Congruence Lattices of Partition Monoids

Nik Ruškuc
nik.ruskuc@st-andrews.ac.uk

School of Mathematics and Statistics, University of St Andrews
York, 8 February 2017

Aim and credits

- Describe the congruence lattice of the partition monoid \mathcal{P}_{n} and its various important submonoids.
- By way of introduction: congruence lattices of symmetric groups and full transformation monoids.
- Plus a quick introduction to partition monoids.
- Joint work with: James East, James Mitchell and Michael Torpey.

Normal subgroups of the symmetric group

Theorem
The alternating group \mathcal{A}_{n} is the only proper normal subgroup of \mathcal{S}_{n} ($n \neq 1,2,4$).

Remark

- Exceptions: $\mathcal{S}_{1}, \mathcal{S}_{2}$ (too small) and \mathcal{S}_{4} (because of the Klein 4-group K_{4}).
- The normal subgroups of any group form a (modular) lattice.
- $\operatorname{Norm}(G) \cong \operatorname{Cong}(G)$.

Congruences of the full transformation monoid \mathcal{T}_{n}

Theorem (A.I. Mal'cev 1952)
$\operatorname{Cong}\left(\mathcal{T}_{n}\right)$ is the chain shown on the right.

Green's structure of \mathcal{T}_{n}

The following are well known:

- $\alpha \mathcal{L} \beta \Leftrightarrow \operatorname{im} \alpha=\operatorname{im} \beta$.
- $\alpha \mathcal{R} \beta \Leftrightarrow \operatorname{ker} \alpha=\operatorname{ker} \beta$.
- $\alpha \mathcal{J} \beta \Leftrightarrow \operatorname{rank} \alpha=\operatorname{rank} \beta$.
- All $\mathcal{J}(=\mathcal{D})$-classes are regular.
- The maximal subgroups corresponding to the idempotents of rank r are all isomorphic to \mathcal{S}_{r}.

Ideals of \mathcal{T}_{n} and Rees congruences

- Every ideal of \mathcal{T}_{n} has the form

$$
I_{r}=\left\{\alpha \in \mathcal{T}_{n}: \text { rank } \alpha \leq r\right\}
$$

- All ideals are principal, and they form a chain.
- To every ideal I_{r} there corresponds a (Rees) congruence

$$
R_{r}=\Delta \cup\left(I_{r} \times I_{r}\right)
$$

Group-induced congruences

- Consider a typical \mathcal{J}-class $J_{r}=\left\{\alpha \in \mathcal{T}_{n}:\right.$ rank $\left.\alpha=r\right\}$.
- Let \bar{J}_{r} be the corresponding principal factor.
- $J_{r} \cong \mathcal{M}^{0}\left[\mathcal{S}_{r} ; K, L ; P\right]$ - a Rees matrix semigroup.
- For every $N \unlhd \mathcal{S}_{r}$, the semigroup $\mathcal{M}^{0}\left[\mathcal{S}_{r} / N ; K, L ; P / N\right]$ is a quotient of \bar{J}_{r}.
- Let ν_{N} be the corresponding relation on J_{r}.
- $R_{N}=\Delta \cup \nu_{N} \cup\left(I_{r-1} \times I_{r-1}\right)$ is a congruence on \mathcal{T}_{n}.
- Intuitively R_{N} : collapses I_{r-1} to a single element (zero); collapses each \mathcal{S}_{r} in J_{r} to \mathcal{S}_{r} / N, and correspondingly collapses the non-group \mathcal{H}-classes; leaves the rest of \mathcal{T}_{n} intact.

Proof outline of Mal'cev's Theorem

- Verify that all the congruences R_{r} and R_{N} form a chain.
- This relies on the fact that the ideals form a chain, and that congruences on each \mathcal{S}_{r} form a chain.
- It turns out that all these congruences are principal.
- For every pair $(\alpha, \beta) \in \mathcal{T}_{n} \times \mathcal{T}_{n}$, determine the congruence $(\alpha, \beta)^{\sharp}$ generated by it, and verify it is one of the listed congruences.
- Since every congruence is a join of principal congruences, conclude that there are no further congruences on \mathcal{T}_{n}.

Further remarks on $\operatorname{Cong}\left(\mathcal{T}_{n}\right)$

- Mal'cev also describes Cong $\left(\mathcal{T}_{X}\right), X$ infinite.
- Analogous results have been proved for:
- full matrix semigroups (Mal'cev 1953);
- symmetric inverse monoids (Liber 1953);
- and many others.
- In all instances, Cong (S) is a chain.

From transformations to partitions

View mappings graphically, e.g:

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 2 & 3 & 4 & 4
\end{array}\right)=0_{1^{\prime}}^{1} e_{2^{\prime}}^{2} 0_{3^{\prime}}^{3} 0_{4^{\prime}}^{4} 0_{5^{\prime}}^{5}
$$

Composition:

Partition monoid \mathcal{P}_{n}

Partition $=$ a set partition of $\{1, \ldots, n\} \cup\left\{1^{\prime}, \ldots, n^{\prime}\right\}$.
For example: $\alpha=\left\{\left\{1,3,4^{\prime}\right\},\{2,4\},\left\{5,6,1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{5^{\prime}\right\}\right\}$

Some useful parameters:

$$
\begin{array}{ll}
\operatorname{dom} \alpha=\{1,3,5,6\} \quad \operatorname{ker} \alpha=\{\{1,3\},\{2,4\},\{5,6\}\} \\
\operatorname{codom} \alpha=\left\{1^{\prime}, 4^{\prime}, 6^{\prime}\right\} \quad \operatorname{coker} \alpha=\left\{\left\{1^{\prime}, 6^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}\right\},\left\{4^{\prime}\right\},\left\{5^{\prime}\right\}\right\}
\end{array}
$$

$$
\text { rank } \alpha=2
$$

Partition monoid \mathcal{P}_{n} : some remarks

- \mathcal{P}_{n} contains $\mathcal{S}_{n}, \mathcal{T}_{n}, \mathcal{I}_{n}, \mathcal{O}_{n}$ as submonoids.
- It also contains: Brauer monoid, Motzkin monoid, Temperely-Lieb (Jones) monoid.

- They form a basis from which their name-sakes algebras are built - connections with Mathematical Physics, Representation Theory and Topology.
- Elements of \mathcal{P}_{n} can be viewed as partial bijections between quotients of $\{1, \ldots, n\}$.

Green's relations on \mathcal{P}_{n}

- $\alpha \mathcal{R} \beta \Leftrightarrow \operatorname{ker} \alpha=\operatorname{ker} \beta \& \operatorname{dom} \alpha=\operatorname{dom} \beta$.
- $\alpha \mathcal{L} \beta \Leftrightarrow \operatorname{coker} \alpha=\operatorname{coker} \beta \& \operatorname{codom} \alpha=\operatorname{codom} \beta$.
- $\alpha \mathcal{J} \beta \Leftrightarrow \operatorname{rank} \alpha=\operatorname{rank} \beta$.
- All $\mathcal{J}(=\mathcal{D})$-classes are regular.
- The maximal subgroups corresponding to the idempotents of rank r are all isomorphic to \mathcal{S}_{r}.

Ideals of \mathcal{P}_{n}, and congruences arising

- Every ideal of \mathcal{P}_{n} has the form $I_{r}=\left\{\alpha \in \mathcal{P}_{n}\right.$: rank $\left.\alpha \leq r\right\}$.
- All ideals are principal, and they form a chain.
- To every ideal I_{r} there corresponds a congruence $R_{r}=\Delta \cup\left(I_{r} \times I_{r}\right)$.
- Analogous to \mathcal{T}_{n}, we also have congruences R_{N} for $N \unlhd \mathcal{S}_{r}$.
- One difference though: The minimal ideal of \mathcal{P}_{n} (partitions of rank 0) is a proper rectangular band.
- (As opposed to a right zero semigroup of constant mappings in \mathcal{T}_{n}.)

$\operatorname{Cong}\left(\mathcal{P}_{n}\right)$

Theorem

[J. East, J.D. Mitchell, NR, M. Torpey]
Cong $\left(\mathcal{P}_{n}\right)$ is the lattice shown on the right.

\mathcal{R} and \mathcal{L} on the minimal ideal

Theorem (Folklore?)
Let S be a finite monoid with the minimal ideal M. The relations $\rho_{0}=\Delta \cup \mathcal{R} \upharpoonright_{M}$ and $\left.\lambda_{0}=\Delta \cup \mathcal{L}\right\rceil_{M}$ are congruences on S.

Retractions

A (computational) inspection of the congruence μ_{1} yields:

$$
\mu_{1}=\left\{(\alpha, \beta) \in I_{1} \times I_{1}: \operatorname{ker} \alpha=\operatorname{ker} \beta, \text { coker } \alpha=\operatorname{coker} \beta\right\} \cup \Delta
$$

It is a congruence, because the following mapping is a retraction:

$$
I_{1} \rightarrow I_{0}, \alpha \mapsto \widehat{\alpha} \in I_{0}, \text { ker } \alpha=\operatorname{ker} \widehat{\alpha}, \operatorname{coker} \alpha=\operatorname{coker} \widehat{\alpha} .
$$

Definition

Let S be a semigroup and $T \leq S$. A homomorphism $f: S \rightarrow T$ with $f \upharpoonright_{T}=1_{T}$ is called a retraction.

Congruence triples

Definition

Let S be a finite monoid with minimal ideal M. A triple $\mathcal{T}=(I, f, N)$ is a congruence triple if:

- I is an ideal;
- $f: I \rightarrow M$ is a retraction;
- N is a normal subgroup of a maximal subgroup in a \mathcal{J}-class 'just above' I;
- All elements of N act the same way on M, i.e.

$$
|x N|=|N x|=1(x \in M)
$$

A family of congruences

Definition

To every congruence triple \mathcal{T} associate three relations:

- $\lambda_{\mathcal{T}}=\Delta \cup \nu_{N} \cup\{(x, y) \in I \times I: f(x) \mathcal{L} f(y)\}$;
- $\rho_{\mathcal{T}}=\Delta \cup \nu_{N} \cup\{(x, y) \in I \times I: f(x) \mathcal{R} f(y)\}$;
- $\mu_{\mathcal{T}}=\Delta \cup \nu_{N} \cup\{(x, y) \in I \times I: f(x) \mathcal{H} f(y)\}$.

Theorem
$\lambda_{\mathcal{T}}, \rho_{\mathcal{T}}$ and $\mu_{\mathcal{T}}$ are congruences.
Theorem
The congruences $\lambda_{\mathcal{T}}, \rho_{\mathcal{T}}$ and $\mu_{\mathcal{T}}$, together with R_{N}, form a diamond lattice.

Cong $\left(\mathcal{P}_{n}\right)$ explained

- Key fact: $\left(I_{1}, \alpha \mapsto \widehat{\alpha}, \mathcal{S}_{2}\right)$ is a congruence triple on \mathcal{P}_{n}.
- It induces two 'smaller' congruence triples $\left(I_{1}, \alpha \mapsto \widehat{\alpha},\{1\}\right)$ and ($I_{0}, 1,\{1\}$).
- The rest is the same as for \mathcal{T}_{n}.
- But: not all congruences are principal!

Planar partition monoid

- Planar partition: can be drawn without edges crossing.
- Edges need not be straight, but have to be contained within the rectangle with corners $1,1^{\prime}, n, n^{\prime}$.

Brauer monoid \mathcal{B}_{n}

$\mathcal{B}_{n}=$ partitions with blocks of size $2 . \quad \prod_{T}^{R_{0}}=\nabla$

\mathcal{B}_{n} (n even): key retraction

- An $\alpha \in \mathcal{B}_{n}$ with rank $\alpha=2$ has precisely two transversal blocks $\left\{i, j^{\prime}\right\},\left\{k, l^{\prime}\right\}$.
- Let $\widehat{\alpha} \in I_{0}$ be obtained from α by replacing those two blocks by $\{i, k\},\{j, l\}$.

- $\left(I_{2}, \alpha \mapsto \widehat{\alpha}, K \unlhd \mathcal{S}_{4}\right)$ is a congruence triple.
- Three further derived triples: $\left(I_{2}, \alpha \mapsto \widehat{\alpha},\{1\}\right)$, $\left(I_{0}, 1, \mathcal{S}_{2} \unlhd \mathcal{S}_{2}\right)$, (Io, $1,\{1\}$).

Concluding remarks

- Congruence lattices determined for all partition monoids shown in the diagram.
- Work was crucially informed by computational evidence obtained using GAP package Semigroups (J.D. Mitchell et al.)

- All the congruences are instances of the construction(s) described here.
- The work to determine the principal congruences is still case-specific.
- Related work: J. Araújo, W. Bentz, G.M.S. Gomes, Congruences on direct products of transformation and matrix monoids.

Some speculations about future work...

- Develop a general theory of generators for the congruences introduced here.
- For example: Under which genereal conditions are the congruences $R_{N}, \rho_{\mathcal{T}}, \lambda_{\mathcal{T}}$ and μ_{T} principal?
- The answer is likely to be couched in terms of groups, Rees matrix semigroups, and the actions on \mathcal{R} - and \mathcal{L}-classes.
- To what extent does this point to a general approach towards computing (and understanding) congruence lattices of arbitrary semigroups?
- What are families of semigroups to which one could turn next, in search of interesting behaviours and patterns?

THANK YOU FOR LISTENING!

