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(1) Coarse geometry and properties at infinity

(2) Inverse semigroups

Schützenberger graphs of an inverse semigroup

(3) Quasi-isometric invariants: amenability

(4) Quasi-isometric invariants: Yu’s property A
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(1) Coarse geometry and
properties at infinity



Crash course on coarse geometry

Coarse idea: local properties ↝ global properties.

Quasi-definition

(X ,dX ), (Y ,dY ) and φ ∶ X → Y . We say φ is a:

• A quasi-embedding if there are L,C > 0 such that
1
LdX (x , x ′) − C ≤ dY (φ (x) , φ (x ′)) ≤ LdX (x , x ′) + C .

• Quasi-surjective if for some R > 0 and all y ∈ Y
dY (y , φ (X )) ≤ R for some R > 0 and all y ∈ Y .

• A quasi-isometry when φ is a quasi-surjective
quasi-embedding.
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Compact is finite

Examplest

(X ,d) is quasi-isometric to a point ⇔ supx ,x ′∈X d (x , x ′) <∞.

Proof:
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Global vs. local II

Remark: quasi-isometric is very weak...

Example:

. . .. . .Z

. . .. . .

. . .. . .

. . .. . .

. . .. . .R

Facts: from the above picture it follows that:
● id∶Z→ R is a quasi-isometry.
● R and R2 are not quasi-isometric.

Question: any other natural examples? Answer: Yes.
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A factory of examples

Recall: Cayley graph construction ↝ G = ⟨g±11 , . . . ,g±1n ∣ relations ⟩:
Graph ↝ Cay (G ,{g1, . . . ,gn}) ∶= (V ,E), where
V ∶= G and E ∶= {(x , xg±1i ) ∣ x ∈ G and i = 1, . . . ,n}.

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

⋰

⋱

⋱

⋰

Z2
. . .. . . Z = ⟨±2,±3⟩
. . .. . . Z = ⟨±1⟩

Proposition
The large scale geometry of the Cayley graph of G

does not depend on the generators, i.e.,
Cay (G ,{g1, . . . ,gn}) ≅q.i. Cay (G ,{h1, . . . ,hm})
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Properties at infinity

Two kinds of properties of a group:

1. Not invariant under quasi-isometry:
• Cardinality (any finite ≅q.i. point).
• Number of generators.

2. Invariant under quasi-isometry:
• Being finite. [GK13]
• Number of ends of X . [GK13]
• Growth type. [GK13]
• Hyperbolicity.
• Amenability .
• Property A. [Y99]

Observe: The half line N is not a group Cayley graph.
Therefore: We’re missing quite a lot of graphs.
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(2) Inverse semigroups



Brief introduction to inverse semigroups

Disclaimer: operator algebraist ↝ −1 vs ∗

Notation: S ⊃ E = {s−1s ∣ s ∈ S} idempotents or projections.
● Partial order s ≤ t⇔ ts−1s = s

● R-relation: x R y if xx−1 = yy−1.

"Algorithm": S = ⟨K ⟩ where K = K−1

● Construct the (right) Cayley graph of S w.r.t. K
Strongly connected components = R-classes

● Erase directed arrows (*)

Resulting object: undirected graph.
● Connected components ↝ Schützenberger graphs.
● In particular: d (s, t) = d (t, s)
● If xx−1 ≠ yy−1 then d (x , y) =∞
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Schützenberger graphs

Examplest: Bicyclic monoid: T ∶= ⟨a, a−1 ∣ a−1a = 1⟩:

1 a a2 a3

a−1 aa−1 a2a−1 a3a−1

a−2

a−3

aa−2

aa−3

a2a−2 a3a−2

a2a−3 a3a−3

⋮ ⋮ ⋮ ⋮

. . .

. . .

. . .

. . .

⋰

Proposition [Gray-Kambites (2013)]
The large scale geometry of the Schützenberger graph of S

does not depend on the generators, i.e.,
(S ,d ,{s1, . . . , sn}) ≅q.i. (S ,d ′,{t1, . . . , tm})
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About the alternative distance

Remark: We could have doubled edges in (*):

Good: Resulting object is still an undirected graph.
Bad: probably kills the geometry of S , e.g.,

extreme case: 0 ∈ S ↝ d (s, t) ≤ 2 for every s, t ∈ S .

s ● t●

●
0

Reason #1: Schützenberger graphs do see geometry
even if not E-unitary

Reason #2: something something C∗-algebras something
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Various (probably known to you) remarks

Remarks:

● S is a group ⇔ only 1 conn. comp. ⇔ d (x , y) <∞.
● Not all graphs are Cayley graphs. However:

Theorem [Stephen, 1990]
{connected graphs} = {Schützenberger graphs}

● R-classes in a D-class are isomorphic (as graphs).
● −1∶S → S takes R-classes ↝ L-classes

and, thus: Left approach ≅q.i . Right approach
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(3) Quasi-isometric invariants:
amenability



Amenability in inverse semigroups

Def. (Day - 1957) & Prop. (Ara, Lledó, M. - 2019)
S is amenable if there is an invariant probability measure on it:
a probability measure µ∶P (S)→ [0,1] such that

(1) Domain-measure: µ (A) = µ (As−1) for all A ⊂ S ⋅ s−1s.
(2) Localization: µ (S ⋅ s−1s) = 1 for all s ∈ S .

Invariance explanation:
S S

Ss−1s Sss−1

⋅s−1

A

As−1 ↝ (1) µ (A) = µ (As−1)
B

↝ (2) µ (B) = µ (B ∩ Ss−1s)

= µ (B ∩ Sss−1)
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a probability measure µ∶P (S)→ [0,1] such that

(1) Domain-measure: µ (A) = µ (As−1) for all A ⊂ S ⋅ s−1s.
(2) Localization: µ (S ⋅ s−1s) = 1 for all s ∈ S .
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Examples of amenable inverse semigroups

Examples of amenable inverse semigroups:

1. All amenable groups [vN27].

2. 0 ∈ S ↝ µ ({0}) = 1 (or, equivalently, µ = δ0).
3. S ∶= F2 ⊔ {1} is not amenable.

Examples of domain-measurable semigroups:

1. All amenable semigroups.
2. S ∶= F2 ⊔ {1} is domain-measurable: µ ({1}) ∶= 1.

Remark: the localization is not dynamical, and

Theorem (Ara, Lledó, M. - 2019)

S is domain-measurable iff ∃{Fn}n∈N ,∅ ≠ Fn ⊂ S finite and
∣(Fn ∩ S ⋅ s−1s) s−1 ∪ Fn∣ / ∣Fn∣

n→∞ÐÐÐ→ 1 for every s ∈ S .
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Domain-measurability in the Schützenberger graphs

Følner condition: (Fn ∩ S ⋅ s−1s) s−1 ↝ only moving in R-classes.

Therefore:
Domain-measurable ⇔ Schützenberger graphs have small growth:

Proposition (Ara, Lledó, M. - 2019)
S is domain-measurable iff for every r , ε > 0 there is F ∈ S

with exactly one R-class and ∣N +
r F ∣ / ∣F ∣ ≤ 1 + ε.

S ⊃ Re e● F

N +
r F

↝ N +
r F ≈ε F

14



Domain-measurability in the Schützenberger graphs

Følner condition: (Fn ∩ S ⋅ s−1s) s−1 ↝ only moving in R-classes.

Therefore:
Domain-measurable ⇔ Schützenberger graphs have small growth:

Proposition (Ara, Lledó, M. - 2019)
S is domain-measurable iff for every r , ε > 0 there is F ∈ S

with exactly one R-class and ∣N +
r F ∣ / ∣F ∣ ≤ 1 + ε.

S ⊃ Re e● F

N +
r F

↝ N +
r F ≈ε F

14



Domain-measurability in the Schützenberger graphs

Følner condition: (Fn ∩ S ⋅ s−1s) s−1 ↝ only moving in R-classes.

Therefore:
Domain-measurable ⇔ Schützenberger graphs have small growth:

Proposition (Ara, Lledó, M. - 2019)
S is domain-measurable iff for every r , ε > 0 there is F ∈ S

with exactly one R-class and ∣N +
r F ∣ / ∣F ∣ ≤ 1 + ε.

S ⊃ Re

e● F

N +
r F

↝ N +
r F ≈ε F

14



Domain-measurability in the Schützenberger graphs

Følner condition: (Fn ∩ S ⋅ s−1s) s−1 ↝ only moving in R-classes.

Therefore:
Domain-measurable ⇔ Schützenberger graphs have small growth:

Proposition (Ara, Lledó, M. - 2019)
S is domain-measurable iff for every r , ε > 0 there is F ∈ S

with exactly one R-class and ∣N +
r F ∣ / ∣F ∣ ≤ 1 + ε.

S ⊃ Re e●

F

N +
r F

↝ N +
r F ≈ε F

14



Domain-measurability in the Schützenberger graphs

Følner condition: (Fn ∩ S ⋅ s−1s) s−1 ↝ only moving in R-classes.

Therefore:
Domain-measurable ⇔ Schützenberger graphs have small growth:

Proposition (Ara, Lledó, M. - 2019)
S is domain-measurable iff for every r , ε > 0 there is F ∈ S

with exactly one R-class and ∣N +
r F ∣ / ∣F ∣ ≤ 1 + ε.

S ⊃ Re e● F

N +
r F

↝ N +
r F ≈ε F

14



Domain-measurability in the Schützenberger graphs

Følner condition: (Fn ∩ S ⋅ s−1s) s−1 ↝ only moving in R-classes.

Therefore:
Domain-measurable ⇔ Schützenberger graphs have small growth:

Proposition (Ara, Lledó, M. - 2019)
S is domain-measurable iff for every r , ε > 0 there is F ∈ S

with exactly one R-class and ∣N +
r F ∣ / ∣F ∣ ≤ 1 + ε.

S ⊃ Re e● F

N +
r F

↝ N +
r F ≈ε F

14



Domain-measurability in the Schützenberger graphs

Følner condition: (Fn ∩ S ⋅ s−1s) s−1 ↝ only moving in R-classes.

Therefore:
Domain-measurable ⇔ Schützenberger graphs have small growth:

Proposition (Ara, Lledó, M. - 2019)
S is domain-measurable iff for every r , ε > 0 there is F ∈ S

with exactly one R-class and ∣N +
r F ∣ / ∣F ∣ ≤ 1 + ε.

S ⊃ Re e● F

N +
r F

↝ N +
r F ≈ε F

14



Quasi-isometric invariance of domain-measurability

Theorem (Lledó, M. - 2020)
Let S and T be fin. gen. quasi-isometric inverse semigroups.

If T is domain-measurable then so is S .

Sketch of proof: take φ∶S → T an onto q.i.
● φ takes R-classes onto R-classes.
● Take a nice Følner FT ⊂ T .
● The preimage FS ∶= φ−1 (FT ) is a nice Følner in S .

T

FTeT●
N +

r FT

φ
S

FS = φ−1 (FT )
N +

r ′FS

15
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Why not amenability? Role of localization?

Remark: recall from some time ago:
Amenability = domain-measurability & localization

Question: Role of localization for quasi-isometries?
Is amenability a quasi-isometry invariant?

Answer: No: a q.i. φ∶S → T might not respect S ⋅ s−1s:
take S ∶= {1} ⊔ F2 and T ∶= F2 ⊔ {0}, and

φ∶1↦ 0 and φ∶S ⊃ F2 ∋ ω ↦ ω ∈ F2 ⊂ T .

Then: φ is a q.i., S non-amenable and T amenable.
domain-measurability preserved by q.i.
localization not preserved by q.i.
amenability not preserved by q.i.
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(4) Quasi-isometric invariants:
Yu’s property A



Definition of A

Definition (Yu - 1999)

(X ,d) has property A if for all ε > 0 and R > 0 there
are C > 0 and ζ ∶X → `1 (X )1+ with:

1. Controlled support: supp (ζx) ⊂ BC (x) for every x ∈ X .

2. Continuous variation (?): for every x , y ∈ X with d (x , y) ≤ R :
∣∣ζx − ζy ∣∣1 = ∑z∈X ∣ζx (z) − ζy (z)∣ ≤ ε.

x

BC (x)
●

●

● ●
●
●
●

●
●

●

●
●

●
●

●
●
●

● ●

ζx

y
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●

●
●
●

●
●
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ζy
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2. Continuous variation (?): for every x , y ∈ X with d (x , y) ≤ R :
∣∣ζx − ζy ∣∣1 = ∑z∈X ∣ζx (z) − ζy (z)∣ ≤ ε.

x

BC (x)
●

●

● ●
●
●
●

●
●

●

●
●

●
●

●
●
●

● ●

ζx

y

BC (y)
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●

●
●
●

●
●

● ●

ζy
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Property A for groups and its’ relevance

Question: Why the name A? Is there a property B?

Observe: Let X = G discrete group. Then G has A if:
● It is amenable ↝ ζx ∶= 1Fx/ ∣F ∣.
● It is free ↝ choose a direction to infinity.
● Non-A groups, Gromov (2003) ↝ small canc. properties

and expanders coarsely embedded in groups...

Relevance: See Yu (1999):
G has A ⇒ G coarsely embeds into a Hilbert space

⇒ G satisfies the Baum-Connes (with coefficients).

Therefore: any method to
● Say when a group has A
● A metric space/group does not have A

is interesting.
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Schützenberger graphs and A

Question #1: When does R have A? (For an R-class).
Question #2: When does S have A? (For S = ⊔e∈ERe).

Lemma

S has A ⇔ {Re}e∈A is uniformly A (i.e. supe∈E Ce <∞)

Easy case: take S E-unitary and G = S/σ. Then:
Cayley graph of G = direct limit of R-classes.
S has A ⇒ ζ[x] ([y]) ∶= lime↘E ζex (ey) .

Lifting A of G via some C*-nonsense.

Theorem (Lledó, M. - 2020)
If S is E-unitary, then S has A if and only if G has A.
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Schützenberger graphs and A II

Example: Higson-Lafforgue-Skandalis and Willett:

● F2▷fi N1▷fi ⋅ ⋅ ⋅ ▷fi Nk ▷fi . . . , with ∩k∈NNk = ∅.
● S ∶= ⊔k∈NF2/Nk , where [g]i ⋅ [h]j ∶= [gh]min{i ,j}.
S is amenable and does not have A [NY12].

●
[e]0

F2/N0

●
[e]1

F2/N1≤

●
[e]2

F2/N2≤

●
[e]3

F2/N3≤

⋯
⋯

⋯

⋰

⋱

S =

Conclusion: two reasons for S not being A:
Reason #1: Some R-class is not A.
Reason #2: {Re}e∈E is not uniformly A.
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Conclusion: two reasons for S not being A:
Reason #1: Some R-class is not A. ?
Reason #2: {Re}e∈E is not uniformly A. ?
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Thank you for your attention! Questions?
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About the alternative distance II

Reason #1: More general (not E-unitary).

Reason #2: following Wagner-Preston:

V ∶S → I (S) , s ↦ (Vs ,Ds−1s ,Dss−1)

where

Ds−1s ∶= {y ∈ S ∣ y = ys−1s} = S ⋅ s−1s and Vsx ∶= xs−1.

Lemma - Remark

x R xs−1 ⇔ x ∈ Ds−1s .

Limited to R-classes: Wagner-Preston ↝ Schützenberger graphs.

Reason #3: something something C∗-algebras something
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