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COMMUNICATIONS I N  ALGEBRA, 1 8 ( 9 ) ,  3085-3110 (1990) 

ORDERS IN RINGS WITHOUT IDENTITY 

John Fountain and Victoria Gould 

Department of Mathematics, 

University of York, 

Heslington, York YO1 5DD. 

1 Introduction 

This pzper is the first of a series of three papers on orders in rings which need 

not have an identity. Our second paper [6] is concerned with straight orders 

in (von Neumann) regular rings,the third one 1'71 is devoted to characterising 

orders in semiprime rings with minimal condition for principal right ideals, 

while this one presents the basic definitions and general theory. 

The idea of a (classical) ring of left quotients Q of a ring R is a familiar 

one. The ring Q has an identity, its elements can be written as 'left fractions' 

a-'b with a,  b in R and those elements of R which are not zero divisors in R 

are units in Q. 

If Q is a ring without identity, then, of, course, no element of Q has an 

inverse. However, some elements may have 'generalised inverses' [2]. Among 

the various kinds of generalised inverse we single out the group inverse. An 

element b of Q is a group inverse of an element a if aba = a, bab = b and 

ab = ba. It is well known that if a has a group inverse, then it has only one 

which we shall denote by a3. 

3085 
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3086 F O U N T A I N  AND G O U L D  

A necessary condition for an element T of a ring R to have an inverse in 

some overring of R is that r is not a zero divisor. An analogous necessary 

condition for an element T of a ring R to have a group inverse in some overring 

of R is that T be Lsquare-cancellable' (see Section 2 for the definition). Thus 

in our generalised definition of a ring of left quotients Q of a ring R we insist 

that each square-cancellable element of R has a group inverse in Q and each 

element of Q can be written as aflb for some elements a, b of R. We also say 

that R is a left order in Q. The ring Q need not have an identity; if it does 

then, as we show in Section 3, it is also a ring of left quotients of R in the 

classical sense. 

In the case of a classical ring of left quotients Q of a ring R there is no 

guarantee that square-cancellable elements of R will have group inverses in 

Q. They do in all the familiar situations such as when Q is regular or left 

or right perfect because in these cases the group of units of Q dominates the 

multiplicative structure of Q. There do exist, however, rings in which all non- 

zero divisors are units but which have square-cancellable elements which do 

not have group inverses. 

Our generalised definition is taken from semigroup theory and in Section 2, 

after giving the definition, we recall some of the basic ideas about semigroups 

which are relevant to our purpose. We then consider the question of when a 

weak left order in a ring Q is necessarily a left order in Q where by a weak left 

order in Q we mean a subring R such that every element of Q can be written 

as a3b for some a, b in R. We conclude Section 2 by showing that the ring of all 

endomorphisms of finite rank of a free module of infinite rank over a principal 

ideal domain is an order in a ring without identity. 

Section 3 is devoted to a comparison of the old and new concepts of order 

in rings with identity. We have already mentioned that a left order in the new 
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O R D E R S  I N  R I N G S  W I T H O U T  I D E N T I T Y  3087 

sense is a left order (in the same ring) in the old sense. The converse is not true 

but for the two-sided case we have that an order in a ring Q in the old sense 

is an order in Q in the new sense if Q is regular, left perfect or right perfect. 

In the one-sided case we find that a left order in a directly finite regular ring 

Q in the old sense is also a left order in Q in the new sense. 

We prove a 'common denominator theorem' in Section 4 and use it to relate 

the left ideals in a left order to those in its ring of left quotients. We make 

heavy use of it again in Section 5 where we show that if a ring is a left order 

in regular rings Q1 and Q2, then these two rings are isomorphic. 

We hope that we have written the paper in such a way that it is intelligible 

both to readers whose main interest is ring theory and to readers whose main 

interest is semigroup theory. This has led us to give some definitions and 

explanations of ideas which are regarded as standard by one of these sets of 

readers but not the other. Further details of the basic ideas of semigroup 

theory may be found in [a] and [g] and we mention [1],[8] and [lo] as useful 

references for ring theory. The book [a] has ideas from both subjects. 

To avoid any risk of confusion we mention now that by the term 'regular 

element' of a ring or semigroup S we mean an element a such that a = aza  

for some x in S; we never use this term to describe an element which is not a 

zero divisor. Also we use the notation a s ' ,  S1a,  S'aS1 in the semigroup sense 

so that a s '  = a s  U {a), etc.. We use the notation I a )  for the principal right 

ideal of a ring R generated by the element a. Of course, if R has an identity 

or if R is regular, then I a )  = aR1 = a R  but in general ( a) and aR1 may be 

different. 
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2 Definitions 

We recall that a ring Q is a (classical) ring of left quotients of its subring R, 

or that R is a left order in Q ,  if the following three conditions are satisfied : 

(i) Q has an identity, 

(ii\ every element of R which is not a zero divisor is a unit of Q, 

(iii)each element q of Q can be written as q = a-'b where a ,  b are elements 

of R and a-' is the inverse of a in Q. 

There are corresponding notions of right order and ring of right quotients 

and if R is both a left and a right order in Q we say simply that it is an order 

in Q or that Q is a ring of quotients of R. 

We now turn to orders in semigroups or rings which need not have an 

identity, beginning with a discussion of the concepts used in the definition. 

By a subgroup of a semigroup or ring S we simply mean a (multiplicative) 

subsemigroup which is a group. If e is an idempotent in S, then the set 

H, = { a  E S : ea = a = ae and for some b E S, ab = e = ba) 

is a subgroup of S which contains all those subgroups which have identity e. 
7 

A group inverse of an element a of S is an element x which satisfies axa = 

a ,  xax - x and ax  = xu.  If a has a group inverse, it has only one which will 

be denoted by a:. It is easy to see that a has a group inverse if and only if it 

is in a subgroup of S. 

An element a of S is left square-cancellable if for all x ,  y E S', a2x  = a2y 

implies a x  = ay.  Similarly, right square-cancellable is defined and square- 

cancellable means both left and right squarecancellable. We point out that 

being square-cancellable is a necessary condition for an element of S to  have 

a group inverse in some oversemigroup (or overring) of S. The set of square 

cancellable elements of S will be denoted by S(S).  
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ORDERS I N  R I N G S  WITHOUT IDENTITY 3089 

When S is a ring we denote the right annihilator of a E S by rs (a)  and 

the left annihilator by Cs(a); where there is no danger of ambiguity we write 

simply r (a)  and [(a). Clearly, if r (a)  = 0, then a is left square-cancellable and 

so elements which are not zero divisors are square-cancellable. 

We now define a subsemigroup (or subring) S of a semigroup (or ring) Q 

to be a left order in Q when the following two conditions hold : 

(i)each square-cancellable element of S has a group inverse in Q, 

(ii)each element q of Q can be written as q = adb where a, b are elements 

of S and a' is the group inverse of a in Q. 

We also say that Q is a semigroup (or ring) of left quotzents of S. Similarly 

we define nght order and semigroup (or ring) of rzght quotients. If S is both 

a left and a right order in Q, then we say simply that S is an order in Q and 

that Q is a semigroup (or ring) of quotzents of S. 

If S is a subsemigroup (or subring) of a semigroup (or ring) Q for which 

condition (ii) above holds, then we say that S is a weak left order in Q. It is 

clear what is meant by weak right order and weak order. 

The result of the following very easy lemma will be used constantly. 

Lemma 2.1 Let S be a weak left order in a semigroup Q. Every element q 

of Q can be written as q = a'b where aadb = b, a E S(S) ,  b E S. 

Proof Certainly q can be written as cnd where c E S(S) ,  d E S. Now cZ E S ( S )  

and cfl = (c2)'c ; SO putting a = cZ and b = cd gives the lemma. 

From now on when S is a weak left order in Q and we write an element q 

of Q as q = aflb we shall assume that aatb = b. 

If Q is a ring with identity, we now have two meanings for the phrase Larder 
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3090 FOUNTAIN AND GOULD 

in Q'. In fact, an order in Q in the new sense is an order in Q in the traditional 

sense but the converse is not true. We shall see, however, that in most cases of 

interest the two concepts do coincide and so there is little danger of ambiguity. 

Before proceeding it will be helpful to recall some notation and terminology 

from semigroup theory (which, of course, can equally be applied to rings). We 

start with Green's relations. In a semigroup S the elements a ,  b are L-related 

if a = b or there are elements x ,  y in S such that xa  = b, yb = a. In semigroup 

terms, this says that a and b generate the same principal left ideal. This is 

also the case in rings with 1 and regular rings ; there are, however, rings with 

elements which generate the same (ring) principal left ideal but which are not 

The relation L is a right congruence ; its left-right dual R is a left con- 

gruence. The join of these two equivalences is denoted by D and as L and 72 

commute, D = LOR = ROC. The intersection of L and R is denoted by 31 and 

the maximal subgroups of S are those 'H-classes which contain idempotents. 

The L-class of an element a of S is denoted by L, and similar notation is 

used for 72-classes,'H-classes and D-classes. 

Associated with the equivalence L we have a preorder relation S r  defined 

as follows : 

a l L b  if and only if a E S'b. 

Of course, a L b  if and only if a s c b  and b S L a .  Similarly, there is a preorder 

<a associated with R .  

If a, b are elements of a subsemigroup T of S and if a S c b  (or a s R b )  in T, 

then obviously a S ~ b  (or slab) in S .  The converse is not generally true but 

we do have the following well known result. 

Lemma 2.2 Let T be a regular subsemigroup of a semigroup S. If a ,  b are 

elements of T such that a l L b  (or a S R b )  i n  S ,  then a S r b  (or a S R b )  in T .  
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ORDERS IN RINGS WITHOUT IDENTITY 3091 

We note that this applies to the particular case when S is regular and T is 

an ideal of S. 

We now introduce some relations closely connected with Green's relations. 

The relation L' is defined on S by the rule that aL'b if and only if the elements 

a,  b of S are related by Green's relation L in some oversemigroup of S. The 

relation 72' is defined dually ; 'H* = L* n R* and 2)' = L* V 'R'. The following 

lemma from [11] and [l2] provides useful alternative characterisations of L*.  

Lemma 2.3 The following conditions are equivalent for elements a ,  b of a 

semigroup S : 

( 1 )  aC*b, 

(2) for all x, y E S 1 ,  ax = ay if and only if bx = by, 

(9) there is an S1-isomorphism 6 : aS1 + bS1 with a$ = b. 

It is now easily seen that L' is a right congruence and that R* is a left 

congruence. Also we obviously have C E L* and R C R*. 

There is a preorder sc+ associated with C" and defined by the rule : 

a l C . b  if and only if for all x, y E S 1 ,  bx = by implies ax = ay.  

In view of Lemma 2 . 3 ,  aCxb if and only if aSr.b and b5C.a. Similarly, we have 

a preorder 5 . ~ .  associated with 72'. It is clear that LL- C I c e  and 5.R C 1 . ~ .  

for any semigroup S. If S is regular, then it is easy to see that 51: = Sc* and 

la = La. ,  so that in this case C = L- and 72 = R'. Further details of these 

relations can be found in 151. 

In rings there are some closely related preorders defined in terms of anni- 

hilators. For a ring R we define a relation -3 by the rule: 

adtb  if and only if ~ ( b )  L ~ ( a ) .  

Certainly i r  is a preorder and there is a dually defined preorder 5,. Let -1 

and 5, be the associated equivalence relations. 
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3092 F O U N T A I N  AND G O U L D  

A ring R is left (or right) faithful if it is faithful as a left (or right) module 

over itself, that is, if TR = 0 implies T = 0 (or RT = 0 implies T = 0). We say 

that R is faithfil if it is both left and right faithful. We emphasise that rings 

with identity, semiprime rings and regular rings are all faithful. 

Lemma 2.4 In a ring R, 

(1) <c* c: i t .  

(2) &. = d r  if and only if R is left faithful. 

Proof (1 )  If a,  b E R, aSc.b and x E ~ ( b ) ,  then bx = 0 = bO so that ax = a0 = 

0 and so ~ ( b )  i ~ ( a ) .  

(2) If R is left faithful, ~ ( b )  C ~ ( a )  and bx = by where x, y 6 R1, then for 

any c in R, xc - yc is in ~ ( b )  so that (ax - ay)c = a(xc - yc) = 0 for all c in 

R. Thus ax = ay and so a<c.b. 

If the two preorders are equal, indeed, if L" =-1,  and aR = 0, then ~ ( 0 )  = 

~ ( a )  so that aL*O. Now 01 = 00 so that a1 = aO, that is, a = 0. Thus R is left 

faithful. 

Corollary 2.5 In a ring R, 

(1) L* C r e .  

(2) L- = r e  if and only if R is left faithfd. 

Some of the significance of these relations for our concerns can be seen by 

observing that from Lemma 2.2 we have that an element a of a semigroup S is 

left square-cancellable if and only if aL'az. Putting this together with its dual 

we obtain that a E S ( S )  if and only if aX'a2. Also, by Corollary 2.5, in a left 

faithful ring an element a is left square-cancellable if and only if ~ ( a )  = ?(a2). 

A standard result of semigroup theory is that an element a in a semigroup S 

is in a subgroup of S if and only if a7-La2 ([g], Theorem 11.2.5). Thus condition 

(i) in the definition of a left order S in a semigroup Q is equivalent to : 
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aX*a2 in S if and only if aRa2 in Q .  

Since Ic* = SC. and < p  = SR on a regular ring R we see that for elements 

a ,  b of R we have a R  C bR if and only if C(b) e(a)  and a corresponding result 

for principal left ideals. 

We now move towards the question of when weak left orders in rings are 

necessarily left orders. We begin by recalling that a ring Q with identity is 

called a quotient ring if every element in Q which is not a zero divisor is a unit 

in Q .  It is well known that regular rings with identity and left perfect rings 

(i.e., rings with 1 which satisfy the minimal condition for principal right ideals) 

are quotient rings. We shall say that a semigroup or ring Q is a q-semigroup or 

q-ring if all square-cancellable elements of Q are in subgroups of Q .  Clearly, 

every q-ring with an identity is a quotient ring. We shall see later that the 

converse is not true. I t  is evident that every regular semigroup (or ring ) is a 

q-semigroup (or q-ring) . The proposition below helps us to find more. We 

say that a semigroup (or ring ) satisfies the condition ML or MR if it satisfies 

the minimal condition on principal left or principal right ideals respectively. 

Proposition 2.6 If Q is a semigroup or ring which satisfies MR, then all left 

square-cancellable elements of Q have group inverses in Q .  

Proof First consider the case of a semigroup Q .  The descending chain 

aQ' > aZQ' 2 ... must terminate. Let n be the smallest number such that 

anQ' = an+ 'Q' . If n 2 2, then with the convention that a0 = 1 we have 

for some x in Q'. Since a2 is left squarecancellable we obtain aan-2 = aan-'x 

so that an-' E anQ' contradicting the choice of n.  Hence n = 1 and aRa2.  

Thus we have a = a2x for some x in Q so that aZ = a2xa and as o is 

left squarecancellable, this gives a = axa, that is, a is regular. Also, using 
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a = a2x we get a = axa = ( a 2 x ) ( x a )  = a2x2a and so a2 = a2x2a2 so that a2 is 

also regular. Now aL*a2 and from the regularity of a and a2 we obtain aLa2. 

We now have a7ia2, that is, a is in a subgroup of Q.  

In the case when Q is a ring the principal right ideal ( T  / is the set 

{ k r  t r q :  k E Z,q  E Q ) .  

Now, for n 2 2, an E ( a n f 1  I gives 

so that we can argue as above to get a E (a2  I. This gives a = ka2 + a2q so 

that a2 = ka3 + a3q and, in fact, a = k(ka3 + a3q) + a2q E a2Q. Hence the 

above argument applies also to the case of rings. 

Lemma 2.7 Let R be a subring of a right faithjil ring Q .  Suppose that R is 

a weak left order in Q .  Then the following are equivalent for elements a,  b 

o f R :  

(1) a s a .  b in R ,  

(2) L R ( ~ )  c: L R ( ~ ) ,  

(3) L Q ( ~ )  c L Q ( ~ ) ,  

(4) a5a.b in Q .  

Proof That ( 3 )  and ( 4 )  are equivalent is simply the dual of Lemma 2.4. 

If x E T R ( R )  and q E Q ,  then since q = adb for some a E S ( R ) ,  b E R we 

have qx = ajbx = 0 so that x E rQ(Q) .  Hence x = 0 and T R ( R )  = 0. SO the 

dual of Lemma 2.4 applies again to show that (1) and ( 2 )  are equivalent. 

It is immediate that (2) follows from ( 3 ) .  If ( 2 )  holds and q E eQ(b), then 

q = zHy for some x E S ( R ) ,  y E R with xxdy = y and so yb = xxflyb = xqb = 0 .  

Hence ya = 0 and consequently qa = 0 so that (3) holds. 
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Corollary 2.8 Let R be a subring of a right faithful ring Q .  Suppose that R 

is a weak left order in Q .  Then the following are equivalent for elements a, b 

o f R :  

(1) a'RXb in  R ,  

(2) [,(a) = [ ~ ( b ) ,  

(3) e,(a) = e,(b), 

(4) a'R*b in  Q .  

Corollary 2.9 Let R be a subring of a faithful q-ring Q .  If R is a weak order 

i n  Q ,  then R is an order i n  Q .  

Proof  If a E S ( R ) ,  then a'H*aZ in R so that by Corollary 2.8 and its dual, 

a'H*a2 in Q ,  that is, a E S ( Q ) .  But Q is a q-ring and so the result follows. 

Proposi t ion  2.10 Let Q be a right faithficl ring which satisfies ML.  If R is a 

weak left order in  Q ,  then R is a left order in  Q .  

Proof  Let a E S ( R )  so that certainly a'R*a2 in R. By Corollary 2.8, a'R*a2 in 

Q.  By the dual of Proposition 2.6, this gives that a has a group inverse in Q 

and so R is a left order in Q.  

We conclude this section with an example of an order in a ring without 

identity. 

Example  2.11 . 

Let D be a commutative principal ideal domain and let K be its field of 

fractions. Let M be a free D-module of infinite rank and let X be a set of free 
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generators for M .  Let V be the K-vector space with basis X so that M is a 

D-submodule of V .  

Let R be the subring of E n d ~ f  M) consisting of those endomorphisms whose 

image is finitely generated. Let Q be the subset of E n d ~ ( v )  consisting of those 

linear maps q which have finite rank and are such that d , (qM)  E M for some 

non-zero element d, of D. It is readily verified that Q is a subring of EndK(V) .  

Further, each element of R has a unique extension to an element of EndK(V)  

which clearly lies in Q and so we may regard R as a subring of Q. 

We claim that Q is a dense ring of linear maps of V .  To see this, let 

v1, ..., v,, wl, ..., w, E V with vl, ..., v, linearly independent. There is a finite 

subset Y of X such that vl, ..., v, belong to the subspace < Y > generated by 

Y. Let Z be a set of vectors such that {vl, ..., v,) U Z is a basis for < Y >. 

Then {v,, ..., v,) U Z U (X \ Y) is a basis for V and we can define q E End&') 

by putting qv, = wi for i = 1, ..., n and qv = 0 for v E Z U (X \ Y). Since 

qx # 0 for only finitely many vectors x in X there is a non-zero element d9 of 

D such that d9(qx) E M for all x in X .  Thus d, (qM) C M and as q certainly 

has finite rank, we have q E Q. Thus Q is dense. 

In particular, Q is regular so that in view of Corollary 2.9, to show that R 

is an order in Q it is enough to  prove that it is a weak order in Q. 

Let q E Q and put A = Imq  fl M .  It is easy to see that A is a finitely 

generated D-submodule of M  and a direct summand of M ,  say M  = A $ B. 

Let d E D,d # 0 be such that d ( q M )  C M .  Putting a = dq we have a E R 

and q = T ~ S  where T E Endu(M) is given by r ( a  + b) = da for a E A, b  E B. 

Certainly T E R ; also it is dear that T'HT' in E n d ~ ( v )  so that by Lemma 

2.2, T ' H T ~  in Q and hence T U  exists in Q. Thus R is a weak left order in Q. 

Now let U be a subspace of V such that V = U $ K e r q .  Then U is finite 

dimensional and we may choose a basis ul, ..., u, for U with ul, ..., u, in M. 
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Let d  and s be defined as in the previous paragraph. Defining t E EndK(V) by 

putting tu, = du, for i = 1, ..., n and tv = 0 for v E Kerq we see that t M  C M 

so that we may regard t as an element of R. As t31t2 in EndK(V)  we have 

t E t 2  in Q so that t g  exists in Q. Noting that q = stu we see that R is a weak 

right order in Q. 

Thus R is an order in Q. 

3 The old and the new 

This section is devoted to comparing the traditional and new concepts of order 

in rings with identity. We show that in a ring Q with identity, a left order in 

Q in the new sense is a left order in Q in the traditional sense. The converse is 

not true a11d so we investigate conditions which allow a converse result. For the 

two-sided case we find that in all situations which have been studied in ring 

theory we do have a converse. To be more specific, we show that if Q is regular 

or left or right perfect, then a traditional order in Q is an order in Q according 

to the new definition. For the one-sided case we have a corresponding result 

when Q is regular and directly finite. We begin with an example of a quotient 

ring Q which is not a q-ring. Of course, Q is an order in itself in the traditional 

sense but not in the new sense. 

Example 3.1 

Let F be a field and let A  be an F-algebra which its own Jacobson radical 

and has no zero divisors. Such algebras do exist ; for example, the subring of 

the field of fractions of F [ z ]  consisting of all elements of the form x f /(1 + xg) 

whme f ,g E F[x]  is such a ring . Let B = $ { A ,  : i E I) where I is an infinite 

set and A, = A  for each i E I. Clearly every element of B is a zero divisor 
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and B is its own Jacobson radical. Now adjoin an identity to B by forming 

Q = F x B and defining addition and multiplication by the rules : 

(al, bl) + (az, bz) = (a1 + a2, b1 + bz) 

(al,bl)(az,bz) = (ala2,alb~ + azbl + blb~).  

For each element b of B there is an element b' in B such that b + b' + bb' = 0 = 

b + b' + b'b. Hence, if a is a non-zero element of F, the element ( a ,  b) of Q is 

a unit with inverse (a-',a-'(a-'b)'). All elements of Q with zero first coor- 

dinate are zero divisors, so Q is a quotient ring. As every element of the form 

(0, b) is square-cancellable but the non-zero ones do not have group inverses, 

Q is not a q-ring. 

Our next objective is to show that left orders in the new sense are left 

orders in the traditional sense. To avoid confusion we introduce the following 

notation for this section. If R  is a ring, then MR denotes the multiplicative 

semigroup of R. We will write ' R  is a (left,right) order in Q' to mean that R 

is a (left,right) order in Q in the classical sense ; we write ' M R  is a (left,right) 

order in MQ' to mean that R  is a (left,right) order in Q in the new sense. 

L e m m a  3.2 Let e, f be idempotents in a ring Q with e f  = e = f e .  If the 

element a of Q is in the group 'H-class He, then there is an element u in the 

3i-class H j  such that ue = a = eu.  

Proof  Since a E He, a has a group inverse ad such that aaj = e = aua. Put 

u = f - e + a a n d  v = f - e + a d .  Then eu = a  = ue ,uv  = f = v u  and 

u f  = u = f u  SO that u E H f .  

Corollary 3.3 Let Q be a ring with identity. If a E Q is 'H-related to an 

idempotent el then there is a unit u of Q such that ue = a = eu. 
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T h e o r e m  3.4 Let R be a subring of a ring Q with identity. If M R  is a left 

order in MQ, then R i s  a left order in Q. 

Proof  If q E Q, then q = xuy for some elements x E S(R) ,  y E R with 

x x j y  = y. By Corollary 3.3, xu = u x x d  = xxdu for some unit u of Q and so 

q = u x x d y  = u y .  Now u = a" where a E S(R) ,d  E R and aadd = d. Hence 

adau = auaadd = add = u SO that aalf = 1, a is a unit and ad = a-'. So putting 

b = dy we h a v e a , b ~  R and q = a-'b. 

If a is an element of R which is not a zero divisor, then a is square- 

cancellable so that a has a group inverse ad in Q. Now (1 - aafi)a = 0 and from 

above we have that 1 - aad = c-'d for some c, d E R so that da = 0, giving 

that 1 - a a i  = c-'0 = 0 and a i s  aun i t  in Q. 

We have seen that the converse of Theorem 3.4 is not true. There is, 

however, a partial converse which covers all cases of interest in the two-sided 

case. 

T h e o r e m  3.5 Let Q be a q-ring with identity. If R i s  an  order i n  Q, then 

M R  i s  an  order in MQ. 

Proof  All we have to do is show that if a is in S (R) ,  then a has a group inverse 

in Q. Since Q has an identity, Lemma 2.7 and its dual apply from which it 

follows that if a is in S(R),then a is in S(Q).  As Q is a q-ring, this means 

that a has a group inverse in Q. 

The following corollary is an immediate consequence of the theorem and 

the facts that regular rings are q-rings and by Proposition 2.6, left perfect 
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rings and right perfect rings are q-rings. 

Corollary 3.6 L e t  R be a n  order  in a ring Q w i t h  iden t i ty .  If Q i s  regular, 

lef t  perfect o r  r ight  perfect, t h e n  M R  i s  a n  o r d e r  in M Q .  

Before obtaining a result for the one-sided case we must consider directly 

finite regular rings. In general, a ring R with 1 is direct ly  finite if for all 

x ,  y E R, yx = 1 follows from x y  = 1. An R-module A is directly finite if A is 

not isomorphic to a proper direct summand of itself. By Lemma 5.1 of [B], R is 

directly finite if and only if the right R-module RR is directly finite and this is 

so if and only if the left R-module R R  is directly finite. Every direct summand 

of a directly finite module is directly finite and so R is directly finite if and 

only if every left ideal of the form Re where e = eZ is directly finite ; there is 

a corresponding equivalent condition for idempotent generated principal right 

ideals. 

In view of these comments, if R is any regular ring (with or without iden- 

tity) we can define R to be directly finite when for every idempotent e in R, 

the left ideal Re is not isomorphic to a proper direct summand of itself. Using 

the lemma below which follows from Proposition 4.10 of 171, it is easy to see 

that this condition is equivalent to the corresponding one for right ideals. 

Lemma 3.7 T h e  fol lowing condi t i r  zs are equivalent  for e l e m e n t s  x , y  of a 

regular ring R : 

( I )  X R  r Y R ,  

(2) "DY, 

(3) Rx 2 Ry. 

We have already mentioned Green's relations L,R,'H and D. We now 

recall the fifth one, J,which is defined by the rule that for elements a,  b of 

a semigroup S, aJb if and only if S'aS1 = S'bS'. We write J ( a )  for S'aS1 
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which is the principal semigroupideal generated by a.  We define I ( a )  to be the 

set { b  E J ( a )  : J(b )  C J ( a ) ) .  Either I ( a )  is empty or I ( a )  is a semigroup ideal 

of S. If I ( a )  is not empty we can form the Rees quotient semigroup J ( a ) / I ( a )  

which identifies all the elements of I ( a ) .  The semigroups J ( a ) / I ( a )  (and J ( a )  

if I ( a )  = 0 )  are called the princzpal factors of S. A semigroup S is simple 

if S is the only ideal of itself ; if S has a zero, then S is 0-simple if S2 # 0 

and S, (0) are the only ideals of S. If S is a regular semigroup, then each 

principal factor is 0-simple (simple if I ( a )  = 0 ) .  If S has a zero, then (0) 

is a principal factor; we shall refer to principal factors other than (0) as the 

non-trivial principal factors. 

The idempotents of a semigroup are partially ordered by the relation 5 

defined by e 5 f if and only if fe = e = e f .  A non-zero idempotent e is 

primitive if f 5 e, f # 0 implies f = e. In a ring, by Theorem VII.2 of [I], a 

non-zero idempotent is primitive if and only if it cannot be written as the sum 

of two non-zero orthogonal idempotents. A 0-simple semigroup is completely 

0-simple if it contains a primitive idempotent in which case all its non-zero 

idempotents are primitive. Similarly, a completely simple semigroup is a simple 

semigroup with a primitive idempotent. 

Theorem 3.8 A regular ring R is directly finite if and only if each non-trivial 

principal factor of R is completely 0-simple. 

Proof Suppose that R is directly finite and let J / I  be a non-trivial principal 

factor of R. Since R is regular, J / I  is 0-simple and regular so that J / I  contains 

a non-zero idempotent e .  If J / I  is not completely 0-simple, then by Theorem 

2.54 of [J], JII  contains s bicyclic subsemigroup B having e as identity element. 

Now B contains an infinite chain e > el > ez... of idempotents which are V- 

related in B, hence are I)-related in JII  and consequently are D-related in 
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R. By 1;emma 3.7, Re E Rel 2 Re2 Z ... and as Re = R(e - el) $ Rel we 

have a contradiction. Hence J I I  is completely 0-simple. 

Conversely, suppose that each non-trivial principal factor of R is completely 

0-simple. If R is not directly finite, then for some idempotent e, Re = A $ B 

for some left ideals A, B with B Z Re, B # Re. If follows that A = Rh, b = Rf 

where h ,  f are orthogonal idempotents with e = h + f .  So e # f ,  f 5 e but 

eDf  by Lemma 3.7. Now 2) C J so that e, f are in the same J-class and 

hence they are non-zero idempotents in a principal factor. Thus e is a non- 

primitive idempotent in its principal factor, a contradiction. So R is directly 

finite. 

The following corollary is now immediate by Theorem 6.45 of [a]. 
Corollary 3.8 If R is a regular ring which satisfies ML and MR, then R is 

directly finite. 

We denote the minimal condition on principal semigroup ideals by MJ. 

From Exercise 8 of Section 6.6 of [a] we have the following result . 

Corollary 3.10 If a directly finite regular ring satisfies any one of ML, MR 

or Mj, then it satisfies the other two. 

Theorem 3.11 Let R be a left order i n  directlyfinite regular ring (with iden- 

tity) Q. Then M R  is a left order in  MQ. 

Proof  Let a E S ( R )  ; if a = 0, clearly a lies in a subgroup of Q. If a # 0: 

then by Lemma 2.7, aR'a2 in Q so that a R a 2  in Q as Q is regular. Thus 

a2 is a non-zero element of the principal factor J ( a ) / I ( a )  of Q. By Theorem 

3.8, J ( a ) / I ( a )  is completely 0-simple and it follows that a'HaZ in J ( a ) / I ( a ) .  

Consequently, a'Haz in Q, that is, a is in a subgroup of Q. 
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4 A common left denominator theorem 

Throughout this section we consider a regular ring Q and a subring R o f  Q 

which is a left  order i n  Q .  Our first objective is t o  prove a 'common left 

denominator' theorem which we use t o  investigate the relationship between 

left  ideals in R and in Q. W e  begin b y  quoting Lemma 2 o f  [4] which proves 

t o  be  very useful for us. 

Lemma 4.1 If e l ,  ..., en are idempotents of Q ,  then there is an idernpotent k 

in Q such that e l ,  ..., en E kQk .  

Lemma 4.2 Let q17 .,.,q, be elements of Q .  Then any element q of Q can 

be written as q = xiy where x E S ( R ) , y  E R, xxdy = y and xxuq, = q, for 

i = 1, ..., n. 

Proof Let q = ajb where a E S ( R ) ,  b E R and aadb = b. Let e l ,  ..., en b e  

idempotents i n  Q with e,Q = q,Q for i = 1, ..., n. Let e, = apb; and put e = a". 

B y  Lemma 4.1, there is an idempotent k i n  Q such that e ,  e l ,  ..., en E kQk .  B y  

Lemma 3.2, there is an element u is t he  group 3-class Hk with eu = ue  = au. 

Now u = x l z  for some x i n  S ( R ) ,  z in  R with xxflz = z .  Since, for i = 1, ..., n, 

we have xxdq ,  = qi. Also, 

q = adb = ueb = uaajb = ub = x b b  

so that putting y = zb we have q = x u y  with x x N y  = y. 

Theorem 4.3 Let a:bl, ..., a$bn be elements of Q with ala,b, = b, for i = 

1,  ..., n. Then there are elements c, d l ,  ..., d, of R with c E S (R)  such that for 

i = 1, ..., n, we have d ,  E Rb, and 
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Proof Clearly, it suffices to show that we can find elements c , t l ,  ..., t ,  in R 

with a! = cJ t ,  and ccut, = t ,  for i = 1, ..., n, for then we can take d, = t,b,. 

If n = 1 ,  we take c to be a: and t l  to be a ] .  Suppose now that we have 

elements u , v l ,  ..., v,-1 of R with u E S ( R ) , u J v r  = ajf and uub, = v ,  for 

i = 1, ..., n - 1. By Lemma 4.2, we can write u u  as x jy  where x E S ( R ) ,  y E 

R , x x j y  = y and x9xa?, = xx'aj,  = a!. Again by Lemma 4.2, we can write 

xa?, as r d s  for some r E S ( R ) , s  E R with r r l s  = s and rrflyv, = yv, for 

i = 1, ..., n - 1. Now let xiru = c'z where c E S (R) ,  z E R and ccgz = z .  We 

now have 

aJ , - - x u xa: = x V s  = cdzs 

and for i = 1, ..., n - 1 we have 

Put t, = z s  and t ,  = zryv ,  for i = 1, ..., n - 1. Since ccjz = z we have the 

result by induction. 

Proposition 4.4 Let I be a left ideal of Q and J be a left ideal of R. Then 

(1 )  I n R is a left ideal of R and I = Q ( I  n R),  

(2) Q J  is a left ideal of Q and 

Q J  = { a d j  : a E S ( R ) ,  j E J )  = {auj : a E S ( R ) ,  j E J,aa" = j ) ,  

(3) Q J  n R = { r  E R : ar E J for some a E S ( R )  with ajar = r ) .  

Proof (1)  This is straightforward. 

(2)  It is clear that Q J  is a left ideal of Q and that for j E J ,  every element of 

theform a 9 j i s i n Q J .  Nowlet qbeanelementof Q J s o t h a t  q = q l j l +  ...+q,j, 

for some 31, ..., j, E J ,  ql ,  ..., q, E Q. By Theorem 4.3, we can write q, = adb, 

for some a E S ( R ) ,  b I ,  ..., b, E R. Putting j = bl jl + ... + b,&, we have j E J 

and q = adj. 
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(3)  This is straightforward. 

Corollary 4.5 Let J be a left ideal of R .  Then J = I n  R for some left ideal 

I of Q if and only if for elements a ,  b of R with a E S ( R )  and aadb = b, we 

have ab E J implies b E J .  

Proposition 4.6 Let J 1 ,  ..., J ,  be independent left ideals of R, that is, their 

s u m  is direct. Then Q J 1 ,  ..., Q J ,  are independent left ideals of Q .  

Proof Suppose that 0 = ql + ... + q, where qi E QJ,.  By Proposition 4.4, 

d q, = a t j t  for some j, E J,  and a, E S ( R )  with a,a!j, = j,. By Theorem 4.3, we 

can write each ayj, as cad, for some c in S ( R ) , d ,  in R j ,  and ccdd, = d,. Thus 

d, E J,  and 

0 = CO = c(ctldl + ... + cddn) = dl + ... + d, 

SO that dl = ... = d, = 0 by the independence of J1 ,..., J,. Hence each q, is 

zero and Q J 1 ,  ..., Q Jn are independent. 

5 Uniqueness 

In this section we again consider a left order R in a regular ring Q .  Our aim 

is to show that any regular ring of left quotients of R is isomorphic to Q. We 

begin by examining the restrictions to R of the preorders LR and SL: on Q. 

Lemma 5.1 For elements a ,  b of R, aQ C bQ if and only if eR(b)  e R ( a ) ,  

that is, i f  and only if a5R.b i n  R. 

Proof Regular rings are faithful and so by Lemma 2.7, &(b) C eR(a)  if and 

only if a5R.b in R if and only in a5R.b in Q. But this is equivalent to a i x b  

in Q ,  that is, aQ 2 bQ. 
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Lemma 5.2 For elements a ,  b of R,  Qa C Qb i f  and only i f  there are elements 

h in S ( R ) ,  k in R with ha = kb and CR(h) E &(a).  

Proof In view of Lemma 5.1 we know that LR(h) C &(a) if and only if 

aQ C hQ. Thus, if appropriate elements h ,  k exist, then hd exists in Q and 

a = hdha = hdkb so that Qa E Qb. 

Conversely, if a = qb for some q E Q ,  then q = hdk for some h E S ( R ) ,  k E R 

with hhdk = k.  So ha = kb and aQ hdQ = hQ as required. 

Lemma 5.3 Let adb, xuy  be elements of Q with a, b, x ,  y E R ,  a d b  = b, xxdy = 

y and a E xQ. Then atb = xiy i f  and only if there are elements u E S ( R ) , v  E 

R with y, xa,v E uQ,v E Qa and such that uxa = va2 and vb = uy.  

Proof Suppose first that adb = xuy. Since xad E Q ,  we have xad = u d v  for 

some u in S ( R ) ,  v in R with u u h  = v ,  that is, v E uQ. NOW xa = xada2 = 

u h a 2  = u(ud)'va2 E UQ and y = zxdy = xadb E uQ. Also v = uxad E Qa and 

uxa = u(xad)a2 = u ( u b ) a 2  = va2. 

Finally, uy = uxadb = u u b b  = vb. 

Conversely, from the given conditions we obtain xad = udv and as a E xQ, 

it follows from y = udvb = xadb that xuy = adb as required. 

Lemma 5.4 Let adb, xdy E Q with a, b, x ,  y E R,aadb = b, xxdy  = y and 

a E xQ. Let c E S ( R )  be such that y E Qc. Then adbcd = xuy i f  and only 

2f there are elements m E S ( R ) ,  n E R with n ,  xa, yc2 E m Q ,  n E Qa and 

such that mxa  = na2 and nbc = myc2.  

Proof Suppose that aubcd = xuy. We have xad = m h  for some m E S ( R ) , n  E 

R with mmdn = n, that is, n E m Q .  Note that n = mxad so that n E Qa and 

mxa = na2. Also xa = mdna2 E mQ. Furthermore, 

nbc = mxadbc = mxadbcdc2 = mxxdyc2 = myc2 
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and 

yc2 = zzflyc2 = zaYbcflc2 = m h b c  E mQ. 

Conversely, if the given conditions hold, then from m z a  = na2 and za E 

m Q ,  n E Qa it follows that zay = mun. Hence, using yc2 E m Q  and nbc = myc2 

we get yc2 = munbc = xaflbc. Since a E zQ and y E Qc we now obtain 

adbcu = d y .  

Theorem 5.5 Let T be a regular ring and $J : R -+ T be an embedding such 

that S = $(R)  is a left order in T .  Then there is a unique isomorphism 

0 : Q 4 T which extends $. 

Proof For elements a, b of R we claim that 

bQ C_ aQ if and only if $J(b)T E $(a)T 

and 

Qb C_ Qa if and only if T$(b)  C T$J(a) .  ( 2 )  

Since $ is an isomorphism from R onto S, we have x E S ( R )  if and only if 

$ ( x )  E S ( S )  ; thus ( 1 )  follows from Lemma 5.1 and ( 2 )  follows from Lemma 

5.2. 

We define 8 by specifying its value on elements of Q written as a" with 

a E S ( R ) , b e  R a n d  aaub= bby the rule: 

To see that 8 is well-defined, let q = adb = cdd. B y  Lemma 4.2, we can 

write q = xuy where x E S ( R ) , y  E R and zxuy  = y,xxua = a,zxuc = c. 

As we have a E xQ and c E xQ we can now apply Lemma 5.3 to aub = xuy 

and to cud = x d y  ; in view of ( 1 )  and (2 ) ,  the conditions we get are carried 
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over to T by $ to yield (by Lemma 5.3 again), $(a)f$(b) = $(x)l$(y) and 

$(c)j$(d) = $(x)d+(y). It follows that 6' is well-defined. 

A similar argument shows that 0 is one-one and clearly, 0 is onto. 

Now let ql, q2 E Q with ql = a", q2 = c5d where a, c E S(R) ,  b, d E R and 

aadb = 6,  ccjd = d. Consider ajbcj ; by Lemma 4.2, we can write a f b c b s  xcy for 

some x E S(R) ,y  6 R with xauy = y and xxja = a. Also y = xajbcd E QC so 

that tht. conditions of Lemma 5.4 hold and by virtue of (1) and (2) ,  applying 

$ gives the corresponding conditions in T so that by Lemma 5.4 again, we get 

By Theorem 4.3, there are elements z , t , u  in R with z E S ( R ) ,  zzdt = 

t ,  zzuu = u, q, = z5t and qz = ziu. Thus 

0(q,) + Q(q2) = 0(z't) + @(z'u) = 4(z)"(t) + $(z)?*(u) 

= $(z)Y$(t) + $(u)) = * ( z ) W t  + U )  

= B(zd(t + u))  = d(zdt + Z'U) = ~ ( Q I  + 92). 

Thus 8 is an isomorphism and further, it is not difficult to see that 0 extends 

$. If q : Q --+ T is also an isomorphism which extends $, then for q = aub E Q 

where a E S(R) ,  b E R and aafb = b, we have 

q(q) = q(a") = q(ad)q(b) = q(a)'q(b) = $(a)V(b) = 6(anb) = @(q) 

so that 6' = 7 and 0 is unique. 

The following corollary is an immediate consequence of the theorem. 
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Corollary 5.6 If R is a left order in  regular rings Q1 and Q z t  then Q1 is 

isomorphic to 9 2  via an isomorphism which restricts to the identity on R. 
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