Tropical Representations of Plactic Monoids

Mark Kambites
University of Manchester
(mostly) joint with Marianne Johnson

York, 3 July 2019

Tropical???

Definition

$$
\mathbb{T}=\mathbb{R} \cup\{-\infty\}
$$

Tropical???

Definition

$$
\mathbb{T}=\mathbb{R} \cup\{-\infty\}
$$

Binary operations:

Tropical???

Definition

$$
\mathbb{T}=\mathbb{R} \cup\{-\infty\}
$$

Binary operations: $x \oplus y=\max (x, y)$

Tropical???

Definition

$$
\mathbb{T}=\mathbb{R} \cup\{-\infty\}
$$

Binary operations: $x \oplus y=\max (x, y)$ and $x \otimes y=x+y$

Tropical???

Definition

$$
\mathbb{T}=\mathbb{R} \cup\{-\infty\}
$$

Binary operations: $x \oplus y=\max (x, y)$ and $x \otimes y=x+y$ ($=$ "xy").

Tropical???

Definition

$$
\mathbb{T}=\mathbb{R} \cup\{-\infty\}
$$

Binary operations: $x \oplus y=\max (x, y)$ and $x \otimes y=x+y$ ($=$ " $x y$ ").

Properties

\mathbb{T} is an idempotent semifield:

- (\mathbb{T}, \oplus) is a commutative monoid with identity $-\infty$;

Tropical???

Definition

$$
\mathbb{T}=\mathbb{R} \cup\{-\infty\}
$$

Binary operations: $x \oplus y=\max (x, y)$ and $x \otimes y=x+y$ ($=$ " $x y$ ").

Properties

\mathbb{T} is an idempotent semifield:

- (\mathbb{T}, \oplus) is a commutative monoid with identity $-\infty$;
- $-\infty$ is a zero element for \otimes;

Tropical???

Definition

$$
\mathbb{T}=\mathbb{R} \cup\{-\infty\}
$$

Binary operations: $x \oplus y=\max (x, y)$ and $x \otimes y=x+y$ ($=$ " $x y$ ").

Properties

\mathbb{T} is an idempotent semifield:

- (\mathbb{T}, \oplus) is a commutative monoid with identity $-\infty$;
- $-\infty$ is a zero element for \otimes;
- $(\mathbb{T} \backslash\{-\infty\}, \otimes)$ is an abelian group with identity 0 ;

Tropical???

Definition

$$
\mathbb{T}=\mathbb{R} \cup\{-\infty\}
$$

Binary operations: $x \oplus y=\max (x, y)$ and $x \otimes y=x+y$ ($=$ " $x y$ ").

Properties

\mathbb{T} is an idempotent semifield:

- (\mathbb{T}, \oplus) is a commutative monoid with identity $-\infty$;
- $-\infty$ is a zero element for \otimes;
- $(\mathbb{T} \backslash\{-\infty\}, \otimes)$ is an abelian group with identity 0 ;
- \otimes distributes over \oplus;

Tropical???

Definition

$$
\mathbb{T}=\mathbb{R} \cup\{-\infty\}
$$

Binary operations: $x \oplus y=\max (x, y)$ and $x \otimes y=x+y$ ($=$ " $x y$ ").

Properties

\mathbb{T} is an idempotent semifield:

- (\mathbb{T}, \oplus) is a commutative monoid with identity $-\infty$;
- $-\infty$ is a zero element for \otimes;
- $(\mathbb{T} \backslash\{-\infty\}, \otimes)$ is an abelian group with identity 0 ;
- \otimes distributes over \oplus;
- $x \oplus x=x$

Tropical???

Definition

$$
\mathbb{T}=\mathbb{R} \cup\{-\infty\}
$$

Binary operations: $x \oplus y=\max (x, y)$ and $x \otimes y=x+y$ ($=$ " $x y$ ").

Properties

\mathbb{T} is an idempotent semifield:

- (\mathbb{T}, \oplus) is a commutative monoid with identity $-\infty$;
- $-\infty$ is a zero element for \otimes;
- $(\mathbb{T} \backslash\{-\infty\}, \otimes)$ is an abelian group with identity 0 ;
- \otimes distributes over \oplus;
- $x \oplus x=x$

In fact $x \oplus y$ is either x or y.

Definition

Tropical algebra or max-plus algebra is linear algebra where the base field is replaced by the tropical semiring.

Definition

Tropical algebra or max-plus algebra is linear algebra where the base field is replaced by the tropical semiring.

Definition

Tropical algebra or max-plus algebra is linear algebra where the base field is replaced by the tropical semiring.

Definition
 Tropical geometry is (roughly!) algebraic geometry where the base field is replaced by the tropical semiring.

Applications

Tropical methods have applications in ...

Applications

Tropical methods have applications in ...

- Combinatorial Optimisation

Applications

Tropical methods have applications in ...

- Combinatorial Optimisation
- Discrete Event Systems

Applications

Tropical methods have applications in ...

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory

Applications

Tropical methods have applications in ...

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata

Applications

Tropical methods have applications in ...

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics

Applications

Tropical methods have applications in ...

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference

Applications

Tropical methods have applications in ...

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference
- Geometric Group Theory

Applications

Tropical methods have applications in ...

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference
- Geometric Group Theory
- (Mostly Enumerative) Algebraic Geometry

Applications

Tropical methods have applications in ...

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference
- Geometric Group Theory
- (Mostly Enumerative) Algebraic Geometry
- Semigroup Theory

Applications

Tropical methods have applications in ...

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference
- Geometric Group Theory
- (Mostly Enumerative) Algebraic Geometry
- Semigroup Theory

Applications

Tropical methods have applications in ...

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference
- Geometric Group Theory
- (Mostly Enumerative) Algebraic Geometry
- Semigroup Theory (carrier for representations)

Tropical Matrix Semigroups

Definition

$M_{n}(\mathbb{T})$ is the semigroup of $n \times n$ matrices over \mathbb{T}, under the natural matrix multiplication induced by \oplus and \otimes.

Tropical Matrix Semigroups

Definition

$M_{n}(\mathbb{T})$ is the semigroup of $n \times n$ matrices over \mathbb{T}, under the natural matrix multiplication induced by \oplus and \otimes.

Definition

$U T_{n}(\mathbb{T})$ is the subsemigroup of upper triangular matrices.

Tropical Matrix Semigroups

Definition

$M_{n}(\mathbb{T})$ is the semigroup of $n \times n$ matrices over \mathbb{T}, under the natural matrix multiplication induced by \oplus and \otimes.

Definition

$U T_{n}(\mathbb{T})$ is the subsemigroup of upper triangular matrices.

- Studied implicitly for 50+ years with many interesting specific results

Tropical Matrix Semigroups

Definition

$M_{n}(\mathbb{T})$ is the semigroup of $n \times n$ matrices over \mathbb{T}, under the natural matrix multiplication induced by \oplus and \otimes.

Definition

$U T_{n}(\mathbb{T})$ is the subsemigroup of upper triangular matrices.

- Studied implicitly for 50+ years with many interesting specific results (e.g. Gaubert, Cohen-Gaubert-Quadrat, d'Alessandro-Pasku).

Tropical Matrix Semigroups

Definition

$M_{n}(\mathbb{T})$ is the semigroup of $n \times n$ matrices over \mathbb{T}, under the natural matrix multiplication induced by \oplus and \otimes.

Definition

$U T_{n}(\mathbb{T})$ is the subsemigroup of upper triangular matrices.

- Studied implicitly for 50+ years with many interesting specific results (e.g. Gaubert, Cohen-Gaubert-Quadrat, d'Alessandro-Pasku).
- Since about 2008, systematic structural study using the tools of semigroup theory
(Hollings, Izhakian, Johnson, Kambites, Taylor, Wilding).

Tropical Matrix Semigroups

Definition

$M_{n}(\mathbb{T})$ is the semigroup of $n \times n$ matrices over \mathbb{T}, under the natural matrix multiplication induced by \oplus and \otimes.

Definition

$U T_{n}(\mathbb{T})$ is the subsemigroup of upper triangular matrices.

- Studied implicitly for 50+ years with many interesting specific results (e.g. Gaubert, Cohen-Gaubert-Quadrat, d'Alessandro-Pasku).
- Since about 2008, systematic structural study using the tools of semigroup theory
(Hollings, Izhakian, Johnson, Kambites, Taylor, Wilding).

Tropical Matrix Semigroups

Definition

$M_{n}(\mathbb{T})$ is the semigroup of $n \times n$ matrices over \mathbb{T}, under the natural matrix multiplication induced by \oplus and \otimes.

Definition

$U T_{n}(\mathbb{T})$ is the subsemigroup of upper triangular matrices.

- Studied implicitly for 50+ years with many interesting specific results (e.g. Gaubert, Cohen-Gaubert-Quadrat, d'Alessandro-Pasku).
- Since about 2008, systematic structural study using the tools of semigroup theory
(Hollings, Izhakian, Johnson, Kambites, Taylor, Wilding).

Philosophy

The algebra of $M_{n}(\mathbb{T})$ mirrors the geometry of tropical convex sets.

Semigroup Identities

A semigroup identity is a pair of non-empty words, usually written $u=v$ over some alphabet Σ.

Semigroup Identities

A semigroup identity is a pair of non-empty words, usually written $u=v$ over some alphabet Σ.

A semigroup S satisfies the identity $u=v$ if every morphism from the free semigroup Σ^{+}to S sends u and v to the same place.

Semigroup Identities

A semigroup identity is a pair of non-empty words, usually written $u=v$ over some alphabet Σ.

A semigroup S satisfies the identity $u=v$ if every morphism from the free semigroup Σ^{+}to S sends u and v to the same place.
(In other words, if u and v evaluate to the same element for every substitution of elements in S for the letters in Σ.)

Semigroup Identities

A semigroup identity is a pair of non-empty words, usually written $u=v$ over some alphabet Σ.

A semigroup S satisfies the identity $u=v$ if every morphism from the free semigroup Σ^{+}to S sends u and v to the same place.
(In other words, if u and v evaluate to the same element for every substitution of elements in S for the letters in Σ.)

For example, a semigroup satisfies ...

Semigroup Identities

A semigroup identity is a pair of non-empty words, usually written $u=v$ over some alphabet Σ.

A semigroup S satisfies the identity $u=v$ if every morphism from the free semigroup Σ^{+}to S sends u and v to the same place.
(In other words, if u and v evaluate to the same element for every substitution of elements in S for the letters in Σ.)

For example, a semigroup satisfies ...

- $\ldots A B=B A$ if and only if it is commutative;

Semigroup Identities

A semigroup identity is a pair of non-empty words, usually written $u=v$ over some alphabet Σ.

A semigroup S satisfies the identity $u=v$ if every morphism from the free semigroup Σ^{+}to S sends u and v to the same place.
(In other words, if u and v evaluate to the same element for every substitution of elements in S for the letters in Σ.)

For example, a semigroup satisfies ...

- $\ldots A B=B A$ if and only if it is commutative;
- $\ldots A^{2}=A$ if and only if it is idempotent;

Semigroup Identities

A semigroup identity is a pair of non-empty words, usually written $u=v$ over some alphabet Σ.

A semigroup S satisfies the identity $u=v$ if every morphism from the free semigroup Σ^{+}to S sends u and v to the same place.
(In other words, if u and v evaluate to the same element for every substitution of elements in S for the letters in Σ.)

For example, a semigroup satisfies ...

- $\ldots A B=B A$ if and only if it is commutative;
- $\ldots A^{2}=A$ if and only if it is idempotent;
- ... $A B=A$ if and only if it is a left-zero semigroup.

Identities for tropical matrices

Identities for tropical matrices

Theorem (Izhakian \& Margolis 2010)
$U T_{2}(\mathbb{T})$ and consequently $M_{2}(\mathbb{T})$ satisfy (non-trivial) semigroup identities.

Identities for tropical matrices

Theorem (Izhakian \& Margolis 2010)
$U T_{2}(\mathbb{T})$ and consequently $M_{2}(\mathbb{T})$ satisfy (non-trivial) semigroup identities.
Theorem (Izhakian 2013-16, Okniński 2015, Taylor 2016)
$U T_{n}(\mathbb{T})$ satisfies a semigroup identity for every n.

Identities for tropical matrices

Theorem (Izhakian \& Margolis 2010)
$U T_{2}(\mathbb{T})$ and consequently $M_{2}(\mathbb{T})$ satisfy (non-trivial) semigroup identities.
Theorem (Izhakian 2013-16, Okniński 2015, Taylor 2016)
$U T_{n}(\mathbb{T})$ satisfies a semigroup identity for every n.
Theorem (Daviaud, Johnson \& K. 2018)

- $U T_{2}(\mathbb{T})$ satisfies exactly the same identities as the bicyclic monoid.
- For each n there is an efficient algorithm to check whether a given identity is satisfied in $U T_{n}(\mathbb{T})$.

Identities for tropical matrices

Theorem (Izhakian \& Margolis 2010)
$U T_{2}(\mathbb{T})$ and consequently $M_{2}(\mathbb{T})$ satisfy (non-trivial) semigroup identities.

Theorem (Izhakian 2013-16, Okniński 2015, Taylor 2016)
$U T_{n}(\mathbb{T})$ satisfies a semigroup identity for every n.

Theorem (Daviaud, Johnson \& K. 2018)

- $U T_{2}(\mathbb{T})$ satisfies exactly the same identities as the bicyclic monoid.
- For each n there is an efficient algorithm to check whether a given identity is satisfied in $U T_{n}(\mathbb{T})$.

Theorem (Izhakian \& Merlet 2018, building on ideas of Shitov) $M_{n}(\mathbb{T})$ satisfies a semigroup identity for every n.

Question

Is there a natural concrete realisation of the free objects in the variety generated by $U T_{n}(\mathbb{T})$?

Question

Is there a natural concrete realisation of the free objects in the variety generated by $U T_{n}(\mathbb{T})$? (In particular, in the bicyclic variety?)

Question

Is there a natural concrete realisation of the free objects in the variety generated by $U T_{n}(\mathbb{T})$? (In particular, in the bicyclic variety?)

Theorem (K. 2019)
Yes: they live inside quiver algebras over the semiring of tropical polynomials.

Question

Is there a natural concrete realisation of the free objects in the variety generated by $U T_{n}(\mathbb{T})$? (In particular, in the bicyclic variety?)

Theorem (K. 2019)
Yes: they live inside quiver algebras over the semiring of tropical polynomials.

Theorem (K. 2019)
Can represent each free object in the bicyclic variety inside a semidirect product of a commutative monoid acting on semilattice.

Question

Is there a natural concrete realisation of the free objects in the variety generated by $U T_{n}(\mathbb{T})$? (In particular, in the bicyclic variety?)

Theorem (K. 2019)

Yes: they live inside quiver algebras over the semiring of tropical polynomials.

Theorem (K. 2019)
Can represent each free object in the bicyclic variety inside a semidirect product of a commutative monoid acting on semilattice.

The former result generalises to arbitrary commutative semirings

Question

Is there a natural concrete realisation of the free objects in the variety generated by $U T_{n}(\mathbb{T})$? (In particular, in the bicyclic variety?)

Theorem (K. 2019)

Yes: they live inside quiver algebras over the semiring of tropical polynomials.

Theorem (K. 2019)
Can represent each free object in the bicyclic variety inside a semidirect product of a commutative monoid acting on semilattice.

The former result generalises to arbitrary commutative semirings (including fields?!?).

Question

Is there a natural concrete realisation of the free objects in the variety generated by $U T_{n}(\mathbb{T})$? (In particular, in the bicyclic variety?)

Theorem (K. 2019)

Yes: they live inside quiver algebras over the semiring of tropical polynomials.

Theorem (K. 2019)
Can represent each free object in the bicyclic variety inside a semidirect product of a commutative monoid acting on semilattice.

The former result generalises to arbitrary commutative semirings (including fields?!?).

See arXiv:1904.06094 for more details.

Plactic Monoids

The plactic monoid \mathbb{P}_{n} of rank n is the monoid generated by $\{1,2, \ldots, n\}(=[n])$ subject to the Knuth relations:

Plactic Monoids

The plactic monoid \mathbb{P}_{n} of rank n is the monoid generated by $\{1,2, \ldots, n\}(=[n])$ subject to the Knuth relations:

$$
b c a=b a c \quad(a<b \leq c)
$$

Plactic Monoids

The plactic monoid \mathbb{P}_{n} of rank n is the monoid generated by $\{1,2, \ldots, n\}(=[n])$ subject to the Knuth relations:

$$
b c a=b a c \quad(a<b \leq c) \quad a c b=c a b \quad(a \leq b<c)
$$

Plactic Monoids

The plactic monoid \mathbb{P}_{n} of rank n is the monoid generated by $\{1,2, \ldots, n\}$ ($=[n]$) subject to the Knuth relations:

$$
b c a=b a c \quad(a<b \leq c) \quad a c b=c a b \quad(a \leq b<c)
$$

Elements are in bijective correspondence (via row reading or column reading) with semistandard Young tableaux over [n]:

4	4		
2	3	4	
1	2	3	3

Plactic Monoids

The plactic monoid \mathbb{P}_{n} of rank n is the monoid generated by $\{1,2, \ldots, n\}$ ($=[n]$) subject to the Knuth relations:

$$
b c a=b a c \quad(a<b \leq c) \quad a c b=c a b \quad(a \leq b<c)
$$

Elements are in bijective correspondence (via row reading or column reading) with semistandard Young tableaux over [n]:

4	4	
2	3	4

Plactic Monoids

The plactic monoid \mathbb{P}_{n} of rank n is the monoid generated by $\{1,2, \ldots, n\}$ ($=[n]$) subject to the Knuth relations:

$$
b c a=b a c \quad(a<b \leq c) \quad a c b=c a b \quad(a \leq b<c)
$$

Elements are in bijective correspondence (via row reading or column reading) with semistandard Young tableaux over [n]:

4	4		
2	3	4	
1	2	3	3

Plactic Monoids

The plactic monoid \mathbb{P}_{n} of rank n is the monoid generated by $\{1,2, \ldots, n\}$ ($=[n]$) subject to the Knuth relations:

$$
b c a=b a c \quad(a<b \leq c) \quad a c b=c a b \quad(a \leq b<c)
$$

Elements are in bijective correspondence (via row reading or column reading) with semistandard Young tableaux over [n]:

4	4		
2	3	4	
1	2	3	3

Plactic Monoids

The plactic monoid \mathbb{P}_{n} of rank n is the monoid generated by $\{1,2, \ldots, n\}$ ($=[n]$) subject to the Knuth relations:

$$
b c a=b a c \quad(a<b \leq c) \quad a c b=c a b \quad(a \leq b<c)
$$

Elements are in bijective correspondence (via row reading or column reading) with semistandard Young tableaux over [n]:

4	4	
2	3	4

4				
2	3	4	4	
1	2	3	3	

Plactic Monoids

The plactic monoid \mathbb{P}_{n} of rank n is the monoid generated by $\{1,2, \ldots, n\}$ ($=[n]$) subject to the Knuth relations:

$$
b c a=b a c \quad(a<b \leq c) \quad a c b=c a b \quad(a \leq b<c)
$$

Elements are in bijective correspondence (via row reading or column reading) with semistandard Young tableaux over [n]:

4	4	
2	3	4

4			
2	3	4	

(Entries in each column strictly decreasing, entries in each row weakly increasing, row lengths weakly increasing.)

Plactic monoids

Plactic monoids ...

- ... were (probably) discovered by Knuth (1970).

Plactic monoids ...

- ... were (probably) discovered by Knuth (1970).
- ... were named ("plaxique") and extensively studied by Lascoux and Schützenberger (1981).

Plactic monoids ...

- ... were (probably) discovered by Knuth (1970).
- ...were named ("plaxique") and extensively studied by Lascoux and Schützenberger (1981).
- ... (and their algebras) have many applications in algebraic combinatorics and representation theory.

Plactic monoids ...

- ... were (probably) discovered by Knuth (1970).
- ... were named ("plaxique") and extensively studied by Lascoux and Schützenberger (1981).
- ... (and their algebras) have many applications in algebraic combinatorics and representation theory.
- ... are \mathcal{J}-trivial.

Plactic monoids ...

- ... were (probably) discovered by Knuth (1970).
- ... were named ("plaxique") and extensively studied by Lascoux and Schützenberger (1981).
- ... (and their algebras) have many applications in algebraic combinatorics and representation theory.
- ... are \mathcal{J}-trivial.
- ... have polynomial growth of degree $\frac{n(n+1)}{2}$.

Plactic monoids ...

- ... were (probably) discovered by Knuth (1970).
- ... were named ("plaxique") and extensively studied by Lascoux and Schützenberger (1981).
- ... (and their algebras) have many applications in algebraic combinatorics and representation theory.
- . . . are \mathcal{J}-trivial.
- ... have polynomial growth of degree $\frac{n(n+1)}{2}$.
- ...admit finite complete rewriting systems and biautomatic structures (Cain, Gray \& Malheiro 2015).

Plactic monoids ...

- ... were (probably) discovered by Knuth (1970).
- ... were named ("plaxique") and extensively studied by Lascoux and Schützenberger (1981).
- ... (and their algebras) have many applications in algebraic combinatorics and representation theory.
- ... are \mathcal{J}-trivial.
- ... have polynomial growth of degree $\frac{n(n+1)}{2}$.
- ...admit finite complete rewriting systems and biautomatic structures (Cain, Gray \& Malheiro 2015).

Schensted's algorithm (1961) constructs tableaux from words.

Identities for plactic monoids

Question
Does \mathbb{P}_{n} satisfy a semigroup identity?

Identities for plactic monoids

Question

Does \mathbb{P}_{n} satisfy a semigroup identity?

- "Yes" when $n \leq 3$ (Kubat \& Okniński 2013)

Identities for plactic monoids

Question

Does \mathbb{P}_{n} satisfy a semigroup identity?

- "Yes" when $n \leq 3$ (Kubat \& Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)

Identities for plactic monoids

Question

Does \mathbb{P}_{n} satisfy a semigroup identity?

- "Yes" when $n \leq 3$ (Kubat \& Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat \& Okniński 2013)

Identities for plactic monoids

Question

Does \mathbb{P}_{n} satisfy a semigroup identity?

- "Yes" when $n \leq 3$ (Kubat \& Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat \& Okniński 2013)
- "No" when n infinite (Cain, Klein, Kubat, Malheiro \& Okniński 2017)

Identities for plactic monoids

Question

Does \mathbb{P}_{n} satisfy a semigroup identity?

- "Yes" when $n \leq 3$ (Kubat \& Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat \& Okniński 2013)
- "No" when n infinite (Cain, Klein, Kubat, Malheiro \& Okniński 2017)
- Corresponding answer is "yes" for right patience sorting (= Bell) monoids

Identities for plactic monoids

Question

Does \mathbb{P}_{n} satisfy a semigroup identity?

- "Yes" when $n \leq 3$ (Kubat \& Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat \& Okniński 2013)
- "No" when n infinite (Cain, Klein, Kubat, Malheiro \& Okniński 2017)
- Corresponding answer is "yes" for right patience sorting (= Bell) monoids and "no" for left patience sorting monoids (Cain, Malheiro \& F. M. Silva 2018)

Identities for plactic monoids

Question

Does \mathbb{P}_{n} satisfy a semigroup identity?

- "Yes" when $n \leq 3$ (Kubat \& Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat \& Okniński 2013)
- "No" when n infinite (Cain, Klein, Kubat, Malheiro \& Okniński 2017)
- Corresponding answer is "yes" for right patience sorting (= Bell) monoids and "no" for left patience sorting monoids (Cain, Malheiro \& F. M. Silva 2018)
- Corresponding answer is "yes" for hypoplactic, sylvester, Baxter, stalactic and taiga monoids (Cain \& Malheiro 2018)

Identities for plactic monoids

Question

Does \mathbb{P}_{n} satisfy a semigroup identity?

- "Yes" when $n \leq 3$ (Kubat \& Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat \& Okniński 2013)
- "No" when n infinite (Cain, Klein, Kubat, Malheiro \& Okniński 2017)
- Corresponding answer is "yes" for right patience sorting (= Bell) monoids and "no" for left patience sorting monoids (Cain, Malheiro \& F. M. Silva 2018)
- Corresponding answer is "yes" for hypoplactic, sylvester, Baxter, stalactic and taiga monoids (Cain \& Malheiro 2018)
- Again conjectured "yes" for all finite n (Cain \& Malheiro 2018)

Identities for plactic monoids

Question

Does \mathbb{P}_{n} satisfy a semigroup identity?

- "Yes" when $n \leq 3$ (Kubat \& Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat \& Okniński 2013)
- "No" when n infinite (Cain, Klein, Kubat, Malheiro \& Okniński 2017)
- Corresponding answer is "yes" for right patience sorting (= Bell) monoids and "no" for left patience sorting monoids (Cain, Malheiro \& F. M. Silva 2018)
- Corresponding answer is "yes" for hypoplactic, sylvester, Baxter, stalactic and taiga monoids (Cain \& Malheiro 2018)
- Again conjectured "yes" for all finite n (Cain \& Malheiro 2018)
- Recent preprint of Okniński on $n \geq 4$ withdrawn.

Theorem (Izhakian 2017)

The plactic monoid \mathbb{P}_{3} has a faithful representation in $U T_{3}(\mathbb{T}) \times U T_{3}(\mathbb{T})$.

Theorem (Izhakian 2017)

The plactic monoid \mathbb{P}_{3} has a faithful representation in $U T_{3}(\mathbb{T}) \times U T_{3}(\mathbb{T})$.
Question (Izhakian 2017)
Does each \mathbb{P}_{n} have a faithful representation by tropical matrices?

Theorem (Izhakian 2017)

The plactic monoid \mathbb{P}_{3} has a faithful representation in $U T_{3}(\mathbb{T}) \times U T_{3}(\mathbb{T})$.
Question (Izhakian 2017)
Does each \mathbb{P}_{n} have a faithful representation by tropical matrices?

```
Remark
If "yes" then }\mp@subsup{\mathbb{P}}{n}{}\mathrm{ satisfies a semigroup identity.
```


Theorem (Izhakian 2017)

The plactic monoid \mathbb{P}_{3} has a faithful representation in $U T_{3}(\mathbb{T}) \times U T_{3}(\mathbb{T})$.
Question (Izhakian 2017)
Does each \mathbb{P}_{n} have a faithful representation by tropical matrices?

```
Remark
If "yes" then }\mp@subsup{\mathbb{P}}{n}{}\mathrm{ satisfies a semigroup identity.
```

Cain, Klein, Kubat, Malheiro \& Okniński 2017
Alternative faithful representation for \mathbb{P}_{3}.

Theorem (Izhakian 2017)

The plactic monoid \mathbb{P}_{3} has a faithful representation in $U T_{3}(\mathbb{T}) \times U T_{3}(\mathbb{T})$.
Question (Izhakian 2017)
Does each \mathbb{P}_{n} have a faithful representation by tropical matrices?

Remark

If "yes" then \mathbb{P}_{n} satisfies a semigroup identity.
Cain, Klein, Kubat, Malheiro \& Okniński 2017
Alternative faithful representation for \mathbb{P}_{3}.
Both the above representations generalise naturally to higher rank but do not remain faithful. e.g. in \mathbb{P}_{4} they do not separate:

4	4		
2	3	4	
1	2	3	3

and

4			
2	3	4	4
1	2	3	3

Theorem (Johnson \& K. 2019)
For every finite n, \mathbb{P}_{n} has a faithful representation in some $U T_{k}(\mathbb{T})$.

Theorem (Johnson \& K. 2019)
For every finite n, \mathbb{P}_{n} has a faithful representation in some $U T_{k}(\mathbb{T})$.

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

Theorem (Johnson \& K. 2019)
For every finite n, \mathbb{P}_{n} has a faithful representation in some $U T_{k}(\mathbb{T})$.

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.
In general k is of order 2^{n}

Theorem (Johnson \& K. 2019)
For every finite n, \mathbb{P}_{n} has a faithful representation in some $U T_{k}(\mathbb{T})$.

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.
In general k is of order 2^{n} but \ldots

Theorem (Johnson \& K. 2019)
For every finite n, \mathbb{P}_{n} has a faithful representation in some $U T_{k}(\mathbb{T})$.

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.
In general k is of order 2^{n} but \ldots
Theorem (Johnson \& K. 2019, using Daviaud, Johnson \& K. 2018)
\mathbb{P}_{n} satisfies all identities satisfied by $U T_{d}(\mathbb{T})$ where $d=\left\lfloor\frac{n^{2}}{4}+1\right\rfloor$

Theorem (Johnson \& K. 2019)
For every finite n, \mathbb{P}_{n} has a faithful representation in some $U T_{k}(\mathbb{T})$.

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.
In general k is of order 2^{n} but \ldots
Theorem (Johnson \& K. 2019, using Daviaud, Johnson \& K. 2018)
\mathbb{P}_{n} satisfies all identities satisfied by $U T_{d}(\mathbb{T})$ where $d=\left\lfloor\frac{n^{2}}{4}+1\right\rfloor$
$(n=3 \Longrightarrow d=3$,

Theorem (Johnson \& K. 2019)
For every finite n, \mathbb{P}_{n} has a faithful representation in some $U T_{k}(\mathbb{T})$.

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.
In general k is of order 2^{n} but \ldots
Theorem (Johnson \& K. 2019, using Daviaud, Johnson \& K. 2018)
\mathbb{P}_{n} satisfies all identities satisfied by $U T_{d}(\mathbb{T})$ where $d=\left\lfloor\frac{n^{2}}{4}+1\right\rfloor$
$(n=3 \Longrightarrow d=3, \quad n=4 \Longrightarrow d=5$,

Theorem (Johnson \& K. 2019)
For every finite n, \mathbb{P}_{n} has a faithful representation in some $U T_{k}(\mathbb{T})$.

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.
In general k is of order 2^{n} but \ldots
Theorem (Johnson \& K. 2019, using Daviaud, Johnson \& K. 2018)
\mathbb{P}_{n} satisfies all identities satisfied by $U T_{d}(\mathbb{T})$ where $d=\left\lfloor\frac{n^{2}}{4}+1\right\rfloor$
$(n=3 \Longrightarrow d=3, \quad n=4 \Longrightarrow d=5, \quad n=5 \Longrightarrow d=7)$

Construction of the Representation

- For \mathbb{P}_{n} we will build $2^{[n]} \times 2^{[n]}$ matrices.

Construction of the Representation

- For \mathbb{P}_{n} we will build $2^{[n]} \times 2^{[n]}$ matrices.
- Think of subsets as possible columns of semistandard Young tableaux.

Construction of the Representation

- For \mathbb{P}_{n} we will build $2^{[n]} \times 2^{[n]}$ matrices.
- Think of subsets as possible columns of semistandard Young tableaux.
- Define $S \leq T$ if $|S|=|T|$ and column S can appear left of column T.

Construction of the Representation

- For \mathbb{P}_{n} we will build $2^{[n]} \times 2^{[n]}$ matrices.
- Think of subsets as possible columns of semistandard Young tableaux.
- Define $S \leq T$ if $|S|=|T|$ and column S can appear left of column T.
- For example, with $n=4$:

3
2
1
:---
2
1
:---
3
1
:---
2

Construction of the Representation

- For \mathbb{P}_{n} we will build $2^{[n]} \times 2^{[n]}$ matrices.
- Think of subsets as possible columns of semistandard Young tableaux.
- Define $S \leq T$ if $|S|=|T|$ and column S can appear left of column T.
- For example, with $n=4$:

$$
\begin{aligned}
& \begin{array}{|l|}
\hline 3 \\
\hline 2 \\
\hline 1 \\
\hline
\end{array} \leq \begin{array}{|l|}
\hline 4 \\
\hline 2 \\
\hline 1 \\
\hline
\end{array} \leq \begin{array}{|l|}
\hline 4 \\
\hline 3 \\
\hline 1 \\
\hline
\end{array} \leq \begin{array}{|l|}
\hline 4 \\
\hline 2 \\
\hline
\end{array} \\
& \begin{array}{|l|}
\hline 2 \\
\hline 1 \\
\hline
\end{array} \leq \begin{array}{|}
\hline 3 \\
\hline 1 \\
\hline
\end{array}, \begin{array}{|}
\hline 3 \\
\hline 2 \\
\hline
\end{array} \leq \begin{array}{|}
\hline 4 \\
\hline 2 \\
\hline
\end{array}
\end{aligned}
$$

Construction of the Representation

- For \mathbb{P}_{n} we will build $2^{[n]} \times 2^{[n]}$ matrices.
- Think of subsets as possible columns of semistandard Young tableaux.
- Define $S \leq T$ if $|S|=|T|$ and column S can appear left of column T.
- For example, with $n=4$:

Construction of the Representation

- For \mathbb{P}_{n} we will build $2^{[n]} \times 2^{[n]}$ matrices.
- Think of subsets as possible columns of semistandard Young tableaux.
- Define $S \leq T$ if $|S|=|T|$ and column S can appear left of column T.
- For example, with $n=4$:

Remark

" d " from the previous slide is the longest chain length in this partial order.

- For $x \in[n]$ define a $2^{[n]} \times 2^{[n]}$ tropical matrix by
- For $x \in[n]$ define a $2^{[n]} \times 2^{[n]}$ tropical matrix by

$$
\rho(x)_{P, Q}=\{
$$

- For $x \in[n]$ define a $2^{[n]} \times 2^{[n]}$ tropical matrix by

$$
\rho(x)_{P, Q}= \begin{cases}-\infty & \text { if } P \not \leq Q \\ & \end{cases}
$$

- For $x \in[n]$ define a $2^{[n]} \times 2^{[n]}$ tropical matrix by

$$
\rho(x)_{P, Q}= \begin{cases}-\infty & \text { if } P \not \leq Q \\ 1 & \text { if } \exists T \subseteq[n] \text { with } P \leq T \leq Q \text { and } x \in T\end{cases}
$$

- For $x \in[n]$ define a $2^{[n]} \times 2^{[n]}$ tropical matrix by

$$
\rho(x)_{P, Q}= \begin{cases}-\infty & \text { if } P \not \leq Q \\ 1 & \text { if } \exists T \subseteq[n] \text { with } P \leq T \leq Q \text { and } x \in T \\ 0 & \text { otherwise } .\end{cases}
$$

- For $x \in[n]$ define a $2^{[n]} \times 2^{[n]}$ tropical matrix by

$$
\rho(x)_{P, Q}= \begin{cases}-\infty & \text { if } P \nsubseteq Q \\ 1 & \text { if } \exists T \subseteq[n] \text { with } P \leq T \leq Q \text { and } x \in T \\ 0 & \text { otherwise } .\end{cases}
$$

- Choose an order of rows and columns such that these matrices are upper triangular
- For $x \in[n]$ define a $2^{[n]} \times 2^{[n]}$ tropical matrix by

$$
\rho(x)_{P, Q}= \begin{cases}-\infty & \text { if } P \nsubseteq Q \\ 1 & \text { if } \exists T \subseteq[n] \text { with } P \leq T \leq Q \text { and } x \in T \\ 0 & \text { otherwise } .\end{cases}
$$

- Choose an order of rows and columns such that these matrices are upper triangular (by extending \leq to a linear order).
- For $x \in[n]$ define a $2^{[n]} \times 2^{[n]}$ tropical matrix by

$$
\rho(x)_{P, Q}= \begin{cases}-\infty & \text { if } P \nsubseteq Q \\ 1 & \text { if } \exists T \subseteq[n] \text { with } P \leq T \leq Q \text { and } x \in T \\ 0 & \text { otherwise } .\end{cases}
$$

- Choose an order of rows and columns such that these matrices are upper triangular (by extending \leq to a linear order).
- Extend to a morphism $\rho:[n]^{*} \rightarrow U T_{2^{n}}(\mathbb{T})$.
- For $x \in[n]$ define a $2^{[n]} \times 2^{[n]}$ tropical matrix by

$$
\rho(x)_{P, Q}= \begin{cases}-\infty & \text { if } P \nsubseteq Q \\ 1 & \text { if } \exists T \subseteq[n] \text { with } P \leq T \leq Q \text { and } x \in T \\ 0 & \text { otherwise } .\end{cases}
$$

- Choose an order of rows and columns such that these matrices are upper triangular (by extending \leq to a linear order).
- Extend to a morphism $\rho:[n]^{*} \rightarrow U T_{2^{n}}(\mathbb{T})$.

Lemma

The map ρ respects the Knuth relations

- For $x \in[n]$ define a $2^{[n]} \times 2^{[n]}$ tropical matrix by

$$
\rho(x)_{P, Q}= \begin{cases}-\infty & \text { if } P \nsubseteq Q \\ 1 & \text { if } \exists T \subseteq[n] \text { with } P \leq T \leq Q \text { and } x \in T \\ 0 & \text { otherwise } .\end{cases}
$$

- Choose an order of rows and columns such that these matrices are upper triangular (by extending \leq to a linear order).
- Extend to a morphism $\rho:[n]^{*} \rightarrow U T_{2^{n}}(\mathbb{T})$.

Lemma

The map ρ respects the Knuth relations and therefore induces a morphism

$$
\rho_{n}: \mathbb{P}_{n} \rightarrow U T_{2^{n}}(\mathbb{T})
$$

- For $x \in[n]$ define a $2^{[n]} \times 2^{[n]}$ tropical matrix by

$$
\rho(x)_{P, Q}= \begin{cases}-\infty & \text { if } P \nsubseteq Q \\ 1 & \text { if } \exists T \subseteq[n] \text { with } P \leq T \leq Q \text { and } x \in T \\ 0 & \text { otherwise } .\end{cases}
$$

- Choose an order of rows and columns such that these matrices are upper triangular (by extending \leq to a linear order).
- Extend to a morphism $\rho:[n]^{*} \rightarrow U T_{2^{n}}(\mathbb{T})$.

Lemma

The map ρ respects the Knuth relations and therefore induces a morphism

$$
\rho_{n}: \mathbb{P}_{n} \rightarrow U T_{2^{n}}(\mathbb{T})
$$

The Thing You Expect Me To Say
The map $\rho_{n}: \mathbb{P}_{n} \rightarrow U T_{2^{n}}(\mathbb{T})$ is a faithful representation of \mathbb{P}_{n}.

For $i \leq n$ let $\pi_{n \rightarrow i}: \mathbb{P}_{n} \rightarrow \mathbb{P}_{i}$ be the map which discards the last $n-i$ generators.

For $i \leq n$ let $\pi_{n \rightarrow i}: \mathbb{P}_{n} \rightarrow \mathbb{P}_{i}$ be the map which discards the last $n-i$ generators.

Then each $\pi_{n \rightarrow i}$ is a morphism

For $i \leq n$ let $\pi_{n \rightarrow i}: \mathbb{P}_{n} \rightarrow \mathbb{P}_{i}$ be the map which discards the last $n-i$ generators.

Then each $\pi_{n \rightarrow i}$ is a morphism and the direct sum map ...

$$
\prod_{i=1}^{n} \rho_{i} \circ \pi_{n \rightarrow i}: \mathbb{P}_{n} \rightarrow \prod_{i=1}^{n} U T_{2^{i}}(\mathbb{T})
$$

For $i \leq n$ let $\pi_{n \rightarrow i}: \mathbb{P}_{n} \rightarrow \mathbb{P}_{i}$ be the map which discards the last $n-i$ generators.

Then each $\pi_{n \rightarrow i}$ is a morphism and the direct sum map ...

$$
\prod_{i=1}^{n} \rho_{i} \circ \pi_{n \rightarrow i}: \mathbb{P}_{n} \rightarrow \prod_{i=1}^{n} U T_{2^{i}}(\mathbb{T})
$$

gives a faithful representation of \mathbb{P}_{n} in $U T_{2^{n+1}-1}(\mathbb{T})$.

For $i \leq n$ let $\pi_{n \rightarrow i}: \mathbb{P}_{n} \rightarrow \mathbb{P}_{i}$ be the map which discards the last $n-i$ generators.

Then each $\pi_{n \rightarrow i}$ is a morphism and the direct sum map ...

$$
\prod_{i=1}^{n} \rho_{i} \circ \pi_{n \rightarrow i}: \mathbb{P}_{n} \rightarrow \prod_{i=1}^{n} U T_{2^{i}}(\mathbb{T})
$$

gives a faithful representation of \mathbb{P}_{n} in $U T_{2^{n+1}-1}(\mathbb{T})$.

The Slide There Almost Certainly Won't Be Time For

Definition

- Let \leq be a partial order on $[n]$.

The Slide There Almost Certainly Won't Be Time For

Definition

- Let \leq be a partial order on [n].
- Let d be the length of the longest chain.

The Slide There Almost Certainly Won't Be Time For

Definition

- Let \leq be a partial order on [n].
- Let d be the length of the longest chain.
- Consider the set of all matrices in $M_{n}(\mathbb{T})$ such that $i \not \leq j \Longrightarrow M_{i, j}=-\infty$.

The Slide There Almost Certainly Won't Be Time For

Definition

- Let \leq be a partial order on [n].
- Let d be the length of the longest chain.
- Consider the set of all matrices in $M_{n}(\mathbb{T})$ such that $i \neq j \Longrightarrow M_{i, j}=-\infty$.
- This is a subsemigroup of $M_{n}(\mathbb{T})$, called a chain-structured tropical matrix semigroup of chain length d.

The Slide There Almost Certainly Won't Be Time For

Definition

- Let \leq be a partial order on [n].
- Let d be the length of the longest chain.
- Consider the set of all matrices in $M_{n}(\mathbb{T})$ such that $i \not \leq j \Longrightarrow M_{i, j}=-\infty$.
- This is a subsemigroup of $M_{n}(\mathbb{T})$, called a chain-structured tropical matrix semigroup of chain length d.

Theorem (Daviaud, Johnson \& K. 2018)
Any chain-structured tropical matrix semigroup of chain length d satisfies the same identities as $U T_{d}(\mathbb{T})$.

Further details

- M. Johnson \& M. Kambites, Tropical representations of plactic monoids, arXiv:1906.03991

Further details

- M. Johnson \& M. Kambites, Tropical representations of plactic monoids, arXiv:1906.03991
- M. Kambites, Free objects in triangular matrix varieties and quiver algebras over semirings, arXiv:1904.06094

Further details

- M. Johnson \& M. Kambites, Tropical representations of plactic monoids, arXiv:1906. 03991
- M. Kambites, Free objects in triangular matrix varieties and quiver algebras over semirings, arXiv:1904.06094
- L. Daviaud, M. Johnson \& M. Kambites, Identities in upper triangular tropical matrix semigroups and the bicyclic monoid, J. Algebra Vol. 501 pp.503-525 (2018).

