## Congruence Lattices of Partition Monoids

#### Nik Ruškuc

nik.ruskuc@st-andrews.ac.uk

School of Mathematics and Statistics, University of St Andrews

#### York, 8 February 2017



## Aim and credits

- ► Describe the congruence lattice of the partition monoid P<sub>n</sub> and its various important submonoids.
- By way of introduction: congruence lattices of symmetric groups and full transformation monoids.
- Plus a quick introduction to partition monoids.
- Joint work with: James East, James Mitchell and Michael Torpey.



Normal subgroups of the symmetric group

### Theorem

The alternating group  $A_n$  is the only proper normal subgroup of  $S_n$   $(n \neq 1, 2, 4)$ .

### Remark

- ► Exceptions: S<sub>1</sub>, S<sub>2</sub> (too small) and S<sub>4</sub> (because of the Klein 4-group K<sub>4</sub>).
- The normal subgroups of any group form a (modular) lattice.

• Norm
$$(G) \cong \operatorname{Cong}(G)$$
.



 $\mathcal{S}_n$ 

 $\mathcal{A}_n$ 

1

# Congruences of the full transformation monoid $\mathcal{T}_n$

Theorem (A.I. Mal'cev 1952)

 $Cong(\mathcal{T}_n)$  is the chain shown on the right.





## Green's structure of $\mathcal{T}_n$

The following are well known:

- $\blacktriangleright \ \alpha \mathcal{L}\beta \Leftrightarrow \operatorname{im} \alpha = \operatorname{im} \beta.$
- $\blacktriangleright \ \alpha \mathcal{R}\beta \Leftrightarrow \ker \alpha = \ker \beta.$
- $\alpha \mathcal{J}\beta \Leftrightarrow \operatorname{rank} \alpha = \operatorname{rank} \beta$ .
- All  $\mathcal{J}(=\mathcal{D})$ -classes are regular.
- The maximal subgroups corresponding to the idempotents of rank r are all isomorphic to S<sub>r</sub>.



# Ideals of $\mathcal{T}_n$ and Rees congruences

• Every ideal of  $\mathcal{T}_n$  has the form

$$I_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank} \alpha \leq r \}.$$

- ► All ideals are principal, and they form a chain.
- ► To every ideal *I<sub>r</sub>* there corresponds a (Rees) congruence

$$R_r = \Delta \cup (I_r \times I_r).$$



## Group-induced congruences

- Consider a typical  $\mathcal{J}$ -class  $J_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank} \alpha = r \}.$
- Let  $\overline{J}_r$  be the corresponding principal factor.
- $\overline{J}_r \cong \mathcal{M}^0[\mathcal{S}_r; \mathcal{K}, L; \mathcal{P}]$  a Rees matrix semigroup.
- For every N ≤ S<sub>r</sub>, the semigroup M<sup>0</sup>[S<sub>r</sub>/N; K, L; P/N] is a quotient of J<sub>r</sub>.
- Let  $\nu_N$  be the corresponding relation on  $J_r$ .
- $R_N = \Delta \cup \nu_N \cup (I_{r-1} \times I_{r-1})$  is a congruence on  $\mathcal{T}_n$ .
- Intuitively R<sub>N</sub>: collapses I<sub>r−1</sub> to a single element (zero); collapses each S<sub>r</sub> in J<sub>r</sub> to S<sub>r</sub>/N, and correspondingly collapses the non-group H-classes; leaves the rest of T<sub>n</sub> intact.



## Proof outline of Mal'cev's Theorem

- Verify that all the congruences  $R_r$  and  $R_N$  form a chain.
- ► This relies on the fact that the ideals form a chain, and that congruences on each S<sub>r</sub> form a chain.
- It turns out that all these congruences are principal.
- For every pair (α, β) ∈ T<sub>n</sub> × T<sub>n</sub>, determine the congruence (α, β)<sup>‡</sup> generated by it, and verify it is one of the listed congruences.
- Since every congruence is a join of principal congruences, conclude that there are no further congruences on T<sub>n</sub>.



# Further remarks on $Cong(\mathcal{T}_n)$

- Mal'cev also describes  $Cong(T_X)$ , X infinite.
- Analogous results have been proved for:
  - full matrix semigroups (Mal'cev 1953);
  - symmetric inverse monoids (Liber 1953);
  - and many others.
- In all instances, Cong(S) is a chain.



## From transformations to partitions





## Partition monoid $\mathcal{P}_n$



Some useful parameters:

dom 
$$\alpha$$
 = {1,3,5,6} ker  $\alpha$  = {{1,3}, {2,4}, {5,6}}  
codom  $\alpha$  = {1',4',6'} coker  $\alpha$  = {{1',6'}, {2',3'}, {4'}, {5'}}





## Partition monoid $\mathcal{P}_n$ : some remarks

- ▶ P<sub>n</sub> contains S<sub>n</sub>, T<sub>n</sub>, I<sub>n</sub>, O<sub>n</sub> as submonoids.
- It also contains: Brauer monoid, Motzkin monoid, Temperely–Lieb (Jones) monoid.



- They form a basis from which their name-sakes algebras are built – connections with Mathematical Physics, Representation Theory and Topology.
- ► Elements of P<sub>n</sub> can be viewed as partial bijections between quotients of {1,..., n}.



## Green's relations on $\mathcal{P}_n$

- $\blacktriangleright \ \alpha \mathcal{R}\beta \Leftrightarrow \ker \alpha = \ker \beta \& \ \operatorname{dom} \alpha = \operatorname{dom} \beta.$
- $\alpha \mathcal{L}\beta \Leftrightarrow \operatorname{coker} \alpha = \operatorname{coker} \beta \& \operatorname{codom} \alpha = \operatorname{codom} \beta.$
- $\alpha \mathcal{J}\beta \Leftrightarrow \operatorname{rank} \alpha = \operatorname{rank} \beta.$
- All  $\mathcal{J}(=\mathcal{D})$ -classes are regular.
- The maximal subgroups corresponding to the idempotents of rank r are all isomorphic to S<sub>r</sub>.



## Ideals of $\mathcal{P}_n$ , and congruences arising

- Every ideal of  $\mathcal{P}_n$  has the form  $I_r = \{ \alpha \in \mathcal{P}_n : \operatorname{rank} \alpha \leq r \}.$
- All ideals are principal, and they form a chain.
- To every ideal  $I_r$  there corresponds a congruence  $R_r = \Delta \cup (I_r \times I_r)$ .
- Analogous to  $\mathcal{T}_n$ , we also have congruences  $R_N$  for  $N \trianglelefteq S_r$ .
- ► One difference though: The minimal ideal of P<sub>n</sub> (partitions of rank 0) is a proper rectangular band.
- ► (As opposed to a right zero semigroup of constant mappings in *T<sub>n</sub>*.)



 $\operatorname{Cong}(\mathcal{P}_n)$ 

Theorem [J. East, J.D. Mitchell, NR, M. Torpey]  $Cong(\mathcal{P}_n)$  is the lattice shown on the right.





Nik Ruškuc: Congruence lattices of partition monoids

## ${\mathcal R}$ and ${\mathcal L}$ on the minimal ideal

### Theorem (Folklore?)

Let S be a finite monoid with the minimal ideal M. The relations  $\rho_0 = \Delta \cup \mathcal{R} \upharpoonright_M$  and  $\lambda_0 = \Delta \cup \mathcal{L} \upharpoonright_M$  are congruences on S.



## Retractions

A (computational) inspection of the congruence  $\mu_1$  yields:

$$\mu_1 = \{(\alpha, \beta) \in \mathit{I}_1 \times \mathit{I}_1 \ : \ \ker \alpha = \ker \beta, \ \operatorname{coker} \alpha = \operatorname{coker} \beta\} \cup \Delta$$

It is a congruence, because the following mapping is a retraction:

$$\mathbf{I_1} \to \mathbf{I_0}, \ \alpha \mapsto \widehat{\alpha} \in \mathbf{I_0}, \ \ker \alpha = \ker \widehat{\alpha}, \ \operatorname{coker} \alpha = \operatorname{coker} \widehat{\alpha}.$$

#### Definition

Let S be a semigroup and  $T \leq S$ . A homomorphism  $f : S \rightarrow T$ with  $f \upharpoonright_T = 1_T$  is called a retraction.



## Congruence triples

### Definition

Let S be a finite monoid with minimal ideal M. A triple  $\mathcal{T} = (I, f, N)$  is a congruence triple if:

- I is an ideal;
- $f : I \rightarrow M$  is a retraction;
- ► N is a normal subgroup of a maximal subgroup in a *J*-class 'just above' *I*;
- ► All elements of N act the same way on M, i.e. |xN| = |Nx| = 1 ( $x \in M$ ).



# A family of congruences

#### Definition

To every congruence triple  $\mathcal{T}$  associate three relations:

► 
$$\lambda_{\mathcal{T}} = \Delta \cup \nu_{N} \cup \{(x, y) \in I \times I : f(x)\mathcal{L}f(y)\};$$

► 
$$\rho_{\mathcal{T}} = \Delta \cup \nu_N \cup \{(x, y) \in I \times I : f(x) \mathcal{R}f(y)\};$$

• 
$$\mu_{\mathcal{T}} = \Delta \cup \nu_N \cup \{(x, y) \in I \times I : f(x)\mathcal{H}f(y)\}.$$

#### Theorem

 $\lambda_{\mathcal{T}}$ ,  $\rho_{\mathcal{T}}$  and  $\mu_{\mathcal{T}}$  are congruences.

#### Theorem

The congruences  $\lambda_T$ ,  $\rho_T$  and  $\mu_T$ , together with  $R_N$ , form a diamond lattice.





# $Cong(\mathcal{P}_n)$ explained

- Key fact: (I₁, α ↦ â, 𝔅₂) is a congruence triple on 𝒫n.
- ▶ It induces two 'smaller' congruence triples  $(I_1, \alpha \mapsto \widehat{\alpha}, \{1\})$  and  $(I_0, 1, \{1\})$ .
- The rest is the same as for  $\mathcal{T}_n$ .
- But: not all congruences are principal!



## Planar partition monoid

- Planar partition: can be drawn without edges crossing.
- Edges need not be straight, but have to be contained within the rectangle with corners 1, 1', n, n'.









# $\mathcal{B}_n$ (*n* even): key retraction

- An α ∈ B<sub>n</sub> with rank α = 2 has precisely two transversal blocks {i, j'}, {k, l'}.
- Let *α̂* ∈ *I*<sub>0</sub> be obtained from *α* by replacing those two blocks by {*i*, *k*}, {*j*, *l*}.

•  $(I_2, \alpha \mapsto \widehat{\alpha}, K \trianglelefteq S_4)$  is a congruence triple.

► Three further derived triples:  $(I_2, \alpha \mapsto \widehat{\alpha}, \{1\}), (I_0, 1, S_2 \leq S_2), (I_0, 1, \{1\}).$ 

# Concluding remarks

- Congruence lattices determined for all partition monoids shown in the diagram.
- Work was crucially informed by computational evidence obtained using GAP package Semigroups (J.D. Mitchell et al.)



- All the congruences are instances of the construction(s) described here.
- The work to determine the principal congruences is still case-specific.
- Related work: J. Araújo, W. Bentz, G.M.S. Gomes, Congruences on direct products of transformation and matrix monoids.



## Some speculations about future work...

- Develop a general theory of generators for the congruences introduced here.
- For example: Under which genereal conditions are the congruences R<sub>N</sub>, ρ<sub>T</sub>, λ<sub>T</sub> and μ<sub>T</sub> principal?
- ► The answer is likely to be couched in terms of groups, Rees matrix semigroups, and the actions on *R*- and *L*-classes.
- To what extent does this point to a general approach towards computing (and understanding) congruence lattices of arbitrary semigroups?
- What are families of semigroups to which one could turn next, in search of interesting behaviours and patterns?

## THANK YOU FOR LISTENING!

