Tropical Representations of Plactic Monoids

Mark Kambites

University of Manchester

(mostly) joint with Marianne Johnson

York, 3 July 2019

Definition

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

P

Binary operations:

Johnson & Kambites

∃ >

A D > A B > A B > A

Definition

$$\Gamma = \mathbb{R} \cup \{-\infty\}$$

1

Binary operations: $x \oplus y = \max(x, y)$

э.

Definition

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

Binary operations: $x \oplus y = \max(x, y)$ and $x \otimes y = x + y$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

Binary operations: $x \oplus y = \max(x, y)$ and $x \otimes y = x + y \ (= "xy")$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

Binary operations: $x \oplus y = \max(x, y)$ and $x \otimes y = x + y$ (= "xy").

Properties

- \mathbb{T} is an idempotent semifield:
 - (\mathbb{T},\oplus) is a commutative monoid with identity $-\infty;$

Definition

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

Binary operations: $x \oplus y = \max(x, y)$ and $x \otimes y = x + y$ (= "xy").

Properties

\mathbb{T} is an idempotent semifield:

- (\mathbb{T},\oplus) is a commutative monoid with identity $-\infty$;
- $-\infty$ is a zero element for \otimes ;

Definition

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

Binary operations: $x \oplus y = \max(x, y)$ and $x \otimes y = x + y$ (= "xy").

Properties

- \mathbb{T} is an idempotent semifield:
 - (\mathbb{T},\oplus) is a commutative monoid with identity $-\infty$;
 - $-\infty$ is a zero element for \otimes ;
 - $(\mathbb{T} \setminus \{-\infty\}, \otimes)$ is an abelian group with identity 0;

▲ □ ► ▲ □ ► ▲

Definition

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

Binary operations: $x \oplus y = \max(x, y)$ and $x \otimes y = x + y$ (= "xy").

Properties

\mathbb{T} is an idempotent semifield:

- (\mathbb{T},\oplus) is a commutative monoid with identity $-\infty$;
- $-\infty$ is a zero element for \otimes ;
- $(\mathbb{T} \setminus \{-\infty\}, \otimes)$ is an abelian group with identity 0;
- \otimes distributes over \oplus ;

▲ □ ► ▲ □ ► ▲

Definition

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

Binary operations: $x \oplus y = \max(x, y)$ and $x \otimes y = x + y$ (= "xy").

Properties

- \mathbb{T} is an idempotent semifield:
 - (\mathbb{T},\oplus) is a commutative monoid with identity $-\infty$;
 - $-\infty$ is a zero element for \otimes ;
 - $(\mathbb{T} \setminus \{-\infty\}, \otimes)$ is an abelian group with identity 0;
 - \otimes distributes over \oplus ;
 - $x \oplus x = x$

• • • • • • • • • • • •

Definition

$$\mathbb{\Gamma} = \mathbb{R} \cup \{-\infty\}$$

Binary operations: $x \oplus y = \max(x, y)$ and $x \otimes y = x + y$ (= "xy").

Properties

- \mathbb{T} is an idempotent semifield:
 - (\mathbb{T},\oplus) is a commutative monoid with identity $-\infty$;

η

- $-\infty$ is a zero element for \otimes ;
- $(\mathbb{T} \setminus \{-\infty\}, \otimes)$ is an abelian group with identity 0;
- \otimes distributes over \oplus ;
- $x \oplus x = x$

In fact $x \oplus y$ is either x or y.

Tropical algebra or **max-plus algebra** is linear algebra where the base field is replaced by the tropical semiring.

Tropical algebra or **max-plus algebra** is linear algebra where the base field is replaced by the tropical semiring.

Tropical algebra or **max-plus algebra** is linear algebra where the base field is replaced by the tropical semiring.

Definition

Tropical geometry is (roughly!) algebraic geometry where the base field is replaced by the tropical semiring.

Tropical methods have applications in ...

Tropical methods have applications in ...

• Combinatorial Optimisation

< 🗇 🕨 < 🖃 🕨

- Combinatorial Optimisation
- Discrete Event Systems

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference
- Geometric Group Theory

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference
- Geometric Group Theory
- (Mostly Enumerative) Algebraic Geometry

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference
- Geometric Group Theory
- (Mostly Enumerative) Algebraic Geometry
- Semigroup Theory

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference
- Geometric Group Theory
- (Mostly Enumerative) Algebraic Geometry
- Semigroup Theory

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference
- Geometric Group Theory
- (Mostly Enumerative) Algebraic Geometry
- Semigroup Theory (carrier for representations)

Definition

 $M_n(\mathbb{T})$ is the semigroup of $n \times n$ matrices over \mathbb{T} , under the natural matrix multiplication induced by \oplus and \otimes .

Definition

 $M_n(\mathbb{T})$ is the semigroup of $n \times n$ matrices over \mathbb{T} , under the natural matrix multiplication induced by \oplus and \otimes .

Definition

 $UT_n(\mathbb{T})$ is the subsemigroup of upper triangular matrices.

Definition

 $M_n(\mathbb{T})$ is the semigroup of $n \times n$ matrices over \mathbb{T} , under the natural matrix multiplication induced by \oplus and \otimes .

Definition

 $UT_n(\mathbb{T})$ is the subsemigroup of upper triangular matrices.

• Studied implicitly for 50+ years with many interesting specific results

Definition

 $M_n(\mathbb{T})$ is the semigroup of $n \times n$ matrices over \mathbb{T} , under the natural matrix multiplication induced by \oplus and \otimes .

Definition

 $UT_n(\mathbb{T})$ is the subsemigroup of upper triangular matrices.

• Studied implicitly for 50+ years with many interesting specific results (e.g. Gaubert, Cohen-Gaubert-Quadrat, d'Alessandro-Pasku).

Definition

 $M_n(\mathbb{T})$ is the semigroup of $n \times n$ matrices over \mathbb{T} , under the natural matrix multiplication induced by \oplus and \otimes .

Definition

 $UT_n(\mathbb{T})$ is the subsemigroup of upper triangular matrices.

- Studied implicitly for 50+ years with many interesting specific results (e.g. Gaubert, Cohen-Gaubert-Quadrat, d'Alessandro-Pasku).
- Since about 2008, systematic structural study using the tools of semigroup theory (Hollings, Izhakian, Johnson, Kambites, Taylor, Wilding).

Definition

 $M_n(\mathbb{T})$ is the semigroup of $n \times n$ matrices over \mathbb{T} , under the natural matrix multiplication induced by \oplus and \otimes .

Definition

 $UT_n(\mathbb{T})$ is the subsemigroup of upper triangular matrices.

- Studied implicitly for 50+ years with many interesting specific results (e.g. Gaubert, Cohen-Gaubert-Quadrat, d'Alessandro-Pasku).
- Since about 2008, systematic structural study using the tools of semigroup theory (Hollings, Izhakian, Johnson, Kambites, Taylor, Wilding).

Definition

 $M_n(\mathbb{T})$ is the semigroup of $n \times n$ matrices over \mathbb{T} , under the natural matrix multiplication induced by \oplus and \otimes .

Definition

 $UT_n(\mathbb{T})$ is the subsemigroup of upper triangular matrices.

- Studied implicitly for 50+ years with many interesting specific results (e.g. Gaubert, Cohen-Gaubert-Quadrat, d'Alessandro-Pasku).
- Since about 2008, systematic structural study using the tools of semigroup theory (Hollings, Izhakian, Johnson, Kambites, Taylor, Wilding).

Philosophy

The algebra of $M_n(\mathbb{T})$ mirrors the geometry of tropical convex sets.

Semigroup Identities

A semigroup identity is a pair of non-empty words, usually written u = v over some alphabet Σ .

A (10) F (10)

Semigroup Identities

A semigroup identity is a pair of non-empty words, usually written u = v over some alphabet Σ .

A semigroup S satisfies the identity u = v if every morphism from the free semigroup Σ^+ to S sends u and v to the same place.
A semigroup identity is a pair of non-empty words, usually written u = v over some alphabet Σ .

A semigroup S satisfies the identity u = v if every morphism from the free semigroup Σ^+ to S sends u and v to the same place.

(In other words, if u and v evaluate to the same element for every substitution of elements in S for the letters in Σ .)

A semigroup identity is a pair of non-empty words, usually written u = v over some alphabet Σ .

A semigroup S satisfies the identity u = v if every morphism from the free semigroup Σ^+ to S sends u and v to the same place.

(In other words, if u and v evaluate to the same element for every substitution of elements in S for the letters in Σ .)

For example, a semigroup satisfies ...

A semigroup identity is a pair of non-empty words, usually written u = v over some alphabet Σ .

A semigroup S satisfies the identity u = v if every morphism from the free semigroup Σ^+ to S sends u and v to the same place.

(In other words, if u and v evaluate to the same element for every substitution of elements in S for the letters in Σ .)

For example, a semigroup satisfies

• ... AB = BA if and only if it is commutative;

A semigroup identity is a pair of non-empty words, usually written u = v over some alphabet Σ .

A semigroup S satisfies the identity u = v if every morphism from the free semigroup Σ^+ to S sends u and v to the same place.

(In other words, if u and v evaluate to the same element for every substitution of elements in S for the letters in Σ .)

For example, a semigroup satisfies

- $\dots AB = BA$ if and only if it is commutative;
- ... $A^2 = A$ if and only if it is idempotent;

A semigroup identity is a pair of non-empty words, usually written u = v over some alphabet Σ .

A semigroup S satisfies the identity u = v if every morphism from the free semigroup Σ^+ to S sends u and v to the same place.

(In other words, if u and v evaluate to the same element for every substitution of elements in S for the letters in Σ .)

For example, a semigroup satisfies

- $\dots AB = BA$ if and only if it is commutative;
- ... $A^2 = A$ if and only if it is idempotent;
- ... AB = A if and only if it is a left-zero semigroup.

э

< A > < > > <

Theorem (Izhakian & Margolis 2010)

 $UT_2(\mathbb{T})$ and consequently $M_2(\mathbb{T})$ satisfy (non-trivial) semigroup identities.

7 / 18

Theorem (Izhakian & Margolis 2010) $UT_2(\mathbb{T})$ and consequently $M_2(\mathbb{T})$ satisfy (non-trivial) semigroup identities.

Theorem (Izhakian 2013–16, Okniński 2015, Taylor 2016)

 $UT_n(\mathbb{T})$ satisfies a semigroup identity for every n.

Theorem (Izhakian & Margolis 2010) $UT_2(\mathbb{T})$ and consequently $M_2(\mathbb{T})$ satisfy (non-trivial) semigroup identities.

Theorem (Izhakian 2013–16, Okniński 2015, Taylor 2016)

 $UT_n(\mathbb{T})$ satisfies a semigroup identity for every n.

Theorem (Daviaud, Johnson & K. 2018)

- $UT_2(\mathbb{T})$ satisfies exactly the same identities as the bicyclic monoid.
- For each n there is an efficient algorithm to check whether a given identity is satisfied in UT_n(T).

Theorem (Izhakian & Margolis 2010) $UT_2(\mathbb{T})$ and consequently $M_2(\mathbb{T})$ satisfy (non-trivial) semigroup identities.

Theorem (Izhakian 2013–16, Okniński 2015, Taylor 2016)

 $UT_n(\mathbb{T})$ satisfies a semigroup identity for every n.

Theorem (Daviaud, Johnson & K. 2018)

- $UT_2(\mathbb{T})$ satisfies exactly the same identities as the bicyclic monoid.
- For each n there is an efficient algorithm to check whether a given identity is satisfied in UT_n(T).

Theorem (Izhakian & Merlet 2018, building on ideas of Shitov) $M_n(\mathbb{T})$ satisfies a semigroup identity for every *n*.

Image: A math a math

Is there a natural concrete realisation of the free objects in the variety generated by $UT_n(\mathbb{T})$?

э.

Is there a natural concrete realisation of the free objects in the variety generated by $UT_n(\mathbb{T})$? (In particular, in the bicyclic variety?)

Is there a natural concrete realisation of the free objects in the variety generated by $UT_n(\mathbb{T})$? (In particular, in the bicyclic variety?)

Theorem (K. 2019)

Yes: they live inside quiver algebras over the semiring of tropical polynomials.

Is there a natural concrete realisation of the free objects in the variety generated by $UT_n(\mathbb{T})$? (In particular, in the bicyclic variety?)

Theorem (K. 2019)

Yes: they live inside quiver algebras over the semiring of tropical polynomials.

Theorem (K. 2019)

Can represent each free object in the bicyclic variety inside a semidirect product of a commutative monoid acting on semilattice.

- ∢ ≣ ▶

Is there a natural concrete realisation of the free objects in the variety generated by $UT_n(\mathbb{T})$? (In particular, in the bicyclic variety?)

Theorem (K. 2019)

Yes: they live inside quiver algebras over the semiring of tropical polynomials.

Theorem (K. 2019)

Can represent each free object in the bicyclic variety inside a semidirect product of a commutative monoid acting on semilattice.

The former result generalises to arbitrary commutative semirings

- 4 同 6 4 三 6 4

Is there a natural concrete realisation of the free objects in the variety generated by $UT_n(\mathbb{T})$? (In particular, in the bicyclic variety?)

Theorem (K. 2019)

Yes: they live inside quiver algebras over the semiring of tropical polynomials.

Theorem (K. 2019)

Can represent each free object in the bicyclic variety inside a semidirect product of a commutative monoid acting on semilattice.

The former result generalises to arbitrary commutative semirings (including fields?!?).

- 4 同 6 4 日 6 4 日 6

Is there a natural concrete realisation of the free objects in the variety generated by $UT_n(\mathbb{T})$? (In particular, in the bicyclic variety?)

Theorem (K. 2019)

Yes: they live inside quiver algebras over the semiring of tropical polynomials.

Theorem (K. 2019)

Can represent each free object in the bicyclic variety inside a semidirect product of a commutative monoid acting on semilattice.

The former result generalises to arbitrary commutative semirings (including fields?!?).

See arXiv:1904.06094 for more details.

The **plactic monoid** \mathbb{P}_n of rank *n* is the monoid generated by $\{1, 2, ..., n\}$ (= [*n*]) subject to the **Knuth relations**:

・日・ ・ ヨ・・

The **plactic monoid** \mathbb{P}_n of rank *n* is the monoid generated by $\{1, 2, ..., n\}$ (= [*n*]) subject to the **Knuth relations**:

bca = bac $(a < b \le c)$

< A > < > > <

The **plactic monoid** \mathbb{P}_n of rank *n* is the monoid generated by $\{1, 2, ..., n\}$ (= [*n*]) subject to the **Knuth relations**:

bca = bac $(a < b \le c)$ acb = cab $(a \le b < c)$

A E > A E >

The **plactic monoid** \mathbb{P}_n of rank *n* is the monoid generated by $\{1, 2, ..., n\}$ (= [*n*]) subject to the **Knuth relations**:

bca = bac $(a < b \le c)$ acb = cab $(a \le b < c)$

Elements are in bijective correspondence (via row reading or column reading) with **semistandard Young tableaux** over [n]:

4	4		
2	3	4	
1	2	3	3

・聞き ・ ほき・ ・ ほき

The **plactic monoid** \mathbb{P}_n of rank *n* is the monoid generated by $\{1, 2, ..., n\}$ (= [*n*]) subject to the **Knuth relations**:

bca = bac $(a < b \le c)$ acb = cab $(a \le b < c)$

Elements are in bijective correspondence (via row reading or column reading) with **semistandard Young tableaux** over [n]:

The **plactic monoid** \mathbb{P}_n of rank *n* is the monoid generated by $\{1, 2, ..., n\}$ (= [*n*]) subject to the **Knuth relations**:

bca = bac $(a < b \le c)$ acb = cab $(a \le b < c)$

Elements are in bijective correspondence (via row reading or column reading) with **semistandard Young tableaux** over [n]:

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline 4 & 4 \\ \hline 2 & 3 & 4 \\ \hline 1 & 2 & 3 & 3 \\ \hline \end{array} = 442341233 = 421432433$$

The **plactic monoid** \mathbb{P}_n of rank *n* is the monoid generated by $\{1, 2, ..., n\}$ (= [*n*]) subject to the **Knuth relations**:

bca = bac $(a < b \le c)$ acb = cab $(a \le b < c)$

Elements are in bijective correspondence (via row reading or column reading) with **semistandard Young tableaux** over [n]:

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline 4 & 4 \\ \hline 2 & 3 & 4 \\ \hline 1 & 2 & 3 & 3 \\ \hline \end{array} = 442341233 = 421432433 = \cdots$$

The **plactic monoid** \mathbb{P}_n of rank *n* is the monoid generated by $\{1, 2, ..., n\}$ (= [*n*]) subject to the **Knuth relations**:

bca = bac $(a < b \le c)$ acb = cab $(a \le b < c)$

Elements are in bijective correspondence (via row reading or column reading) with **semistandard Young tableaux** over [n]:

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline 4 & 4 \\ \hline 2 & 3 & 4 \\ \hline 1 & 2 & 3 & 3 \\ \hline \end{array} = 442341233 = 421432433 = \cdots$$

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline 4 \\ \hline 2 & 3 & 4 & 4 \\ \hline 1 & 2 & 3 & 3 \end{array} = 423441233 = 421324343 = \cdots$$

The **plactic monoid** \mathbb{P}_n of rank *n* is the monoid generated by $\{1, 2, ..., n\}$ (= [*n*]) subject to the **Knuth relations**:

bca = bac $(a < b \le c)$ acb = cab $(a \le b < c)$

Elements are in bijective correspondence (via row reading or column reading) with **semistandard Young tableaux** over [n]:

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline 4 & 4 \\ \hline 2 & 3 & 4 \\ \hline 1 & 2 & 3 & 3 \\ \hline \end{array} = 442341233 = 421432433 = \cdots$$

$$\begin{array}{|c|c|c|c|c|c|c|}\hline 4 \\ \hline 2 & 3 & 4 & 4 \\ \hline 1 & 2 & 3 & 3 \end{array} = 423441233 = 421324343 = \cdots$$

(Entries in each column strictly decreasing, entries in each row weakly increasing, row lengths weakly increasing.)

Johnson & Kambites

MANCHESTER,

9 / 18

▲口> ▲圖> ▲屋> ▲屋>

• ... were (probably) discovered by Knuth (1970).

- ... were (probably) discovered by Knuth (1970).
- ... were named ("*plaxique*") and extensively studied by Lascoux and Schützenberger (1981).

< ∃ >

- ... were (probably) discovered by Knuth (1970).
- ... were named ("*plaxique*") and extensively studied by Lascoux and Schützenberger (1981).
- ... (and their algebras) have many applications in algebraic combinatorics and representation theory.

< ∃ ►

- ... were (probably) discovered by Knuth (1970).
- ... were named ("*plaxique*") and extensively studied by Lascoux and Schützenberger (1981).
- ... (and their algebras) have many applications in algebraic combinatorics and representation theory.
- . . . are \mathcal{J} -trivial.

• = • •

- ... were (probably) discovered by Knuth (1970).
- ... were named ("*plaxique*") and extensively studied by Lascoux and Schützenberger (1981).
- ... (and their algebras) have many applications in algebraic combinatorics and representation theory.
- . . . are \mathcal{J} -trivial.
- ... have polynomial growth of degree $\frac{n(n+1)}{2}$.

→ Ξ →

- ... were (probably) discovered by Knuth (1970).
- ... were named ("*plaxique*") and extensively studied by Lascoux and Schützenberger (1981).
- ... (and their algebras) have many applications in algebraic combinatorics and representation theory.
- . . . are \mathcal{J} -trivial.
- ... have polynomial growth of degree $\frac{n(n+1)}{2}$.
- ... admit finite complete rewriting systems and biautomatic structures (Cain, Gray & Malheiro 2015).

→ Ξ →

- ... were (probably) discovered by Knuth (1970).
- ... were named ("*plaxique*") and extensively studied by Lascoux and Schützenberger (1981).
- ... (and their algebras) have many applications in algebraic combinatorics and representation theory.
- . . . are \mathcal{J} -trivial.
- ... have polynomial growth of degree $\frac{n(n+1)}{2}$.
- ... admit finite complete rewriting systems and biautomatic structures (Cain, Gray & Malheiro 2015).

Schensted's algorithm (1961) constructs tableaux from words.

< 同 ト く ヨ ト く ヨ ト

Identities for plactic monoids

Question

Does \mathbb{P}_n satisfy a semigroup identity?

-

Identities for plactic monoids

Question

Does \mathbb{P}_n satisfy a semigroup identity?

• "Yes" when $n \leq 3$ (Kubat & Okniński 2013)
Question

- "Yes" when $n \leq 3$ (Kubat & Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)

Question

- "Yes" when $n \leq 3$ (Kubat & Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat & Okniński 2013)

Question

- "Yes" when $n \leq 3$ (Kubat & Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat & Okniński 2013)
- "No" when n infinite (Cain, Klein, Kubat, Malheiro & Okniński 2017)

Question

- "Yes" when $n \leq 3$ (Kubat & Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat & Okniński 2013)
- "No" when *n* infinite (Cain, Klein, Kubat, Malheiro & Okniński 2017)
- Corresponding answer is "yes" for right patience sorting (= Bell) monoids

Question

- "Yes" when $n \leq 3$ (Kubat & Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat & Okniński 2013)
- "No" when n infinite (Cain, Klein, Kubat, Malheiro & Okniński 2017)
- Corresponding answer is "yes" for right patience sorting (= Bell) monoids and "no" for left patience sorting monoids (Cain, Malheiro & F. M. Silva 2018)

Question

Does \mathbb{P}_n satisfy a semigroup identity?

- "Yes" when $n \leq 3$ (Kubat & Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat & Okniński 2013)
- "No" when n infinite (Cain, Klein, Kubat, Malheiro & Okniński 2017)
- Corresponding answer is "yes" for right patience sorting (= Bell) monoids and "no" for left patience sorting monoids (Cain, Malheiro & F. M. Silva 2018)
- Corresponding answer is "yes" for hypoplactic, sylvester, Baxter, stalactic and taiga monoids (Cain & Malheiro 2018)

→ ∃ →

Question

Does \mathbb{P}_n satisfy a semigroup identity?

- "Yes" when $n \leq 3$ (Kubat & Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat & Okniński 2013)
- "No" when n infinite (Cain, Klein, Kubat, Malheiro & Okniński 2017)
- Corresponding answer is "yes" for right patience sorting (= Bell) monoids and "no" for left patience sorting monoids (Cain, Malheiro & F. M. Silva 2018)
- Corresponding answer is "yes" for hypoplactic, sylvester, Baxter, stalactic and taiga monoids (Cain & Malheiro 2018)
- Again conjectured "yes" for all finite *n* (Cain & Malheiro 2018)

Question

- "Yes" when $n \leq 3$ (Kubat & Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat & Okniński 2013)
- "No" when n infinite (Cain, Klein, Kubat, Malheiro & Okniński 2017)
- Corresponding answer is "yes" for right patience sorting (= Bell) monoids and "no" for left patience sorting monoids (Cain, Malheiro & F. M. Silva 2018)
- Corresponding answer is "yes" for hypoplactic, sylvester, Baxter, stalactic and taiga monoids (Cain & Malheiro 2018)
- Again conjectured "yes" for all finite n (Cain & Malheiro 2018)
- Recent preprint of Okniński on $n \ge 4$ withdrawn.

The plactic monoid \mathbb{P}_3 has a faithful representation in $UT_3(\mathbb{T}) \times UT_3(\mathbb{T})$.

< 67 ▶

- ∢ ∃ ▶

The plactic monoid \mathbb{P}_3 has a faithful representation in $UT_3(\mathbb{T}) \times UT_3(\mathbb{T})$.

Question (Izhakian 2017)

Does each \mathbb{P}_n have a faithful representation by tropical matrices?

★ 3 >

The plactic monoid \mathbb{P}_3 has a faithful representation in $UT_3(\mathbb{T}) \times UT_3(\mathbb{T})$.

Question (Izhakian 2017)

Does each \mathbb{P}_n have a faithful representation by tropical matrices?

Remark

If "yes" then \mathbb{P}_n satisfies a semigroup identity.

< 3 ×

The plactic monoid \mathbb{P}_3 has a faithful representation in $UT_3(\mathbb{T}) \times UT_3(\mathbb{T})$.

Question (Izhakian 2017)

Does each \mathbb{P}_n have a faithful representation by tropical matrices?

Remark

If "yes" then \mathbb{P}_n satisfies a semigroup identity.

Cain, Klein, Kubat, Malheiro & Okniński 2017

Alternative faithful representation for \mathbb{P}_3 .

The plactic monoid \mathbb{P}_3 has a faithful representation in $UT_3(\mathbb{T}) \times UT_3(\mathbb{T})$.

Question (Izhakian 2017)

Does each \mathbb{P}_n have a faithful representation by tropical matrices?

Remark

If "yes" then \mathbb{P}_n satisfies a semigroup identity.

Cain, Klein, Kubat, Malheiro & Okniński 2017

Alternative faithful representation for \mathbb{P}_3 .

Both the above representations generalise naturally to higher rank but do **not** remain faithful. e.g. in \mathbb{P}_4 they do not separate:

For every finite n, \mathbb{P}_n has a faithful representation in some $UT_k(\mathbb{T})$.

- ₹ 🗦 🕨

For every finite n, \mathbb{P}_n has a faithful representation in some $UT_k(\mathbb{T})$.

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

< 3 >

For every finite n, \mathbb{P}_n has a faithful representation in some $UT_k(\mathbb{T})$.

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order 2^n

3.5

For every finite n, \mathbb{P}_n has a faithful representation in some $UT_k(\mathbb{T})$.

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order 2^n but ...

For every finite n, \mathbb{P}_n has a faithful representation in some $UT_k(\mathbb{T})$.

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order 2^n but ...

Theorem (Johnson & K. 2019, using Daviaud, Johnson & K. 2018) \mathbb{P}_n satisfies all identities satisfied by $UT_d(\mathbb{T})$ where $d = \lfloor \frac{n^2}{4} + 1 \rfloor$

For every finite n, \mathbb{P}_n has a faithful representation in some $UT_k(\mathbb{T})$.

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order 2^n but ...

Theorem (Johnson & K. 2019, using Daviaud, Johnson & K. 2018) \mathbb{P}_n satisfies all identities satisfied by $UT_d(\mathbb{T})$ where $d = \lfloor \frac{n^2}{4} + 1 \rfloor$

 $(n=3 \implies d=3,$

< Ξ →

For every finite n, \mathbb{P}_n has a faithful representation in some $UT_k(\mathbb{T})$.

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order 2^n but ...

Theorem (Johnson & K. 2019, using Daviaud, Johnson & K. 2018) \mathbb{P}_n satisfies all identities satisfied by $UT_d(\mathbb{T})$ where $d = \lfloor \frac{n^2}{4} + 1 \rfloor$

$$(n=3 \implies d=3, n=4 \implies d=5,$$

For every finite n, \mathbb{P}_n has a faithful representation in some $UT_k(\mathbb{T})$.

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order 2^n but ...

Theorem (Johnson & K. 2019, using Daviaud, Johnson & K. 2018) \mathbb{P}_n satisfies all identities satisfied by $UT_d(\mathbb{T})$ where $d = \lfloor \frac{n^2}{4} + 1 \rfloor$

$$(n=3 \implies d=3, n=4 \implies d=5, n=5 \implies d=7)$$

• For \mathbb{P}_n we will build $2^{[n]} \times 2^{[n]}$ matrices.

- For \mathbb{P}_n we will build $2^{[n]} \times 2^{[n]}$ matrices.
- Think of subsets as possible columns of semistandard Young tableaux.

- For \mathbb{P}_n we will build $2^{[n]} \times 2^{[n]}$ matrices.
- Think of subsets as possible columns of semistandard Young tableaux.
- Define $S \leq T$ if |S| = |T| and column S can appear left of column T.

- For \mathbb{P}_n we will build $2^{[n]} \times 2^{[n]}$ matrices.
- Think of subsets as possible columns of semistandard Young tableaux.
- Define $S \leq T$ if |S| = |T| and column S can appear left of column T.
- For example, with n = 4:

- For \mathbb{P}_n we will build $2^{[n]} \times 2^{[n]}$ matrices.
- Think of subsets as possible columns of semistandard Young tableaux.
- Define $S \leq T$ if |S| = |T| and column S can appear left of column T.
- For example, with n = 4:

- For \mathbb{P}_n we will build $2^{[n]} \times 2^{[n]}$ matrices.
- Think of subsets as possible columns of semistandard Young tableaux.
- Define $S \leq T$ if |S| = |T| and column S can appear left of column T.
- For example, with n = 4:

- For \mathbb{P}_n we will build $2^{[n]} \times 2^{[n]}$ matrices.
- Think of subsets as possible columns of semistandard Young tableaux.
- Define $S \leq T$ if |S| = |T| and column S can appear left of column T.
- For example, with n = 4:

Remark

"d" from the previous slide is the longest chain length in this partial order.

∃ →

$$\rho(x)_{P,Q} = \begin{cases} \\ \\ \end{cases}$$

(本語)と (本語)と (本語)と

$$\rho(\mathbf{x})_{P,Q} = \begin{cases} -\infty & \text{if } P \nleq Q \\ & \end{cases}$$

∃ →

$$\rho(x)_{P,Q} = \begin{cases} -\infty & \text{if } P \nleq Q\\ 1 & \text{if } \exists T \subseteq [n] \text{ with } P \leq T \leq Q \text{ and } x \in T \end{cases}$$

∃ →

$$\rho(x)_{P,Q} = \begin{cases} -\infty & \text{if } P \nleq Q\\ 1 & \text{if } \exists T \subseteq [n] \text{ with } P \leq T \leq Q \text{ and } x \in T\\ 0 & \text{otherwise.} \end{cases}$$

∃ →

$$\rho(x)_{P,Q} = \begin{cases} -\infty & \text{if } P \nleq Q\\ 1 & \text{if } \exists T \subseteq [n] \text{ with } P \leq T \leq Q \text{ and } x \in T\\ 0 & \text{otherwise.} \end{cases}$$

• Choose an order of rows and columns such that these matrices are upper triangular

$$\rho(x)_{P,Q} = \begin{cases} -\infty & \text{if } P \nleq Q\\ 1 & \text{if } \exists T \subseteq [n] \text{ with } P \leq T \leq Q \text{ and } x \in T\\ 0 & \text{otherwise.} \end{cases}$$

 Choose an order of rows and columns such that these matrices are upper triangular (by extending ≤ to a linear order).

$$\rho(x)_{P,Q} = \begin{cases} -\infty & \text{if } P \nleq Q\\ 1 & \text{if } \exists T \subseteq [n] \text{ with } P \leq T \leq Q \text{ and } x \in T\\ 0 & \text{otherwise.} \end{cases}$$

- Choose an order of rows and columns such that these matrices are upper triangular (by extending ≤ to a linear order).
- Extend to a morphism $\rho: [n]^* \to UT_{2^n}(\mathbb{T}).$
• For $x \in [n]$ define a $2^{[n]} \times 2^{[n]}$ tropical matrix by

$$\rho(x)_{P,Q} = \begin{cases} -\infty & \text{if } P \nleq Q\\ 1 & \text{if } \exists T \subseteq [n] \text{ with } P \leq T \leq Q \text{ and } x \in T\\ 0 & \text{otherwise.} \end{cases}$$

- Choose an order of rows and columns such that these matrices are upper triangular (by extending ≤ to a linear order).
- Extend to a morphism $\rho : [n]^* \to UT_{2^n}(\mathbb{T})$.

Lemma

The map ρ respects the Knuth relations

• For $x \in [n]$ define a $2^{[n]} \times 2^{[n]}$ tropical matrix by

$$\rho(x)_{P,Q} = \begin{cases} -\infty & \text{if } P \nleq Q\\ 1 & \text{if } \exists T \subseteq [n] \text{ with } P \leq T \leq Q \text{ and } x \in T\\ 0 & \text{otherwise.} \end{cases}$$

- Choose an order of rows and columns such that these matrices are upper triangular (by extending ≤ to a linear order).
- Extend to a morphism $\rho : [n]^* \to UT_{2^n}(\mathbb{T}).$

Lemma

The map ρ respects the Knuth relations and therefore induces a morphism

$$\rho_n: \mathbb{P}_n \to UT_{2^n}(\mathbb{T}).$$

• For $x \in [n]$ define a $2^{[n]} \times 2^{[n]}$ tropical matrix by

$$\rho(x)_{P,Q} = \begin{cases} -\infty & \text{if } P \nleq Q\\ 1 & \text{if } \exists T \subseteq [n] \text{ with } P \leq T \leq Q \text{ and } x \in T\\ 0 & \text{otherwise.} \end{cases}$$

- Choose an order of rows and columns such that these matrices are upper triangular (by extending ≤ to a linear order).
- Extend to a morphism $\rho : [n]^* \to UT_{2^n}(\mathbb{T}).$

Lemma

The map ρ respects the Knuth relations and therefore induces a morphism

$$\rho_n: \mathbb{P}_n \to UT_{2^n}(\mathbb{T}).$$

The Thing You Expect Me To Say

The map $\rho_n : \mathbb{P}_n \to UT_{2^n}(\mathbb{T})$ is a faithful representation of \mathbb{P}_n .

MANCHESTER

米田 とくほと くほど

Then each $\pi_{n \to i}$ is a morphism

A I > A I > A

Then each $\pi_{n \rightarrow i}$ is a morphism and the direct sum map ...

$$\prod_{i=1}^{n} \rho_{i} \circ \pi_{n \to i} : \mathbb{P}_{n} \to \prod_{i=1}^{n} UT_{2^{i}}(\mathbb{T})$$

. . .

A I > A I > A

Then each $\pi_{n \rightarrow i}$ is a morphism and the direct sum map ...

$$\prod_{i=1}^{n} \rho_i \circ \pi_{n \to i} : \mathbb{P}_n \to \prod_{i=1}^{n} UT_{2^i}(\mathbb{T})$$

... gives a faithful representation of \mathbb{P}_n in $UT_{2^{n+1}-1}(\mathbb{T})$.

< Ξ →

Then each $\pi_{n \rightarrow i}$ is a morphism and the direct sum map ...

$$\prod_{i=1}^{n} \rho_i \circ \pi_{n \to i} : \mathbb{P}_n \to \prod_{i=1}^{n} UT_{2^i}(\mathbb{T})$$

... gives a faithful representation of \mathbb{P}_n in $UT_{2^{n+1}-1}(\mathbb{T})$.

< Ξ →

Definition

• Let \leq be a partial order on [n].

Definition

- Let \leq be a partial order on [n].
- Let *d* be the length of the longest chain.

Definition

- Let \leq be a partial order on [n].
- Let d be the length of the longest chain.
- Consider the set of all matrices in $M_n(\mathbb{T})$ such that $i \leq j \implies M_{i,j} = -\infty$.

Definition

- Let \leq be a partial order on [n].
- Let d be the length of the longest chain.
- Consider the set of all matrices in $M_n(\mathbb{T})$ such that $i \leq j \implies M_{i,j} = -\infty$.
- This is a subsemigroup of $M_n(\mathbb{T})$, called a **chain-structured tropical matrix semigroup** of **chain length** d.

Definition

- Let \leq be a partial order on [n].
- Let d be the length of the longest chain.
- Consider the set of all matrices in $M_n(\mathbb{T})$ such that $i \leq j \implies M_{i,j} = -\infty$.
- This is a subsemigroup of $M_n(\mathbb{T})$, called a **chain-structured tropical matrix semigroup** of **chain length** *d*.

Theorem (Daviaud, Johnson & K. 2018)

Any chain-structured tropical matrix semigroup of chain length d satisfies the same identities as $UT_d(\mathbb{T})$.

Further details

 M. Johnson & M. Kambites, Tropical representations of plactic monoids, arXiv:1906.03991

.∃ >

Further details

- M. Johnson & M. Kambites, Tropical representations of plactic monoids, arXiv:1906.03991
- M. Kambites, Free objects in triangular matrix varieties and quiver algebras over semirings, arXiv:1904.06094

Further details

- M. Johnson & M. Kambites, Tropical representations of plactic monoids, arXiv:1906.03991
- M. Kambites, *Free objects in triangular matrix varieties and quiver algebras over semirings*, arXiv:1904.06094
- L. Daviaud, M. Johnson & M. Kambites, *Identities in upper triangular* tropical matrix semigroups and the bicyclic monoid, J. Algebra Vol.501 pp.503–525 (2018).