Some quasi-isometric invariants for inverse semigroups

Diego Martínez
May, 2020
Instituto de Ciencias Matemáticas - Universidad Carlos III de Madrid lumartin@math.uc3m.es
Semigroup seminar, University of York

Overview

(1) Coarse geometry and properties at infinity
(2) Inverse semigroups

Schützenberger graphs of an inverse semigroup
(3) Quasi-isometric invariants: amenability
(4) Quasi-isometric invariants: Yu's property A
(1) Coarse geometry and properties at infinity

Crash course on coarse geometry

Coarse idea: local properties \leadsto global properties.

Crash course on coarse geometry

Coarse idea: local properties \leadsto global properties.

Quasi-definition

$\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ and $\phi: X \rightarrow Y$. We say ϕ is a:

- A quasi-embedding if there are $L, C>0$ such that

$$
\frac{1}{L} d_{X}\left(x, x^{\prime}\right)-C \leq d_{Y}\left(\phi(x), \phi\left(x^{\prime}\right)\right) \leq L d_{X}\left(x, x^{\prime}\right)+C .
$$

Crash course on coarse geometry

Coarse idea: local properties \leadsto global properties.

Quasi-definition

$\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ and $\phi: X \rightarrow Y$. We say ϕ is a:

- A quasi-embedding if there are $L, C>0$ such that

$$
\frac{1}{L} d_{X}\left(x, x^{\prime}\right)-C \leq d_{Y}\left(\phi(x), \phi\left(x^{\prime}\right)\right) \leq L d_{X}\left(x, x^{\prime}\right)+C .
$$

- Quasi-surjective if for some $R>0$ and all $y \in Y$

$$
d_{Y}(y, \phi(X)) \leq R \quad \text { for some } R>0 \text { and all } y \in Y
$$

Crash course on coarse geometry

Coarse idea: local properties \leadsto global properties.

Quasi-definition

$\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ and $\phi: X \rightarrow Y$. We say ϕ is a:

- A quasi-embedding if there are $L, C>0$ such that

$$
\frac{1}{L} d_{X}\left(x, x^{\prime}\right)-C \leq d_{Y}\left(\phi(x), \phi\left(x^{\prime}\right)\right) \leq L d_{X}\left(x, x^{\prime}\right)+C .
$$

- Quasi-surjective if for some $R>0$ and all $y \in Y$

$$
d_{Y}(y, \phi(X)) \leq R \quad \text { for some } R>0 \text { and all } y \in Y .
$$

- A quasi-isometry when ϕ is a quasi-surjective quasi-embedding.

Compact is finite

Examplest

(X, d) is quasi-isometric to a point $\Leftrightarrow \sup _{x, x^{\prime} \in X} d\left(x, x^{\prime}\right)<\infty$.

Compact is finite

Examplest

(X, d) is quasi-isometric to a point $\Leftrightarrow \sup _{x, x^{\prime} \in X} d\left(x, x^{\prime}\right)<\infty$.

Proof:

Compact is finite

Examplest

(X, d) is quasi-isometric to a point $\Leftrightarrow \sup _{x, x^{\prime} \in X} d\left(x, x^{\prime}\right)<\infty$.
Proof:

Compact is finite

Examplest

(X, d) is quasi-isometric to a point $\Leftrightarrow \sup _{x, x^{\prime} \in X} d\left(x, x^{\prime}\right)<\infty$.

Proof:

Compact is finite

Examplest

(X, d) is quasi-isometric to a point $\Leftrightarrow \sup _{x, x^{\prime} \in X} d\left(x, x^{\prime}\right)<\infty$.

Proof:

Compact is finite

Examplest

(X, d) is quasi-isometric to a point $\Leftrightarrow \sup _{x, x^{\prime} \in X} d\left(x, x^{\prime}\right)<\infty$.

Proof:

Compact is finite

Examples

(X, d) is quasi-isometric to a point $\Leftrightarrow \sup _{x, x^{\prime} \in X} d\left(x, x^{\prime}\right)<\infty$.

Proof:

Compact is finite

Examplest

(X, d) is quasi-isometric to a point $\Leftrightarrow \sup _{x, x^{\prime} \in X} d\left(x, x^{\prime}\right)<\infty$.

Proof:

\oplus

Global vs. local II

Remark: quasi-isometric is very weak...

Global vs. local II

Remark: quasi-isometric is very weak...
Example:

Global vs. local II

Remark: quasi-isometric is very weak...
Example:

Facts: from the above picture it follows that:

- id: $\mathbb{Z} \rightarrow \mathbb{R}$ is a quasi-isometry.
- \mathbb{R} and \mathbb{R}^{2} are not quasi-isometric.

Global vs. local II

Remark: quasi-isometric is very weak...
Example:

Facts: from the above picture it follows that:

- id: $\mathbb{Z} \rightarrow \mathbb{R}$ is a quasi-isometry.
- \mathbb{R} and \mathbb{R}^{2} are not quasi-isometric.

Question: any other natural examples?

Global vs. local II

Remark: quasi-isometric is very weak...
Example:

Facts: from the above picture it follows that:

- id: $\mathbb{Z} \rightarrow \mathbb{R}$ is a quasi-isometry.
- \mathbb{R} and \mathbb{R}^{2} are not quasi-isometric.

Question: any other natural examples? Answer: Yes.

A factory of examples

Recall: Cayley graph construction $\leadsto G=\left\langle g_{1}^{ \pm 1}, \ldots, g_{n}^{ \pm 1}\right|$ relations \rangle :
Graph $\leadsto \operatorname{Cay}\left(G,\left\{g_{1}, \ldots, g_{n}\right\}\right):=(V, E)$, where
$V:=G \quad$ and $\quad E:=\left\{\left(x, x g_{i}^{ \pm 1}\right) \mid x \in G\right.$ and $\left.i=1, \ldots, n\right\}$.

A factory of examples

Recall: Cayley graph construction $\leadsto G=\left\langle g_{1}^{ \pm 1}, \ldots, g_{n}^{ \pm 1}\right|$ relations \rangle :
Graph $\leadsto \operatorname{Cay}\left(G,\left\{g_{1}, \ldots, g_{n}\right\}\right):=(V, E)$, where
$V:=G \quad$ and $\quad E:=\left\{\left(x, x g_{i}^{ \pm 1}\right) \mid x \in G\right.$ and $\left.i=1, \ldots, n\right\}$.

$$
\begin{aligned}
& \cdots \quad e^{2} \cdot{ }^{2}=\langle \pm 2, \pm 3\rangle \\
& \mathbb{Z}=\langle \pm 1\rangle
\end{aligned}
$$

A factory of examples

Recall: Cayley graph construction $\leadsto G=\left\langle g_{1}^{ \pm 1}, \ldots, g_{n}^{ \pm 1}\right|$ relations \rangle :
Graph $\leadsto \operatorname{Cay}\left(G,\left\{g_{1}, \ldots, g_{n}\right\}\right):=(V, E)$, where
$V:=G \quad$ and $\quad E:=\left\{\left(x, x g_{i}^{ \pm 1}\right) \mid x \in G\right.$ and $\left.i=1, \ldots, n\right\}$.

$$
\begin{array}{lll}
\cdots \cdots e \cdot \infty & \mathbb{Z}=\langle \pm 2, \pm 3\rangle \\
\cdots \cdots \cdots \cdot \ldots & \cdots & \mathbb{Z}=\langle \pm 1\rangle
\end{array}
$$

Proposition

The large scale geometry of the Cayley graph of G does not depend on the generators, i.e.,

$$
\operatorname{Cay}\left(G,\left\{g_{1}, \ldots, g_{n}\right\}\right) \cong \cong_{\text {q.i. }} \operatorname{Cay}\left(G,\left\{h_{1}, \ldots, h_{m}\right\}\right)
$$

Properties at infinity

Two kinds of properties of a group:

Properties at infinity

Two kinds of properties of a group:

1. Not invariant under quasi-isometry:

- Cardinality (any finite $\cong_{q \text {.i. }}$ point).
- Number of generators.

Properties at infinity

Two kinds of properties of a group:

1. Not invariant under quasi-isometry:

- Cardinality (any finite $\cong_{\text {q.i. }}$ point).
- Number of generators.

2. Invariant under quasi-isometry:

- Being finite.
[GK13]
- Number of ends of X. [GK13]
- Growth type.
[GK13]
- Hyperbolicity.

Properties at infinity

Two kinds of properties of a group:

1. Not invariant under quasi-isometry:

- Cardinality (any finite $\cong_{\text {q.i. }}$ point).
- Number of generators.

2. Invariant under quasi-isometry:

- Being finite.
[GK13]
- Number of ends of X. [GK13]
- Growth type.
[GK13]
- Hyperbolicity.
- Amenability.
- Property A. [Y99]

Properties at infinity

Two kinds of properties of a group:

1. Not invariant under quasi-isometry:

- Cardinality (any finite $\cong_{\text {q.i. }}$ point).
- Number of generators.

2. Invariant under quasi-isometry:

- Being finite.
[GK13]
- Number of ends of X. [GK13]
- Growth type. [GK13]
- Hyperbolicity.
- Amenability.
- Property A. [Y99]

Observe: The half line \mathbb{N} is not a group Cayley graph.
Therefore: We're missing quite a lot of graphs.
(2) Inverse semigroups

Brief introduction to inverse semigroups

Disclaimer: operator algebraist \sim^{-1} vs *

Brief introduction to inverse semigroups

Disclaimer: operator algebraist \sim^{-1} vs *
Notation: $S \supset E=\left\{s^{-1} s \mid s \in S\right\}$ idempotents or projections.

- Partial order $s \leq t \Leftrightarrow t s^{-1} s=s$
- \mathcal{R}-relation: $x \mathcal{R} y$ if $x x^{-1}=y y^{-1}$.

Brief introduction to inverse semigroups

Disclaimer: operator algebraist \sim^{-1} vs *
Notation: $S \supset E=\left\{s^{-1} s \mid s \in S\right\}$ idempotents or projections.

- Partial order $s \leq t \Leftrightarrow t s^{-1} s=s$
- \mathcal{R}-relation: $x \mathcal{R}$ y if $x x^{-1}=y y^{-1}$.
"Algorithm": $S=\langle K\rangle$ where $K=K^{-1}$

Brief introduction to inverse semigroups

Disclaimer: operator algebraist \leadsto^{-1} vs *
Notation: $S \supset E=\left\{s^{-1} s \mid s \in S\right\}$ idempotents or projections.

- Partial order $s \leq t \Leftrightarrow t s^{-1} s=s$
- \mathcal{R}-relation: $x \mathcal{R}$ y if $x x^{-1}=y y^{-1}$.
"Algorithm": $S=\langle K\rangle$ where $K=K^{-1}$
- Construct the (right) Cayley graph of S w.r.t. K Strongly connected components $=\mathcal{R}$-classes

Brief introduction to inverse semigroups

Disclaimer: operator algebraist \leadsto^{-1} vs *
Notation: $S \supset E=\left\{s^{-1} s \mid s \in S\right\}$ idempotents or projections.

- Partial order $s \leq t \Leftrightarrow t s^{-1} s=s$
- \mathcal{R}-relation: $x \mathcal{R}$ y if $x x^{-1}=y y^{-1}$.
"Algorithm": $S=\langle K\rangle$ where $K=K^{-1}$
- Construct the (right) Cayley graph of S w.r.t. K Strongly connected components $=\mathcal{R}$-classes
- Erase directed arrows (*)

Brief introduction to inverse semigroups

Disclaimer: operator algebraist \leadsto^{-1} vs *
Notation: $S \supset E=\left\{s^{-1} s \mid s \in S\right\}$ idempotents or projections.

- Partial order $s \leq t \Leftrightarrow t s^{-1} s=s$
- \mathcal{R}-relation: $x \mathcal{R}$ y if $x x^{-1}=y y^{-1}$.
"Algorithm": $S=\langle K\rangle$ where $K=K^{-1}$
- Construct the (right) Cayley graph of S w.r.t. K

Strongly connected components $=\mathcal{R}$-classes

- Erase directed arrows (*)

Resulting object: undirected graph.

- Connected components \leadsto Schützenberger graphs.
- In particular: $d(s, t)=d(t, s)$
- If $x x^{-1} \neq y y^{-1}$ then $d(x, y)=\infty$

Schützenberger graphs

Examplest: Bicyclic monoid: $\mathcal{T}:=\left\langle a, a^{-1} \mid a^{-1} a=1\right\rangle$:

Schützenberger graphs

Examplest: Bicyclic monoid: $\mathcal{T}:=\left\langle a, a^{-1} \mid a^{-1} a=1\right\rangle$:

Proposition [Gray-Kambites (2013)]

The large scale geometry of the Schützenberger graph of S does not depend on the generators, i.e.,

$$
\left(S, d,\left\{s_{1}, \ldots, s_{n}\right\}\right) \cong \cong_{\text {q.i. }}\left(S, d^{\prime},\left\{t_{1}, \ldots, t_{m}\right\}\right)
$$

About the alternative distance

Remark: We could have doubled edges in (*):

About the alternative distance

Remark: We could have doubled edges in (*):
Good: Resulting object is still an undirected graph.

About the alternative distance

Remark: We could have doubled edges in (*):
Good: Resulting object is still an undirected graph.
Bad: probably kills the geometry of S, e.g.,
extreme case: $0 \in S \leadsto d(s, t) \leq 2$ for every $s, t \in S$.

About the alternative distance

Remark: We could have doubled edges in (*):
Good: Resulting object is still an undirected graph.
Bad: probably kills the geometry of S, e.g.,
extreme case: $0 \in S \leadsto d(s, t) \leq 2$ for every $s, t \in S$.

About the alternative distance

Remark: We could have doubled edges in (*):
Good: Resulting object is still an undirected graph.
Bad: probably kills the geometry of S, e.g.,
extreme case: $0 \in S \leadsto d(s, t) \leq 2$ for every $s, t \in S$.

Reason \#1: Schützenberger graphs do see geometry even if not E-unitary

About the alternative distance

Remark: We could have doubled edges in (*):
Good: Resulting object is still an undirected graph.
Bad: probably kills the geometry of S, e.g.,
extreme case: $0 \in S \leadsto d(s, t) \leq 2$ for every $s, t \in S$.

Reason \#1: Schützenberger graphs do see geometry even if not E-unitary
Reason \#2: something something C^{\star}-algebras something

Various (probably known to you) remarks

Remarks:

Various (probably known to you) remarks

Remarks:

- S is a group \Leftrightarrow only 1 conn. comp. $\Leftrightarrow d(x, y)<\infty$.

Various (probably known to you) remarks

Remarks:

- S is a group \Leftrightarrow only 1 conn. comp. $\Leftrightarrow d(x, y)<\infty$.
- Not all graphs are Cayley graphs. However:

Theorem [Stephen, 1990]
\{connected graphs $\}=\{$ Schützenberger graphs $\}$

Various (probably known to you) remarks

Remarks:

- S is a group \Leftrightarrow only 1 conn. comp. $\Leftrightarrow d(x, y)<\infty$.
- Not all graphs are Cayley graphs. However:

Theorem [Stephen, 1990]
\{connected graphs $\}=\{$ Schützenberger graphs $\}$

- \mathcal{R}-classes in a \mathcal{D}-class are isomorphic (as graphs).
- ${ }^{-1}: S \rightarrow S$ takes \mathcal{R}-classes $\leadsto \mathcal{L}$-classes and, thus: Left approach $\cong_{q . i}$. Right approach
(3) Quasi-isometric invariants: amenability

Amenability in inverse semigroups

Def. (Day - 1957) \& Prop. (Ara, Lledó, M. - 2019)

S is amenable if there is an invariant probability measure on it:
a probability measure $\mu: \mathcal{P}(S) \rightarrow[0,1]$ such that
(1) Domain-measure: $\mu(A)=\mu\left(A s^{-1}\right)$ for all $A \subset S \cdot s^{-1} s$.
(2) Localization: $\quad \mu\left(S \cdot s^{-1} s\right)=1$ for all $s \in S$.

Amenability in inverse semigroups

Def. (Day - 1957) \& Prop. (Ara, Lledó, M. - 2019)

S is amenable if there is an invariant probability measure on it: a probability measure $\mu: \mathcal{P}(S) \rightarrow[0,1]$ such that
(1) Domain-measure: $\mu(A)=\mu\left(A s^{-1}\right)$ for all $A \subset S \cdot s^{-1} s$.
(2) Localization: $\quad \mu\left(S \cdot s^{-1} s\right)=1$ for all $s \in S$.

Invariance explanation:

Amenability in inverse semigroups

Def. (Day - 1957) \& Prop. (Ara, Lledó, M. - 2019)

S is amenable if there is an invariant probability measure on it: a probability measure $\mu: \mathcal{P}(S) \rightarrow[0,1]$ such that
(1) Domain-measure: $\mu(A)=\mu\left(A s^{-1}\right)$ for all $A \subset S \cdot s^{-1} s$.
(2) Localization: $\mu\left(S \cdot s^{-1} s\right)=1$ for all $s \in S$.

Invariance explanation:

Amenability in inverse semigroups

Def. (Day - 1957) \& Prop. (Ara, Lledó, M. - 2019)

S is amenable if there is an invariant probability measure on it: a probability measure $\mu: \mathcal{P}(S) \rightarrow[0,1]$ such that
(1) Domain-measure: $\mu(A)=\mu\left(A s^{-1}\right)$ for all $A \subset S \cdot s^{-1} s$.
(2) Localization: $\mu\left(S \cdot s^{-1} s\right)=1$ for all $s \in S$.

Invariance explanation:

Amenability in inverse semigroups

Def. (Day - 1957) \& Prop. (Ara, Lledó, M. - 2019)

S is amenable if there is an invariant probability measure on it: a probability measure $\mu: \mathcal{P}(S) \rightarrow[0,1]$ such that
(1) Domain-measure: $\mu(A)=\mu\left(A s^{-1}\right)$ for all $A \subset S \cdot s^{-1} s$.
(2) Localization: $\mu\left(S \cdot s^{-1} s\right)=1$ for all $s \in S$.

Invariance explanation:

Amenability in inverse semigroups

Def. (Day - 1957) \& Prop. (Ara, Lledó, M. - 2019)

S is amenable if there is an invariant probability measure on it: a probability measure $\mu: \mathcal{P}(S) \rightarrow[0,1]$ such that
(1) Domain-measure: $\mu(A)=\mu\left(A s^{-1}\right)$ for all $A \subset S \cdot s^{-1} s$.
(2) Localization: $\mu\left(S \cdot s^{-1} s\right)=1$ for all $s \in S$.

Invariance explanation:

Amenability in inverse semigroups

Def. (Day - 1957) \& Prop. (Ara, Lledó, M. - 2019)

S is amenable if there is an invariant probability measure on it: a probability measure $\mu: \mathcal{P}(S) \rightarrow[0,1]$ such that
(1) Domain-measure: $\mu(A)=\mu\left(A s^{-1}\right)$ for all $A \subset S \cdot s^{-1} s$.
(2) Localization: $\mu\left(S \cdot s^{-1} s\right)=1$ for all $s \in S$.

Invariance explanation:

Amenability in inverse semigroups

Def. (Day - 1957) \& Prop. (Ara, Lledó, M. - 2019)

S is amenable if there is an invariant probability measure on it: a probability measure $\mu: \mathcal{P}(S) \rightarrow[0,1]$ such that
(1) Domain-measure: $\mu(A)=\mu\left(A s^{-1}\right)$ for all $A \subset S \cdot s^{-1} s$.
(2) Localization: $\mu\left(S \cdot s^{-1} s\right)=1$ for all $s \in S$.

Invariance explanation:

Amenability in inverse semigroups

Def. (Day - 1957) \& Prop. (Ara, Lledó, M. - 2019)

S is amenable if there is an invariant probability measure on it: a probability measure $\mu: \mathcal{P}(S) \rightarrow[0,1]$ such that
(1) Domain-measure: $\mu(A)=\mu\left(A s^{-1}\right)$ for all $A \subset S \cdot s^{-1} s$.
(2) Localization: $\mu\left(S \cdot s^{-1} s\right)=1$ for all $s \in S$.

Invariance explanation:

Examples of amenable inverse semigroups

Examples of amenable inverse semigroups:

1. All amenable groups [vN27].

Examples of amenable inverse semigroups

Examples of amenable inverse semigroups:

1. All amenable groups [vN27].
2. $0 \in S \leadsto \mu(\{0\})=1$ (or, equivalently, $\mu=\delta_{0}$).

Examples of amenable inverse semigroups

Examples of amenable inverse semigroups:

1. All amenable groups [vN27].
2. $0 \in S \leadsto \mu(\{0\})=1$ (or, equivalently, $\mu=\delta_{0}$).
3. $S:=\mathbb{F}_{2} \sqcup\{1\}$ is not amenable.

Examples of amenable inverse semigroups

Examples of amenable inverse semigroups:

1. All amenable groups [vN27].
2. $0 \in S \leadsto \mu(\{0\})=1$ (or, equivalently, $\left.\mu=\delta_{0}\right)$.
3. $S:=\mathbb{F}_{2} \sqcup\{1\}$ is not amenable.

Examples of domain-measurable semigroups:

1. All amenable semigroups.

Examples of amenable inverse semigroups

Examples of amenable inverse semigroups:

1. All amenable groups [vN27].
2. $0 \in S \leadsto \mu(\{0\})=1$ (or, equivalently, $\left.\mu=\delta_{0}\right)$.
3. $S:=\mathbb{F}_{2} \sqcup\{1\}$ is not amenable.

Examples of domain-measurable semigroups:

1. All amenable semigroups.
2. $S:=\mathbb{F}_{2} \sqcup\{1\}$ is domain-measurable: $\mu(\{1\}):=1$.

Examples of amenable inverse semigroups

Examples of amenable inverse semigroups:

1. All amenable groups [vN27].
2. $0 \in S \leadsto \mu(\{0\})=1$ (or, equivalently, $\left.\mu=\delta_{0}\right)$.
3. $S:=\mathbb{F}_{2} \sqcup\{1\}$ is not amenable.

Examples of domain-measurable semigroups:

1. All amenable semigroups.
2. $S:=\mathbb{F}_{2} \sqcup\{1\}$ is domain-measurable: $\mu(\{1\}):=1$.

Remark: the localization is not dynamical, and

Examples of amenable inverse semigroups

Examples of amenable inverse semigroups:

1. All amenable groups [vN27].
2. $0 \in S \leadsto \mu(\{0\})=1$ (or, equivalently, $\mu=\delta_{0}$).
3. $S:=\mathbb{F}_{2} \sqcup\{1\}$ is not amenable.

Examples of domain-measurable semigroups:

1. All amenable semigroups.
2. $S:=\mathbb{F}_{2} \sqcup\{1\}$ is domain-measurable: $\mu(\{1\}):=1$.

Remark: the localization is not dynamical, and

Theorem (Ara, Lledó, M. - 2019)

S is domain-measurable iff $\exists\left\{F_{n}\right\}_{n \in \mathbb{N}}, \varnothing \neq F_{n} \subset S$ finite and

$$
\left|\left(F_{n} \cap S \cdot s^{-1} s\right) s^{-1} \cup F_{n}\right| /\left|F_{n}\right| \xrightarrow{n \rightarrow \infty} 1 \text { for every } s \in S .
$$

Domain-measurability in the Schützenberger graphs

Fø Iner condition: $\left(F_{n} \cap S \cdot s^{-1} s\right) s^{-1} \leadsto$ only moving in \mathcal{R}-classes.

Domain-measurability in the Schützenberger graphs

Følner condition: $\left(F_{n} \cap S \cdot s^{-1} s\right) s^{-1} \leadsto$ only moving in \mathcal{R}-classes.
Therefore:
Domain-measurable \Leftrightarrow Schützenberger graphs have small growth:

Proposition (Ara, Lledó, M. - 2019)

S is domain-measurable iff for every $r, \varepsilon>0$ there is $F \in S$ with exactly one \mathcal{R}-class and $\left|\mathcal{N}_{r}^{+} F\right| /|F| \leq 1+\varepsilon$.

Domain-measurability in the Schützenberger graphs

Følner condition: $\left(F_{n} \cap S \cdot s^{-1} s\right) s^{-1} \leadsto$ only moving in \mathcal{R}-classes.
Therefore:
Domain-measurable \Leftrightarrow Schützenberger graphs have small growth:

Proposition (Ara, Lledó, M. - 2019)

S is domain-measurable iff for every $r, \varepsilon>0$ there is $F \in S$ with exactly one \mathcal{R}-class and $\left|\mathcal{N}_{r}^{+} F\right| /|F| \leq 1+\varepsilon$.

$$
S \supset R_{e}
$$

Domain-measurability in the Schützenberger graphs

Følner condition: $\left(F_{n} \cap S \cdot s^{-1} s\right) s^{-1} \leadsto$ only moving in \mathcal{R}-classes.
Therefore:
Domain-measurable \Leftrightarrow Schützenberger graphs have small growth:

Proposition (Ara, Lledó, M. - 2019)

S is domain-measurable iff for every $r, \varepsilon>0$ there is $F \in S$ with exactly one \mathcal{R}-class and $\left|\mathcal{N}_{r}^{+} F\right| /|F| \leq 1+\varepsilon$.

Domain-measurability in the Schützenberger graphs

Følner condition: $\left(F_{n} \cap S \cdot s^{-1} s\right) s^{-1} \leadsto$ only moving in \mathcal{R}-classes.
Therefore:
Domain-measurable \Leftrightarrow Schützenberger graphs have small growth:

Proposition (Ara, Lledó, M. - 2019)

S is domain-measurable iff for every $r, \varepsilon>0$ there is $F \in S$ with exactly one \mathcal{R}-class and $\left|\mathcal{N}_{r}^{+} F\right| /|F| \leq 1+\varepsilon$.

Domain-measurability in the Schützenberger graphs

Følner condition: $\left(F_{n} \cap S \cdot s^{-1} s\right) s^{-1} \leadsto$ only moving in \mathcal{R}-classes.
Therefore:
Domain-measurable \Leftrightarrow Schützenberger graphs have small growth:

Proposition (Ara, Lledó, M. - 2019)

S is domain-measurable iff for every $r, \varepsilon>0$ there is $F \in S$ with exactly one \mathcal{R}-class and $\left|\mathcal{N}_{r}^{+} F\right| /|F| \leq 1+\varepsilon$.

Domain-measurability in the Schützenberger graphs

Følner condition: $\left(F_{n} \cap S \cdot s^{-1} s\right) s^{-1} \leadsto$ only moving in \mathcal{R}-classes.
Therefore:
Domain-measurable \Leftrightarrow Schützenberger graphs have small growth:

Proposition (Ara, Lledó, M. - 2019)

S is domain-measurable iff for every $r, \varepsilon>0$ there is $F \in S$ with exactly one \mathcal{R}-class and $\left|\mathcal{N}_{r}^{+} F\right| /|F| \leq 1+\varepsilon$.

Quasi-isometric invariance of domain-measurability

Theorem (Lledó, M. - 2020)
Let S and T be fin. gen. quasi-isometric inverse semigroups. If T is domain-measurable then so is S.

Quasi-isometric invariance of domain-measurability

Theorem (Lledó, M. - 2020)
 Let S and T be fin. gen. quasi-isometric inverse semigroups. If T is domain-measurable then so is S.

Sketch of proof: take $\phi: S \rightarrow T$ an onto q.i.

Quasi-isometric invariance of domain-measurability

Theorem (Lledó, M. - 2020)

Let S and T be fin. gen. quasi-isometric inverse semigroups. If T is domain-measurable then so is S.

Sketch of proof: take $\phi: S \rightarrow T$ an onto q.i.

- ϕ takes \mathcal{R}-classes onto \mathcal{R}-classes.

Quasi-isometric invariance of domain-measurability

Theorem (Lledó, M. - 2020)

Let S and T be fin. gen. quasi-isometric inverse semigroups. If T is domain-measurable then so is S.

Sketch of proof: take $\phi: S \rightarrow T$ an onto q.i.

- ϕ takes \mathcal{R}-classes onto \mathcal{R}-classes.
- Take a nice Følner $F_{T} \subset T$.

Quasi-isometric invariance of domain-measurability

Theorem (Lledó, M. - 2020)

Let S and T be fin. gen. quasi-isometric inverse semigroups. If T is domain-measurable then so is S.

Sketch of proof: take $\phi: S \rightarrow T$ an onto q.i.

- ϕ takes \mathcal{R}-classes onto \mathcal{R}-classes.
- Take a nice Følner $F_{T} \subset T$.
- The preimage $F_{S}:=\phi^{-1}\left(F_{T}\right)$ is a nice Følner in S.

Quasi-isometric invariance of domain-measurability

Theorem (Lledó, M. - 2020)

Let S and T be fin. gen. quasi-isometric inverse semigroups. If T is domain-measurable then so is S.

Sketch of proof: take $\phi: S \rightarrow T$ an onto q.i.

- ϕ takes \mathcal{R}-classes onto \mathcal{R}-classes.
- Take a nice Følner $F_{T} \subset T$.
- The preimage $F_{S}:=\phi^{-1}\left(F_{T}\right)$ is a nice Følner in S.

Quasi-isometric invariance of domain-measurability

Theorem (Lledó, M. - 2020)

Let S and T be fin. gen. quasi-isometric inverse semigroups. If T is domain-measurable then so is S.

Sketch of proof: take $\phi: S \rightarrow T$ an onto q.i.

- ϕ takes \mathcal{R}-classes onto \mathcal{R}-classes.
- Take a nice Følner $F_{T} \subset T$.
- The preimage $F_{S}:=\phi^{-1}\left(F_{T}\right)$ is a nice Følner in S.

Quasi-isometric invariance of domain-measurability

Theorem (Lledó, M. - 2020)

Let S and T be fin. gen. quasi-isometric inverse semigroups. If T is domain-measurable then so is S.

Sketch of proof: take $\phi: S \rightarrow T$ an onto q.i.

- ϕ takes \mathcal{R}-classes onto \mathcal{R}-classes.
- Take a nice Følner $F_{T} \subset T$.
- The preimage $F_{S}:=\phi^{-1}\left(F_{T}\right)$ is a nice Følner in S.

Quasi-isometric invariance of domain-measurability

Theorem (Lledó, M. - 2020)

Let S and T be fin. gen. quasi-isometric inverse semigroups. If T is domain-measurable then so is S.

Sketch of proof: take $\phi: S \rightarrow T$ an onto q.i.

- ϕ takes \mathcal{R}-classes onto \mathcal{R}-classes.
- Take a nice Følner $F_{T} \subset T$.
- The preimage $F_{S}:=\phi^{-1}\left(F_{T}\right)$ is a nice Følner in S.

Quasi-isometric invariance of domain-measurability

Theorem (Lledó, M. - 2020)

Let S and T be fin. gen. quasi-isometric inverse semigroups. If T is domain-measurable then so is S.

Sketch of proof: take $\phi: S \rightarrow T$ an onto q.i.

- ϕ takes \mathcal{R}-classes onto \mathcal{R}-classes.
- Take a nice Følner $F_{T} \subset T$.
- The preimage $F_{S}:=\phi^{-1}\left(F_{T}\right)$ is a nice Følner in S.

Why not amenability? Role of localization?

Remark: recall from some time ago:
Amenability $=$ domain-measurability \& localization

Why not amenability? Role of localization?

Remark: recall from some time ago:
Amenability = domain-measurability \& localization
Question: Role of localization for quasi-isometries?
Is amenability a quasi-isometry invariant?

Why not amenability? Role of localization?

Remark: recall from some time ago:
Amenability = domain-measurability \& localization
Question: Role of localization for quasi-isometries?
Is amenability a quasi-isometry invariant?
Answer: No: a q.i. $\phi: S \rightarrow T$ might not respect $S \cdot s^{-1} s$: take $S:=\{1\} \sqcup \mathbb{F}_{2}$ and $T:=\mathbb{F}_{2} \sqcup\{0\}$, and

$$
\phi: 1 \mapsto 0 \quad \text { and } \quad \phi: S \supset \mathbb{F}_{2} \ni \omega \mapsto \omega \in \mathbb{F}_{2} \subset T .
$$

Why not amenability? Role of localization?

Remark: recall from some time ago:
Amenability = domain-measurability \& localization
Question: Role of localization for quasi-isometries?
Is amenability a quasi-isometry invariant?
Answer: No: a q.i. $\phi: S \rightarrow T$ might not respect $S \cdot s^{-1} s$:
take $S:=\{1\} \sqcup \mathbb{F}_{2}$ and $T:=\mathbb{F}_{2} \sqcup\{0\}$, and

$$
\phi: 1 \mapsto 0 \quad \text { and } \quad \phi: S \supset \mathbb{F}_{2} \ni \omega \mapsto \omega \in \mathbb{F}_{2} \subset T .
$$

Then: ϕ is a q.i., S non-amenable and T amenable.
domain-measurability preserved by q.i.
localization not preserved by q.i.
amenability not preserved by q.i.
(4) Quasi-isometric invariants:

Yu's property A

Definition of A

Definition (Yu - 1999)

(X, d) has property A if for all $\varepsilon>0$ and $R>0$ there are $C>0$ and $\zeta: X \rightarrow \ell^{1}(X)_{+}^{1}$ with:

1. Controlled support: $\operatorname{supp}\left(\zeta_{x}\right) \subset B_{C}(x)$ for every $x \in X$.
2. Continuous variation (?): for every $x, y \in X$ with $d(x, y) \leq R$:

$$
\left\|\zeta_{x}-\zeta_{y}\right\|_{1}=\sum_{z \in X}\left|\zeta_{x}(z)-\zeta_{y}(z)\right| \leq \varepsilon
$$

Definition of A

Definition (Yu - 1999)

(X, d) has property A if for all $\varepsilon>0$ and $R>0$ there are $C>0$ and $\zeta: X \rightarrow \ell^{1}(X)_{+}^{1}$ with:

1. Controlled support: $\operatorname{supp}\left(\zeta_{x}\right) \subset B_{C}(x)$ for every $x \in X$.
2. Continuous variation (?): for every $x, y \in X$ with $d(x, y) \leq R$:

$$
\left\|\zeta_{x}-\zeta_{y}\right\|_{1}=\sum_{z \in X}\left|\zeta_{x}(z)-\zeta_{y}(z)\right| \leq \varepsilon
$$

Definition of A

Definition (Yu - 1999)

(X, d) has property A if for all $\varepsilon>0$ and $R>0$ there are $C>0$ and $\zeta: X \rightarrow \ell^{1}(X)_{+}^{1}$ with:

1. Controlled support: $\operatorname{supp}\left(\zeta_{x}\right) \subset B_{C}(x)$ for every $x \in X$.
2. Continuous variation (?): for every $x, y \in X$ with $d(x, y) \leq R$:

$$
\left\|\zeta_{x}-\zeta_{y}\right\|_{1}=\sum_{z \in X}\left|\zeta_{x}(z)-\zeta_{y}(z)\right| \leq \varepsilon
$$

$$
B_{C}(x)
$$

Definition of A

Definition (Yu - 1999)

(X, d) has property A if for all $\varepsilon>0$ and $R>0$ there are $C>0$ and $\zeta: X \rightarrow \ell^{1}(X)_{+}^{1}$ with:

1. Controlled support: $\operatorname{supp}\left(\zeta_{x}\right) \subset B_{C}(x)$ for every $x \in X$.
2. Continuous variation (?): for every $x, y \in X$ with $d(x, y) \leq R$:

$$
\left\|\zeta_{x}-\zeta_{y}\right\|_{1}=\sum_{z \in X}\left|\zeta_{x}(z)-\zeta_{y}(z)\right| \leq \varepsilon
$$

Definition of A

Definition (Yu - 1999)

(X, d) has property A if for all $\varepsilon>0$ and $R>0$ there are $C>0$ and $\zeta: X \rightarrow \ell^{1}(X)_{+}^{1}$ with:

1. Controlled support: $\operatorname{supp}\left(\zeta_{x}\right) \subset B_{C}(x)$ for every $x \in X$.
2. Continuous variation (?): for every $x, y \in X$ with $d(x, y) \leq R$:

$$
\left\|\zeta_{x}-\zeta_{y}\right\|_{1}=\sum_{z \in X}\left|\zeta_{x}(z)-\zeta_{y}(z)\right| \leq \varepsilon
$$

Definition of A

Definition (Yu - 1999)

(X, d) has property A if for all $\varepsilon>0$ and $R>0$ there are $C>0$ and $\zeta: X \rightarrow \ell^{1}(X)_{+}^{1}$ with:

1. Controlled support: $\operatorname{supp}\left(\zeta_{x}\right) \subset B_{C}(x)$ for every $x \in X$.
2. Continuous variation (?): for every $x, y \in X$ with $d(x, y) \leq R$:

$$
\left\|\zeta_{x}-\zeta_{y}\right\|_{1}=\sum_{z \in X}\left|\zeta_{x}(z)-\zeta_{y}(z)\right| \leq \varepsilon
$$

Definition of A

Definition (Yu - 1999)

(X, d) has property A if for all $\varepsilon>0$ and $R>0$ there are $C>0$ and $\zeta: X \rightarrow \ell^{1}(X)_{+}^{1}$ with:

1. Controlled support: $\operatorname{supp}\left(\zeta_{x}\right) \subset B_{C}(x)$ for every $x \in X$.
2. Continuous variation (?): for every $x, y \in X$ with $d(x, y) \leq R$:

$$
\left\|\zeta_{x}-\zeta_{y}\right\|_{1}=\sum_{z \in X}\left|\zeta_{x}(z)-\zeta_{y}(z)\right| \leq \varepsilon
$$

Definition of A

Definition (Yu - 1999)

(X, d) has property A if for all $\varepsilon>0$ and $R>0$ there are $C>0$ and $\zeta: X \rightarrow \ell^{1}(X)_{+}^{1}$ with:

1. Controlled support: $\operatorname{supp}\left(\zeta_{x}\right) \subset B_{C}(x)$ for every $x \in X$.
2. Continuous variation (?): for every $x, y \in X$ with $d(x, y) \leq R$:

$$
\left\|\zeta_{x}-\zeta_{y}\right\|_{1}=\sum_{z \in X}\left|\zeta_{x}(z)-\zeta_{y}(z)\right| \leq \varepsilon
$$

Property A for groups and its' relevance

Question: Why the name A ? Is there a property B ?

Property A for groups and its' relevance

Question: Why the name A ? Is there a property B ?
Observe: Let $X=G$ discrete group. Then G has A if:

- It is amenable $\leadsto \zeta_{x}:=1_{F_{x}}| | F \mid$.
- It is free \leadsto choose a direction to infinity.

Property A for groups and its' relevance

Question: Why the name A ? Is there a property B ?
Observe: Let $X=G$ discrete group. Then G has A if:

- It is amenable $\leadsto \zeta_{x}:=1_{F_{x}}| | F \mid$.
- It is free \leadsto choose a direction to infinity.
- Non-A groups, Gromov (2003) \leadsto small canc. properties and expanders coarsely embedded in groups...

Property A for groups and its' relevance

Question: Why the name A ? Is there a property B ?
Observe: Let $X=G$ discrete group. Then G has A if:

- It is amenable $\leadsto \zeta_{x}:=1_{F_{X}}| | F \mid$.
- It is free \leadsto choose a direction to infinity.
- Non-A groups, Gromov (2003) \leadsto small canc. properties and expanders coarsely embedded in groups...

Relevance: See Yu (1999):
G has $A \Rightarrow G$ coarsely embeds into a Hilbert space
$\Rightarrow G$ satisfies the Baum-Connes (with coefficients).

Property A for groups and its' relevance

Question: Why the name A ? Is there a property B ?
Observe: Let $X=G$ discrete group. Then G has A if:

- It is amenable $\leadsto \zeta_{x}:=1_{F_{X}}| | F \mid$.
- It is free \leadsto choose a direction to infinity.
- Non-A groups, Gromov (2003) \leadsto small canc. properties and expanders coarsely embedded in groups...

Relevance: See Yu (1999):
G has $A \Rightarrow G$ coarsely embeds into a Hilbert space $\Rightarrow G$ satisfies the Baum-Connes (with coefficients).

Therefore: any method to

- Say when a group has A
- A metric space/group does not have A
is interesting.

Schützenberger graphs and A

Question \#1: When does R have A? (For an \mathcal{R}-class).
Question \#2: When does S have A ? (For $S=\sqcup_{e \in E} R_{e}$).

Schützenberger graphs and A

Question \#1: When does R have A ? (For an \mathcal{R}-class).
Question \#2: When does S have A ? (For $S=\sqcup_{e \in E} R_{e}$).
Lemma
S has $A \Leftrightarrow\left\{R_{e}\right\}_{e \in A}$ is uniformly A (i.e. $\sup _{e \in E} C_{e}<\infty$)

Schützenberger graphs and A

Question \#1: When does R have A ? (For an \mathcal{R}-class).
Question \#2: When does S have A? (For $S=\sqcup_{e \in E} R_{e}$).

Lemma

$$
\left.S \text { has } A \Leftrightarrow\left\{R_{e}\right\}_{e \in A} \text { is uniformly } A \text { (i.e. } \sup _{e \in E} C_{e}<\infty\right)
$$

Easy case: take S E-unitary and $G=S / \sigma$. Then:
Cayley graph of $G=$ direct limit of \mathcal{R}-classes.

Schützenberger graphs and A

Question \#1: When does R have A? (For an \mathcal{R}-class).
Question \#2: When does S have A? (For $S=\sqcup_{e \in E} R_{e}$).

Lemma

$$
\left.S \text { has } A \Leftrightarrow\left\{R_{e}\right\}_{e \in A} \text { is uniformly } A \text { (i.e. } \sup _{e \in E} C_{e}<\infty\right)
$$

Easy case: take S E-unitary and $G=S / \sigma$. Then:
Cayley graph of $G=$ direct limit of \mathcal{R}-classes.
S has $A \Rightarrow \zeta_{[x]}([y]):=\lim _{e \searrow E} \zeta_{e x}(e y)$.
Lifting A of G via some C^{*}-nonsense.

Schützenberger graphs and A

Question \#1: When does R have A? (For an \mathcal{R}-class).
Question \#2: When does S have A? (For $S=\sqcup_{e \in E} R_{e}$).

Lemma

$$
S \text { has } A \Leftrightarrow\left\{R_{e}\right\}_{e \in A} \text { is uniformly } A \text { (i.e. sup } \sup _{e \in E} C_{e}<\infty \text {) }
$$

Easy case: take S E-unitary and $G=S / \sigma$. Then:
Cayley graph of $G=$ direct limit of \mathcal{R}-classes.
S has $A \Rightarrow \zeta_{[x]}([y]):=\lim _{e \searrow E} \zeta_{e x}(e y)$.
Lifting A of G via some C^{*}-nonsense.
Theorem (Lledó, M. - 2020)
If S is E-unitary, then S has A if and only if G has A.

Schützenberger graphs and A II

Example: Higson-Lafforgue-Skandalis and Willett:

Schützenberger graphs and A II

Example: Higson-Lafforgue-Skandalis and Willett:

- $\mathbb{F}_{2} \triangleright_{\mathrm{fi}} N_{1} \triangleright_{\mathrm{fi}} \cdots \triangleright_{\mathrm{fi}} N_{k} \triangleright_{\mathrm{fi}} \cdots$, with $\cap_{k \in \mathbb{N}} N_{k}=\varnothing$.

Schützenberger graphs and A II

Example: Higson-Lafforgue-Skandalis and Willett:

- $\mathbb{F}_{2} \triangleright_{\mathrm{fi}} N_{1} \triangleright_{\mathrm{fi}} \cdots \triangleright_{\mathrm{fi}} N_{k} \triangleright_{\mathrm{fi}} \cdots$, with $\cap_{k \in \mathbb{N}} N_{k}=\varnothing$.
- $S:=\sqcup_{k \in \mathbb{N}} \mathbb{F}_{2} / N_{k}$, where $[g]_{i} \cdot[h]_{j}:=[g h]_{\min \{i, j\}}$.

Schützenberger graphs and A II

Example: Higson-Lafforgue-Skandalis and Willett:

- $\mathbb{F}_{2} \triangleright_{\mathrm{fi}} N_{1} \triangleright_{\mathrm{fi}} \cdots \triangleright_{\mathrm{fi}} N_{k} \triangleright_{\mathrm{fi}} \ldots$, with $\cap_{k \in \mathbb{N}} N_{k}=\varnothing$.
- $S:=\sqcup_{k \in \mathbb{N}} \mathbb{F}_{2} / N_{k}$, where $[g]_{i} \cdot[h]_{j}:=[g h]_{\min \{i, j\}}$.
S is amenable and does not have A [NY12].

Schützenberger graphs and A II

Example: Higson-Lafforgue-Skandalis and Willett:

- $\mathbb{F}_{2} \triangleright_{\mathrm{fi}} N_{1} \triangleright_{\mathrm{fi}} \cdots \triangleright_{\mathrm{fi}} N_{k} \triangleright_{\mathrm{fi}} \ldots$, with $\cap_{k \in \mathbb{N}} N_{k}=\varnothing$.
- $S:=\sqcup_{k \in \mathbb{N}} \mathbb{F}_{2} / N_{k}$, where $[g]_{i} \cdot[h]_{j}:=[g h]_{\min \{i, j\}}$.
S is amenable and does not have A [NY12].

$$
\begin{aligned}
{[e]_{0} } & {[e]_{1} } \\
S= & {[e]_{2} } \\
& \bullet e]_{3} \\
\cdots & \cdots \\
& \cdots \\
& \cdots \\
\mathbb{F}_{2} / N_{0} \leq \mathbb{F}_{2} / N_{1} \leq \mathbb{F}_{2} / N_{2} \leq \mathbb{F}_{2} / N_{3} & \ddots
\end{aligned}
$$

Schützenberger graphs and A II

Example: Higson-Lafforgue-Skandalis and Willett:

- $\mathbb{F}_{2} \triangleright_{\mathrm{fi}} N_{1} \triangleright_{\mathrm{fi}} \cdots \triangleright_{\mathrm{fi}} N_{k} \triangleright_{\mathrm{fi}} \ldots$, with $\cap_{k \in \mathbb{N}} N_{k}=\varnothing$.
- $S:=\sqcup_{k \in \mathbb{N}} \mathbb{F}_{2} / N_{k}$, where $[g]_{i} \cdot[h]_{j}:=[g h]_{\min \{i, j\}}$.
S is amenable and does not have A [NY12].

$$
\begin{aligned}
S= & \bullet e]_{0} \\
S & {[e]_{1} } \\
S & {[e]_{2} } \\
& \bullet e]_{3} \\
\cdots & \cdots \\
& \cdots \\
& \cdots \\
\mathbb{F}_{2} / N_{0} \leq \mathbb{F}_{2} / N_{1} \leq \mathbb{F}_{2} / N_{2} \leq \mathbb{F}_{2} / N_{3} & \ddots
\end{aligned}
$$

Conclusion: two reasons for S not being A :

Schützenberger graphs and A II

Example: Higson-Lafforgue-Skandalis and Willett:

- $\mathbb{F}_{2} \triangleright_{\mathrm{fi}} N_{1} \triangleright_{\mathrm{fi}} \cdots \triangleright_{\mathrm{fi}} N_{k} \triangleright_{\mathrm{fi}} \ldots$, with $\cap_{k \in \mathbb{N}} N_{k}=\varnothing$.
- $S:=\sqcup_{k \in \mathbb{N}} \mathbb{F}_{2} / N_{k}$, where $[g]_{i} \cdot[h]_{j}:=[g h]_{\min \{i, j\}}$.
S is amenable and does not have A [NY12].

$$
\begin{aligned}
S= & \bullet e]_{0} \\
S & {[e]_{1} } \\
S & {[e]_{2} } \\
& \bullet e]_{3} \\
\cdots & \cdots \\
& \cdots \\
& \cdots \\
\mathbb{F}_{2} / N_{0} \leq \mathbb{F}_{2} / N_{1} \leq \mathbb{F}_{2} / N_{2} \leq \mathbb{F}_{2} / N_{3} & \ddots
\end{aligned}
$$

Conclusion: two reasons for S not being A:
Reason \#1: Some \mathcal{R}-class is not A.

Schützenberger graphs and A II

Example: Higson-Lafforgue-Skandalis and Willett:

- $\mathbb{F}_{2} \triangleright_{\mathrm{fi}} N_{1} \triangleright_{\mathrm{fi}} \cdots \triangleright_{\mathrm{fi}} N_{k} \triangleright_{\mathrm{fi}} \ldots$, with $\cap_{k \in \mathbb{N}} N_{k}=\varnothing$.
- $S:=\sqcup_{k \in \mathbb{N}} \mathbb{F}_{2} / N_{k}$, where $[g]_{i} \cdot[h]_{j}:=[g h]_{\min \{i, j\}}$.
S is amenable and does not have A [NY12].

$$
\begin{aligned}
& {[e]_{0} } \\
S= & {[e]_{1} } \\
= & {[e]_{2} } \\
& \bullet e]_{3} \\
\cdots & \cdots \\
& \mathbb{F}_{2} / N_{0} \leq \mathbb{F}_{2} / N_{1} \leq \mathbb{F}_{2} / N_{2} \leq \mathbb{F}_{2} / N_{3} \\
& \ddots
\end{aligned}
$$

Conclusion: two reasons for S not being A:
Reason \#1: Some \mathcal{R}-class is not A.
Reason \#2: $\left\{R_{e}\right\}_{e \in E}$ is not uniformly A .

Schützenberger graphs and A II

Example: Higson-Lafforgue-Skandalis and Willett:

- $\mathbb{F}_{2} \triangleright_{\mathrm{fi}} N_{1} \triangleright_{\mathrm{fi}} \cdots \triangleright_{\mathrm{fi}} N_{k} \triangleright_{\mathrm{fi}} \ldots$, with $\cap_{k \in \mathbb{N}} N_{k}=\varnothing$.
- $S:=\sqcup_{k \in \mathbb{N}} \mathbb{F}_{2} / N_{k}$, where $[g]_{i} \cdot[h]_{j}:=[g h]_{\min \{i, j\}}$.
S is amenable and does not have A [NY12].

$$
\begin{aligned}
& {[e]_{0} } \\
& S= {[e]_{1} } \\
&= {[e]_{2} } \\
&\bullet e]_{3} \\
& \cdots \cdots \\
& \cdots \\
& \mathbb{F}_{2} / N_{0} \leq \mathbb{F}_{2} / N_{1} \leq \mathbb{F}_{2} / N_{2} \leq \mathbb{F}_{2} / N_{3} \\
& \cdots
\end{aligned}
$$

Conclusion: two reasons for S not being A:
Reason \#1: Some \mathcal{R}-class is not A. ?
Reason \#2: $\left\{R_{e}\right\}_{e \in E}$ is not uniformly A . ?

Bibliography

Ara, Lledó and M., Amenability and paradoxicality in semigroups and C*-algebras, J. Funct. Anal. (2020).
Day, Amenable semigroups. Illinois Journal of Mathematics, 1957.
Gray and Kambites, Groups acting on semimetric spaces and quasi-isometries of monoids. Trans. Ame. Math. Soc. (2013)
Lawson, Inverse semigroups: the theory of partial symmetries. World Scientific, 1998.
Lledó and M., The uniform Roe algebra of an inverse semigroup, (2020).
Nowak and Yu, Large scale geometry. EMS Textbooks in Mathematics, 2012. von Neumann, Zur allgemeinen Theorie des Masses. Fundamenta Mathematica, 1929. Yu, The coarse Baum-Connes conjecture for spaces which admit auniform embedding into Hilbert space. Inventiones (2000).

Thank you for your attention! Questions?

About the alternative distance II

Reason \#1: More general (not E-unitary).

About the alternative distance II

Reason \#1: More general (not E-unitary).
Reason \#2: following Wagner-Preston:

$$
V: S \rightarrow \mathcal{I}(S), \quad s \mapsto\left(V_{s}, D_{s^{-1} s}, D_{s s^{-1}}\right)
$$

where

$$
D_{s^{-1} s}:=\left\{y \in S \mid y=y s^{-1} s\right\}=S \cdot s^{-1} s \quad \text { and } \quad V_{s} x:=x s^{-1} .
$$

About the alternative distance II

Reason \#1: More general (not E-unitary).
Reason \#2: following Wagner-Preston:

$$
V: S \rightarrow \mathcal{I}(S), \quad s \mapsto\left(V_{s}, D_{s^{-1} s}, D_{s s^{-1}}\right)
$$

where

$$
D_{s^{-1} s}:=\left\{y \in S \mid y=y s^{-1} s\right\}=S \cdot s^{-1} s \quad \text { and } \quad V_{s} x:=x s^{-1} .
$$

Lemma - Remark

$$
x \mathcal{R} x s^{-1} \Leftrightarrow x \in D_{s^{-1} s} .
$$

Limited to \mathcal{R}-classes: Wagner-Preston \leadsto Schützenberger graphs.

About the alternative distance II

Reason \#1: More general (not E-unitary).
Reason \#2: following Wagner-Preston:

$$
V: S \rightarrow \mathcal{I}(S), \quad s \mapsto\left(V_{s}, D_{s^{-1} s}, D_{s s^{-1}}\right)
$$

where

$$
D_{s^{-1} s}:=\left\{y \in S \mid y=y s^{-1} s\right\}=S \cdot s^{-1} s \quad \text { and } \quad V_{s} x:=x s^{-1} .
$$

Lemma - Remark

$$
x \mathcal{R} x s^{-1} \Leftrightarrow x \in D_{s^{-1} s} .
$$

Limited to \mathcal{R}-classes: Wagner-Preston \leadsto Schützenberger graphs.
Reason \#3: something something C^{*}-algebras something

