=v \hat{\varphi}$ for every morphism $\varphi: A^{*} \rightarrow M$.

Another extension of identity

An identity or equation over an alphabet (finite) A is a formal expression $u=v$ or $u \leq v$, where $u, v \in \widehat{A^{*}}$.

A finite ordered monoid M satisfies an identity $u=v$ if $u \psi=v \psi$ for every continuous morphism $\psi: \widehat{A^{*}} \rightarrow M$, i.e. $u \hat{\varphi}=v \hat{\varphi}$ for every morphism $\varphi: A^{*} \rightarrow M$.

Another extension of identity

An identity or equation over an alphabet (finite) A is a formal expression $u=v$ or $u \leq v$, where $u, v \in \widehat{A^{*}}$.

A finite ordered monoid M satisfies an identity $u \leq v$ if $u \psi=v \psi$ for every continuous morphism $\psi: \widehat{A^{*}} \rightarrow M$, i.e. $u \hat{\varphi}=v \hat{\varphi}$ for every morphism $\varphi: A^{*} \rightarrow M$.

Another extension of identity

An identity or equation over an alphabet (finite) A is a formal expression $u=v$ or $u \leq v$, where $u, v \in \widehat{A^{*}}$.

A finite ordered monoid M satisfies an identity $u \leq v$ if $u \psi \leq v \psi$ for every continuous morphism $\psi: \widehat{A^{*}} \rightarrow M$, i.e. $u \hat{\varphi} \leq v \hat{\varphi}$ for every morphism $\varphi: A^{*} \rightarrow M$.

Another extension of identity

An identity or equation over an alphabet (finite) A is a formal expression $u=v$ or $u \leq v$, where $u, v \in \widehat{A^{*}}$.

A finite ordered monoid M satisfies an identity $u \leq v$ if $u \psi \leq v \psi$ for every continuous morphism $\psi: \widehat{A^{*}} \rightarrow M$, i.e. $u \hat{\varphi} \leq v \hat{\varphi}$ for every morphism $\varphi: A^{*} \rightarrow M$.

Another extension of identity

An identity or equation over an alphabet (finite) A is a formal expression $u=v$ or $u \leq v$, where $u, v \in \widehat{A^{*}}$.

A finite ordered monoid M satisfies an identity $u \leq v$ if $u \psi \leq v \psi$ for every continuous morphism $\psi: \widehat{A^{*}} \rightarrow M$, i.e. $u \hat{\varphi} \leq v \hat{\varphi}$ for every morphism $\varphi: A^{*} \rightarrow M$.

Theorem (Pin and Weil)
The OM-varieties are precisely the classes of ordered monoids of the form【इ】.

Another extension of identity

An identity or equation over an alphabet (finite) A is a formal expression $u=v$ or $u \leq v$, where $u, v \in \widehat{A^{*}}$.

A finite ordered monoid M satisfies an identity $u \leq v$ if $u \psi \leq v \psi$ for every continuous morphism $\psi: \widehat{A^{*}} \rightarrow M$, i.e. $u \hat{\varphi} \leq v \hat{\varphi}$ for every morphism $\varphi: A^{*} \rightarrow M$.

Theorem (Pin and Weil)
The OM-varieties are precisely the classes of ordered monoids of the form【 $\Sigma \rrbracket$.

Examples:

$\mathbf{J}_{1}^{+}=\llbracket x=x^{2}, x y=y x, x \leq 1 \rrbracket$ - class of all finite idempotent and commutative monoids with the natural order.
$\mathbf{L J}{ }^{+}=\llbracket x^{\omega} y x^{\omega} \leq x^{\omega} \rrbracket$ (semigroups).

Other classes of languages

Other classes of languages

Variety of languages \mathcal{V} :

$$
\begin{array}{ccc}
A & \longmapsto & \left(A^{*}\right) \mathcal{V} \\
\text { alphabet }
\end{array}
$$

such that
(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union, finite intersection and complementation.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.
(3) if $\varphi: A^{*} \rightarrow B^{*}$ is a morphism and $L \in\left(B^{*}\right) \mathcal{V}$, then $L \varphi^{-1} \in\left(A^{*}\right) \mathcal{V}$

Other classes of languages

Variety of languages \mathcal{V} :

$$
\begin{array}{ccc}
A & \longmapsto & \left(A^{*}\right) \mathcal{V} \\
\text { alphabet } & & \text { subset of } \operatorname{Rat}\left(A^{*}\right)
\end{array}
$$

such that
(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union, finite intersection and complementation.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.
(3) if $\varphi: A^{*} \rightarrow B^{*}$ is a morphism and $L \in\left(B^{*}\right) \mathcal{V}$, then $L \varphi^{-1} \in\left(A^{*}\right) \mathcal{V}$

Other classes of languages

Variety of languages \mathcal{V} :

$$
\begin{array}{ccc}
A & \longmapsto & \left(A^{*}\right) \mathcal{V} \\
\text { alphabet } & & \text { subset of } \operatorname{Rat}\left(A^{*}\right)
\end{array}
$$

such that
(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union, and finite intersection.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.
(3) if $\varphi: A^{*} \rightarrow B^{*}$ is a morphism and $L \in\left(B^{*}\right) \mathcal{V}$, then $L \varphi^{-1} \in\left(A^{*}\right) \mathcal{V}$

Other classes of languages

Positive variety of languages \mathcal{V} :

$$
\begin{array}{ccc}
A & \longmapsto & \left(A^{*}\right) \mathcal{V} \\
\text { alphabet } & & \text { subset of } \operatorname{Rat}\left(A^{*}\right)
\end{array}
$$

such that
(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union, and finite intersection.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.
(3) if $\varphi: A^{*} \rightarrow B^{*}$ is a morphism and $L \in\left(B^{*}\right) \mathcal{V}$, then $L \varphi^{-1} \in\left(A^{*}\right) \mathcal{V}$

Other classes of languages

Positive variety of languages \mathcal{V} :

A	\longmapsto	$\left(A^{*}\right) \mathcal{V}$		
alphabet			\longmapsto	subset of $\operatorname{Rat}\left(A^{*}\right)$
:---				

such that
(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union, and finite intersection.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.
(3) if $\varphi: A^{*} \rightarrow B^{*}$ is a morphism and $L \in\left(B^{*}\right) \mathcal{V}$, then $L \varphi^{-1} \in\left(A^{*}\right) \mathcal{V}$

How to characterize algebraically the classes \mathcal{V} satisfying the following?
(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union and finite intersection.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.

Topological caracterization of the regularity

Topological caracterization of the regularity

Proposition

Let $L \subseteq A^{*}$.

Topological caracterization of the regularity

Proposition

Let $L \subseteq A^{*}$.
L is regular if and only if \bar{L} is open.

Topological caracterization of the regularity

Proposition

Let $L \subseteq A^{*}$.
L is regular if and only if \bar{L} is open.

Proposition (Gehrke, Grigorieff, Pin)
Let $L \subseteq A^{*}$ regular and $u \in \widehat{A^{*}}$. TFAE:
(1) $u \in \bar{L}$.
(2) $\hat{\varphi}(u) \in \varphi(L)$, for every morphism $\varphi: A^{*} \rightarrow M$, where M is a finite monoid.
(0) $\hat{\eta}(u) \in \eta(L)$, where $\eta: A^{*} \rightarrow M(L)$ is the syntactic morphism of L.

Satisfaction of an equation by a language

Satisfaction of an equation by a language

$L \subseteq A^{*}$ regular.
$\mathbf{V}=\llbracket \Sigma \rrbracket \mathbf{O M}$-variety.

Satisfaction of an equation by a language

$L \subseteq A^{*}$ regular.
$\mathbf{V}=\llbracket \Sigma \rrbracket \mathbf{O M}$-variety.

$$
\begin{aligned}
L \in A^{*} \mathcal{V} & \Longleftrightarrow M(L) \in \mathbf{V} \\
& \Longleftrightarrow M(L) \text { satisfies the equations of } \Sigma
\end{aligned}
$$

Satisfaction of an equation by a language

$L \subseteq A^{*}$ regular.
$\mathbf{V}=\llbracket \Sigma \rrbracket \mathbf{O M}$-variety.

$$
\begin{aligned}
L \in A^{*} \mathcal{V} & \Longleftrightarrow M(L) \in \mathbf{V} \\
& \Longleftrightarrow M(L) \text { satisfies the equations of } \Sigma
\end{aligned}
$$

$L \subseteq A^{*}$ regular, $u, v \in \widehat{A^{*}}$.
L satisfies $u \leq v$ if $\hat{\eta}(u) \leq \hat{\eta}(v)$, where $\eta: A^{*} \rightarrow M(L)$ is the syntactic morphism of L.

Satisfaction of an equation by a language

$L \subseteq A^{*}$ regular.
$\mathbf{V}=\llbracket \Sigma \rrbracket \mathbf{O M}$-variety.

$$
\begin{aligned}
L \in A^{*} \mathcal{V} & \Longleftrightarrow M(L) \in \mathbf{V} \\
& \Longleftrightarrow M(L) \text { satisfies the equations of } \Sigma
\end{aligned}
$$

$L \subseteq A^{*}$ regular, $u, v \in \widehat{A^{*}}$.
L satisfies $u \leq v$ if $\hat{\eta}(u) \leq \hat{\eta}(v)$, where $\eta: A^{*} \rightarrow M(L)$ is the syntactic morphism of L.

Satisfaction of an equation by a language

$L \subseteq A^{*}$ regular.
$\mathbf{V}=\llbracket \Sigma \rrbracket \mathbf{O M}$-variety.

$$
\begin{aligned}
L \in A^{*} \mathcal{V} & \Longleftrightarrow M(L) \in \mathbf{V} \\
& \Longleftrightarrow M(L) \text { satisfies the equations of } \Sigma
\end{aligned}
$$

$L \subseteq A^{*}$ regular, $u, v \in \widehat{A^{*}}$.
L satisfies $u \leq v$ if $\hat{\eta}(u) \leq \hat{\eta}(v)$, where $\eta: A^{*} \rightarrow M(L)$ is the syntactic morphism of L.

Notice that, by the previous proposition,

$$
\begin{aligned}
\hat{\eta}(u) \leq \hat{\eta}(v) & \Longleftrightarrow \quad \forall s, t \in M(L)(s \hat{\eta}(v) t \in \eta(L) \Rightarrow s \hat{\eta}(u) t \in \eta(L)) \\
& \Longleftrightarrow \forall x, y \in A^{*}(\hat{\eta}(x v y) \in \eta(L) \Rightarrow \hat{\eta}(x u y) \in \eta(L))
\end{aligned}
$$

Lattice of language closed under quotients

Lattice of language closed under quotients

How to characterize algebraically the classes \mathcal{V} satisfying the following?
(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union and finite intersection.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.

Lattice of language closed under quotients

How to characterize algebraically the classes \mathcal{V} satisfying the following?
(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union and finite intersection.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.

Lattice of languages of A^{*} : set of languages of A^{*} closed under finite union and finite intersection.

Lattice of language closed under quotients

How to characterize algebraically the classes \mathcal{V} satisfying the following?
(1) $\left(A^{*}\right) \mathcal{V}$ is closed under finite union and finite intersection.
(2) $\left(A^{*}\right) \mathcal{V}$ is closed under quotients: $a^{-1} L, L a^{-1} \in\left(A^{*}\right) \mathcal{V}$, for any $L \in\left(A^{*}\right) \mathcal{V}$.

Lattice of languages of A^{*} : set of languages of A^{*} closed under finite union and finite intersection.

Theorem (Gehrke, Grigorieff, Pin)

A set \mathcal{L} of languages of A^{*} is a lattice of languages closed under quotients if and only if, for some set Σ of equations of the form $u \leq v$, with $u, v \in \widehat{A^{*}}, \mathcal{L}$ is the set of the languages of A^{*} that satisfy all equations of Σ.
$\operatorname{Pol}(\mathcal{L})$
$\operatorname{Pol}(\mathcal{L})$

Let \mathcal{L} be a set of languages of A^{*}.
$\operatorname{Pol}(\mathcal{L}):$

$\operatorname{Pol}(\mathcal{L})$

Let \mathcal{L} be a set of languages of A^{*}.
$\operatorname{Pol}(\mathcal{L})$: the set of languages that are finite union of $L_{0} a_{1} L_{1} \cdots a_{n} L_{n}$, with $n \in \mathbb{N}_{0}, L_{i} \in \mathcal{L}, a_{j} \in A$.

$\operatorname{Pol}(\mathcal{L})$

Let \mathcal{L} be a set of languages of A^{*}.
$\operatorname{Pol}(\mathcal{L})$: the set of languages that are finite union of $L_{0} a_{1} L_{1} \cdots a_{n} L_{n}$, with $n \in \mathbb{N}_{0}, L_{i} \in \mathcal{L}, a_{j} \in A$.
$\Sigma(\mathcal{L})$: the set of equations of the form $x^{\omega} y x^{\omega} \leq x^{\omega}$, where $x, y \in \widehat{A^{*}}$ are such that the equations $x=x^{2}$ and $y \leq x$ are satisfied by \mathcal{L}.

$\operatorname{Pol}(\mathcal{L})$

Let \mathcal{L} be a set of languages of A^{*}.
$\operatorname{Pol}(\mathcal{L})$: the set of languages that are finite union of $L_{0} a_{1} L_{1} \cdots a_{n} L_{n}$, with $n \in \mathbb{N}_{0}, L_{i} \in \mathcal{L}, a_{j} \in A$.
$\Sigma(\mathcal{L})$: the set of equations of the form $x^{\omega} y x^{\omega} \leq x^{\omega}$, where $x, y \in \widehat{A^{*}}$ are such that the equations $x=x^{2}$ and $y \leq x$ are satisfied by \mathcal{L}.

Theorem (BP)
If \mathcal{L} is a lattice closed under quotients, then $\operatorname{Pol}(\mathcal{L})$ is defined by $\Sigma(\mathcal{L})$.

$\operatorname{Pol}(\mathcal{L})$

Let \mathcal{L} be a set of languages of A^{*}.
$\operatorname{Pol}(\mathcal{L})$: the set of languages that are finite union of $L_{0} a_{1} L_{1} \cdots a_{n} L_{n}$, with $n \in \mathbb{N}_{0}, L_{i} \in \mathcal{L}, a_{j} \in A$.
$\Sigma(\mathcal{L})$: the set of equations of the form $x^{\omega} y x^{\omega} \leq x^{\omega}$, where $x, y \in \widehat{A^{*}}$ are such that the equations $x=x^{2}$ and $y \leq x$ are satisfied by \mathcal{L}.

Theorem (BP)
If \mathcal{L} is a lattice closed under quotients, then $\operatorname{Pol}(\mathcal{L})$ is defined by $\Sigma(\mathcal{L})$.

> How to prove it?
$\operatorname{Pol}(\mathcal{L})$

$\operatorname{Pol}(\mathcal{L})$

Proposition

If \mathcal{L} is a lattice of languages, then $\operatorname{Pol}(\mathcal{L})$ satisfies $\Sigma(\mathcal{L})$.

$\operatorname{Pol}(\mathcal{L})$

Proposition

If \mathcal{L} is a lattice of languages, then $\operatorname{Pol}(\mathcal{L})$ satisfies $\Sigma(\mathcal{L})$.

Easier part

$\operatorname{Pol}(\mathcal{L})$

Proposition

If \mathcal{L} is a lattice of languages, then $\operatorname{Pol}(\mathcal{L})$ satisfies $\Sigma(\mathcal{L})$.

Easier part

$L \subseteq A^{*}$ regular.
Define

$$
\begin{aligned}
& E_{L}=\left\{(x, y) \in \widehat{A^{*}} \times \widehat{A^{*}} \mid L \text { satisfies } x=x^{2} \text { and } y \leq x\right\} \\
& F_{L}=\left\{(x, y) \in \widehat{A^{*}} \times \widehat{A^{*}} \mid L \text { satisfies } x^{\omega} y x^{\omega} \leq x^{\omega}\right\}
\end{aligned}
$$

$\operatorname{Pol}(\mathcal{L})$

Proposition

If \mathcal{L} is a lattice of languages, then $\operatorname{Pol}(\mathcal{L})$ satisfies $\Sigma(\mathcal{L})$.

Easier part

$L \subseteq A^{*}$ regular.
Define

$$
\begin{aligned}
& E_{L}=\left\{(x, y) \in \widehat{A^{*}} \times \widehat{A^{*}} \mid L \text { satisfies } x=x^{2} \text { and } y \leq x\right\} \\
& F_{L}=\left\{(x, y) \in \widehat{A^{*}} \times \widehat{A^{*}} \mid L \text { satisfies } x^{\omega} y x^{\omega} \leq x^{\omega}\right\}
\end{aligned}
$$

Proposition

E_{L} and F_{L} are clopen in $\widehat{A^{*}} \times \widehat{A^{*}}$.
$\operatorname{Pol}(\mathcal{L})$

$\operatorname{Pol}(\mathcal{L})$

Proposition

Let \mathcal{L} be a set of languages of A^{*} and K be a regular language of A^{*}. TFAE:
(1) K satisfies $\Sigma(\mathcal{L})$.

$\operatorname{Pol}(\mathcal{L})$

Proposition

Let \mathcal{L} be a set of languages of A^{*} and K be a regular language of A^{*}. TFAE:
(1) K satisfies $\Sigma(\mathcal{L})$.
(2) The set $\left\{F_{K}\right\} \cup\left\{E_{L} \mid L \in \mathcal{L}\right\}$ is an open cover of $\widehat{A^{*}} \times \widehat{A^{*}}$.

$\operatorname{Pol}(\mathcal{L})$

Proposition

Let \mathcal{L} be a set of languages of A^{*} and K be a regular language of A^{*}. TFAE:
(1) K satisfies $\Sigma(\mathcal{L})$.
(2) The set $\left\{F_{K}\right\} \cup\left\{E_{L} \mid L \in \mathcal{L}\right\}$ is an open cover of $\widehat{A^{*}} \times \widehat{A^{*}}$.

Proposition

Let \mathcal{L} be a set of languages of A^{*} and K be a regular language of A^{*}. If K satisfies $\Sigma(\mathcal{L})$, there exists a finite subset \mathcal{F} of \mathcal{L} such that K satisfies $\Sigma(\mathcal{F})$.

$\operatorname{Pol}(\mathcal{L})$

Proposition

Let \mathcal{L} be a set of languages of A^{*} and K be a regular language of A^{*}. TFAE:
(1) K satisfies $\Sigma(\mathcal{L})$.
(2) The set $\left\{F_{K}\right\} \cup\left\{E_{L} \mid L \in \mathcal{L}\right\}$ is an open cover of $\widehat{A^{*}} \times \widehat{A^{*}}$.

Proposition

Let \mathcal{L} be a set of languages of A^{*} and K be a regular language of A^{*}. If K satisfies $\Sigma(\mathcal{L})$, there exists a finite subset \mathcal{F} of \mathcal{L} such that K satisfies $\Sigma(\mathcal{F})$.

Black board

